JPH0530985A - Production of l-lysine by fermentation - Google Patents

Production of l-lysine by fermentation

Info

Publication number
JPH0530985A
JPH0530985A JP12699291A JP12699291A JPH0530985A JP H0530985 A JPH0530985 A JP H0530985A JP 12699291 A JP12699291 A JP 12699291A JP 12699291 A JP12699291 A JP 12699291A JP H0530985 A JPH0530985 A JP H0530985A
Authority
JP
Japan
Prior art keywords
lysine
culture
medium
concentration
culture solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12699291A
Other languages
Japanese (ja)
Other versions
JP3074781B2 (en
Inventor
Harufumi Miwa
治文 三輪
Minoru Tsuruta
稔 鶴田
Koji Tamura
光司 田村
Yosuke Koyama
洋介 小山
Osamu Tosaka
修 戸坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP12699291A priority Critical patent/JP3074781B2/en
Priority to MYPI91002222A priority patent/MY121534A/en
Priority to FR9114851A priority patent/FR2669935B1/en
Priority to BE9101098A priority patent/BE1008008A3/en
Priority to BR919105208A priority patent/BR9105208A/en
Priority to ITMI913198A priority patent/IT1256566B/en
Priority to FR9202315A priority patent/FR2676234B1/en
Priority to CN92101496A priority patent/CN1041534C/en
Publication of JPH0530985A publication Critical patent/JPH0530985A/en
Priority to CN97112748A priority patent/CN1117869C/en
Priority to US08/905,713 priority patent/US5912113A/en
Priority to US09/192,565 priority patent/US6025169A/en
Application granted granted Critical
Publication of JP3074781B2 publication Critical patent/JP3074781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To produce L-lysine in improved productivity and accumulation concen tration in a high yield by inoculating a L-lysine-producing strain on a liquid medium, culturing the strain, feeding a feed medium at a specific time so as to maintain the concentration of carbon at a specified value, and simultaneously culturing the strain. CONSTITUTION:A lysine-producing microorganism (e.g. Brevibacterium.lactofermentum ATCC 21800) is inoculated on a perfect liquid medium, cultured and subjected to a logarithmic growth. The culture solution is subsequently mixed with a feed medium containing both a carbon source (e.g. sugar or organic acid) and a nutrient having a growth-accelerating effect (e.g. soy bean protein hydrolysate or yeast extract) and is fed to culture so that the concentration of the carbon source in the culture solution is maintained at <=5g/l, followed by collecting the objective L-lysine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、例えばコーン等の飼料
用穀物中に不足しているためブロイラーや豚用の飼料に
添加物として用いられる重要なアミノ酸であるL−リジ
ンの発酵法による製造法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to the production of L-lysine, which is an important amino acid used as an additive in feed for broilers and pigs by fermentation, due to lack in feed grains such as corn. It is about law.

【従来の技術】従来から知られている発酵法によるL−
リジンの製造法は、L−リジン生産能を有する徴生物を
回分方式又は連続方式で培養し、培地中にL−リジンを
蓄積させこれを採取するものである。回分方式の場合、
炭素源や窒素源を含んだ液体培地を発酵槽に投入して回
分培養するか、または通常炭素源のみを含む培地を連続
的または断読的に添加して流加培養する。連続方式の場
合、発酵槽に培地を連続的に供給し、同量の培養液を連
続的に取り出して槽内の菌体量や生産物濃度等を一定の
定常値を保って培養が行われる。
2. Description of the Prior Art L- by a conventionally known fermentation method
The lysine production method comprises culturing an organism having L-lysine-producing ability in a batch system or a continuous system, accumulating L-lysine in a medium, and collecting this. In case of batch method,
A liquid medium containing a carbon source or a nitrogen source is put into a fermenter for batch culture, or a medium containing only a carbon source is continuously or read-added for fed-batch culture. In the case of the continuous system, the culture medium is continuously supplied to the fermentation tank, the same amount of the culture solution is continuously taken out, and the culture is carried out while maintaining a constant steady value such as the bacterial cell amount and the product concentration in the tank. ..

【発明が解決しようとする課題】L−リジン発酵を行な
う場合、従来の回分方式では、培養液中の生産物の濃度
や収率については高い値を得ることが出来るが、生産性
については高い値を得るのが難しく、一方、従来の連続
方式では、生産性については高い値を得ることが出来る
が、生産物の濃度や収率については高い値を得るのが難
しい。しかるに、L−リジンの需要増大に応え、これを
より安価に製造するためには、従来以上にL−リジン発
酵の生産性を高め、生産物蓄積濃度や収率を高める必要
がある。このような技術的背景下において、本発明の目
的は、従来の回分方式と連続方式との各利点を合わせも
つ新規な発酵法による、生産性、生産物蓄積濃度及び収
率のいずれもが高いL−リジンの製造法の提供にある。
When performing L-lysine fermentation, a conventional batch system can obtain high values for the concentration and yield of the product in the culture broth, but high productivity. It is difficult to obtain a value, while in the conventional continuous method, it is possible to obtain a high value for productivity, but it is difficult to obtain a high value for the concentration and yield of the product. However, in order to meet the increasing demand for L-lysine and to produce it at a lower cost, it is necessary to increase the productivity of L-lysine fermentation more than ever, and to increase the product accumulation concentration and yield. Under such a technical background, the object of the present invention is to achieve high productivity, accumulated product concentration, and yield by a novel fermentation method that combines the advantages of the conventional batch system and continuous system. This is to provide a method for producing L-lysine.

【課題を解決するための手段】本発明者は、L−リジン
生産菌によるL−リジン発酵の方法について種々研究を
重ねた結果、L−リジン生産菌を炭素源や窒素源を含む
液体培地に接種し、対数増殖終了時以降に炭素源および
増殖促進効果を持つ栄養素の両方を含むフィード培地を
培養液中の炭素源の濃度が5g/L以下に保持される様
にフィードしつつ培養を続けることにより、従来の回分
方式の発酵と同様の高い生産物蓄積濃度と高い収率を維
持したまま、連読方式の発酵の高い生産性を持ったL−
リジン発酵が可能であることを発見し、この知見に基づ
き本発明を完成した。すなわち、本発明は、L−リジン
生産能を有する微生物を液体培地に接種し、該微生物の
対数増殖終了時以降に炭素源および増殖促進効果を持つ
栄養素の両方を含むフィード培地を培養液中の炭素源の
濃度が5g/L以下に保持される様にフィードしつつ培
養し、培養液中に生成蓄積したL−リジンを採取するこ
とを特徴とする発酵法によるL−リジンの製造法に関す
る。以下、本発明について逐次説明する。本発明の方法
においては、L−リジン生産能を有する微生物には特別
の制限はなく、L−リジン生産能を有する徴生物であれ
ばいずれの微生物も使用できる。このような微生物とし
ては、例えば、L−リジン生産性付与のために必要な性
質(ホモセリン要求性、S−(2−アミノエチル)−L
−システイン耐性、α−クロロカプロラクタム耐性等)
を有しているブレビバクテリウム属またはコリネバクテ
リウム属に属する微生物を挙げることができ、より具体
的には、例えば、ブレビバクテリウム・ラクトフェルメ
ンタムATCC 21800、ブレビバクテリウム・フ
ラバムATCC 21475、及びコリネバクテリウム
・アセトグルタミクムATCC 21491を挙げるこ
とができる。液体培地についても特別な制限はなく、炭
素源、窒素源などの有機及び無機の栄養源並びにその他
の微量栄養素を含む従来公知の完全液体培地を使用する
ことができる。本発明の方法において使用されるフィー
ド用炭素源は、前述のリジン生産菌が資化可能な炭素源
であれば、糖、有機酸、アルコール等一般に発酵原料
(炭素源)として使われるものであれば何でもよい。ま
た、増殖促進効果を持つ栄養素とは、L−リジン生産菌
の増殖を速めるのに有効なアミノ酸、ビタミン及びそれ
らを含有する天然物等をいう。具体的に例示すれば、大
豆蛋白質加水分解物、酵母エキス、コーンスティープリ
カー等である。さて、従来の技術においてフィードされ
る培地は、前述のように、流加培養においては通常炭素
源のみを含む培地であり、連続方式においては完全液体
培地である。これに対して、本発明の方法においてはフ
ィードされる培地は、炭素源及び増殖促進効果を持つ栄
養素の両方を含む培地であって、このようなフィード培
地は本発明の方法の特徴の1つである。本発明の方法に
おいて、フィードされる培地は当該微生物の対数増殖終
了時以降フィードする。対数増殖終了時前のフィードは
菌の初期生育を害するおそれがあり避けるべきである。
対数増殖終了時以降にフィードする培地のフィード方法
は、連続的でも断続的であってもよい。また、フィード
することにより発酵槽内の培養液の量が該発酵槽の仕込
容量の許容量を越えることが予想される場合には、予め
もしくは許容量に達した時点で培養液の一部を発酵槽外
へ取り出すことによりさらにフィードを行うことも出来
る。しかして、培地のフィードに関して重要なことは、
培養液中の炭素源濃度が常に5g/L以下に保たれるよ
うにフィードすることが必要であって、これも本発明方
法の特徴である。このためには、適時培養液をサンプリ
ングして炭素源濃度を直接分析する方法も採用出来る
し、pHや溶存酸素濃度を測定しその変化から炭素源の
欠乏状態を感知して培地のフィードを制御する方法等も
採用できる。炭素源濃度が常に5g/L以下に保たれな
いと菌の生育やL−リジンの生成速度が低下し、やはり
本発明の目的に沿わないこととなる。本発明の方法の特
徴は以上の通りであって、その他の発酵条件等には特別
の制限はない。例えば、本発明の方法によりL−リジン
発酵する場合の温度は、使用するリジン生産菌の増殖可
能な温度であればよく、通常25〜45℃、好ましくは
30〜40℃であり、発酵pHは、通常5.8〜8.
5、好ましくは6.5〜7.5である。pHの調整に
は、無機又は有機の酸性又はアルカリ性物質、更には尿
素、炭酸カルシウム、アンモニアガスなどを使用するこ
とができる。また、本発明において使用する発酵槽の形
状は、通常アミノ酸発酵等に使用されるものであればど
の様な形状でもよく、タービン翼を備えた完全混合槽、
エアーリフト型発酵槽等が使用できる。また、培養終了
した発酵液からのL−リジンの採取も、イオン交換樹脂
法、晶析法等の従来からの公知の方法及びその組合せに
より行うことが出来る。
Means for Solving the Problems As a result of various studies on the method of L-lysine fermentation by L-lysine-producing bacteria, the present inventor has changed L-lysine-producing bacteria to a liquid medium containing a carbon source and a nitrogen source. Inoculate and continue culturing while feeding a feed medium containing both a carbon source and nutrients having a growth promoting effect after the end of logarithmic growth so that the concentration of the carbon source in the culture solution is maintained at 5 g / L or less. As a result, while maintaining the same high product accumulation concentration and high yield as in the conventional batch fermentation, L- which has high productivity in continuous reading fermentation.
It was discovered that lysine fermentation was possible, and the present invention was completed based on this finding. That is, the present invention inoculates a liquid medium with a microorganism having an L-lysine-producing ability, and a feed medium containing both a carbon source and a nutrient having a growth-promoting effect in the culture medium after the logarithmic growth of the microorganism is finished. The present invention relates to a method for producing L-lysine by a fermentation method, which comprises culturing while feeding so that the concentration of a carbon source is maintained at 5 g / L or less, and collecting L-lysine produced and accumulated in a culture solution. Hereinafter, the present invention will be sequentially described. In the method of the present invention, the microorganism capable of producing L-lysine is not particularly limited, and any microorganism can be used as long as it is a characteristic organism capable of producing L-lysine. Such microorganisms include, for example, properties necessary for imparting L-lysine productivity (homoserine requirement, S- (2-aminoethyl) -L
-Cysteine resistance, α-chlorocaprolactam resistance, etc.)
A microorganism belonging to the genus Brevibacterium or the genus Corynebacterium having, more specifically, for example, Brevibacterium lactofermentum ATCC 21800, Brevibacterium flavum ATCC 21475, and Corynebacterium acetoglutamicum ATCC 21491 can be mentioned. The liquid medium is also not particularly limited, and a conventionally known complete liquid medium containing organic and inorganic nutrients such as carbon source and nitrogen source and other micronutrients can be used. The carbon source for feed used in the method of the present invention may be one commonly used as a fermentation raw material (carbon source) such as sugar, organic acid and alcohol, as long as it is a carbon source that can be assimilated by the lysine-producing bacterium. Anything is fine. Further, the nutrient having a growth promoting effect refers to amino acids, vitamins and natural products containing them which are effective in accelerating the growth of L-lysine-producing bacteria. Specific examples are soy protein hydrolyzate, yeast extract, corn steep liquor and the like. Now, as described above, the medium fed in the conventional technique is a medium which usually contains only a carbon source in the fed-batch culture, and is a complete liquid medium in the continuous system. On the other hand, the medium to be fed in the method of the present invention is a medium containing both a carbon source and nutrients having a growth promoting effect, and such a feed medium is one of the features of the method of the present invention. Is. In the method of the present invention, the medium to be fed is fed after the end of the logarithmic growth of the microorganism. Feeding before the end of logarithmic growth may impair the initial growth of the bacterium and should be avoided.
The medium feeding method after the end of logarithmic growth may be continuous or intermittent. Further, when it is expected that the amount of the culture solution in the fermenter exceeds the allowable amount of the charged capacity of the fermenter by feeding, a part of the culture solution is preliminarily or when the allowable amount is reached. Further feeding can be performed by taking it out of the fermenter. So the important thing about media feed is
It is necessary to feed so that the carbon source concentration in the culture solution is always maintained at 5 g / L or less, which is also a feature of the method of the present invention. For this purpose, it is possible to employ a method of directly analyzing the carbon source concentration by sampling the culture solution at appropriate times, measuring the pH and dissolved oxygen concentration, and sensing the carbon source deficiency state from the changes to control the medium feed. It is also possible to adopt a method of doing so. If the carbon source concentration is not always maintained at 5 g / L or less, the growth of bacteria and the production rate of L-lysine will be reduced, and the object of the present invention will not be met. The features of the method of the present invention are as described above, and other fermentation conditions are not particularly limited. For example, the temperature for L-lysine fermentation by the method of the present invention may be any temperature at which the lysine-producing bacterium used can grow, and is usually 25 to 45 ° C, preferably 30 to 40 ° C, and the fermentation pH is , Usually 5.8-8.
5, preferably 6.5 to 7.5. Inorganic or organic acidic or alkaline substances, as well as urea, calcium carbonate, ammonia gas and the like can be used to adjust the pH. Further, the shape of the fermenter used in the present invention may be any shape as long as it is usually used for amino acid fermentation and the like, a complete mixing tank equipped with turbine blades,
An air lift type fermenter can be used. Further, L-lysine can be collected from the fermented liquid after the culture by a conventionally known method such as an ion exchange resin method or a crystallization method, or a combination thereof.

【実施例】以下、本発明を実施例により更に説明する。実施例1 グルコース30g/L、塩化アンモニウム10g/L、
尿素3g/L、KHPO1g/L、MgSO・7
O100mg/L、FeSO・7HO10mg
/L、MnSO・4HO8mg/L、大豆蛋白質加
水分解物(窒素として)1g/L、サイアミン塩酸塩
0.1mg/L及びビチオン0.3mg/Lを含有する
培地(pH7.0)を、500mL容振とうフラスコ3
本に各20mLづつ分注した。115℃で10分間加熱
殺菌後、この培地に、予めブイヨンスラント上で48時
間生育させたブレビバクテリウム・ラクトフェルメンタ
ムATCC 21800を1白金耳接種し、31.5℃
で24時間振とう培養した。以上は、種培養である。廃
糖密を糖として80g/L、硫酸アンモニウム50g/
L、KHPO1g/L、MgSO・7HO1g
/L、大豆蛋白質加水分解物(窒素として)100mg
/L、サイアミン塩酸塩0.1mg/L及びビチオン
0.3mg/Lを含有する培地(pH7.0)を、3基
の1L容ガラス製小型発酵槽に300mLづつ分注し、
120℃で15分間加熱殺菌した。31.5℃まで冷却
後、上記のフラスコ培養終了液を発酵槽1基当り15m
Lづつ添加し、温度31.5℃、通気量1/2vvm、
攪はん数700rpmの条件で培養を行った。3基の内
の1基については、培養液中の糖が消費尽くされた時点
で培養を終了し(従来の回分培養)、培養液中に蓄積し
たL−リジン濃度を酸性−銅ニンヒドリン発色法により
定量した。他の2基については、培養液中の糖濃度が5
g/L以下になった時点よりフィード培地のフィードを
開始した。この内の1基については、フィード培地はグ
ルコース(40g/dL)のみを含有し(従来の流加培
養)、他の1基については、培地はグルコース(40g
/dL)、大豆蛋白質加水分解物(窒素として100m
g/L)、サイアミン塩酸塩(0.1mg/L)及びビ
チオン(0.3mg/L)を含有していた(本発明)。
いずれも培養液中の糖濃度が5g/L以下になるように
フィード培地のフィード速度を調節しつつ培養を読け、
それぞれ100mLのフィード培地をフィード終了後、
培養液中の糖が消費し尽くされた時点で培養を終了し、
培養液中に蓄積したL−リジン濃度を定量した。3基の
培養の結果を第1表に示した。
EXAMPLES The present invention will be further described below with reference to examples. Example 1 Glucose 30 g / L, ammonium chloride 10 g / L,
Urea 3g / L, KH 2 PO 4 1g / L, MgSO 4 · 7
H 2 O100mg / L, FeSO 4 · 7H 2 O10mg
/ L, MnSO 4 .4H 2 O 8 mg / L, soybean protein hydrolyzate (as nitrogen) 1 g / L, thiamine hydrochloride 0.1 mg / L and biotin 0.3 mg / L (pH 7.0). , 500 mL shake flask 3
20 mL each was dispensed into the book. After heat sterilization at 115 ° C for 10 minutes, 1 platinum loop of Brevibacterium lactofermentum ATCC 21800 which had been grown on broth slant for 48 hours was inoculated into this medium at 31.5 ° C.
The cells were shake-cultured for 24 hours. The above is the seed culture. 80 g / L of waste sugar concentrate as sugar, 50 g of ammonium sulfate /
L, KH 2 PO 4 1g / L, MgSO 4 · 7H 2 O1g
/ L, soy protein hydrolyzate (as nitrogen) 100mg
/ L, 0.1 mg / L of thiamine hydrochloride and 0.3 mg / L of biotin (pH 7.0) were added to three 1 L glass small fermenters in 300 mL aliquots,
It heat-sterilized at 120 degreeC for 15 minutes. After cooling to 31.5 ° C, the above flask culture completed liquid is added to the fermenter at 15 m
L at a temperature of 31.5 ° C, aeration rate of 1/2 vvm,
Culturing was performed under the condition of stirring at 700 rpm. For one of the three, the culture was terminated when the sugar in the culture medium was exhausted (conventional batch culture), and the concentration of L-lysine accumulated in the culture medium was measured by the acid-copper ninhydrin coloring method. Was quantified by For the other two groups, the sugar concentration in the culture was 5
Feeding of the feed medium was started at the time when the amount became g / L or less. For one of these, the feed medium contains only glucose (40 g / dL) (conventional fed-batch culture), for the other one, the medium contains glucose (40 g / dL).
/ DL), soy protein hydrolyzate (100m as nitrogen
g / L), thiamine hydrochloride (0.1 mg / L) and biotin (0.3 mg / L) (invention).
In both cases, the culture can be read while adjusting the feed rate of the feed medium so that the sugar concentration in the culture solution is 5 g / L or less,
After feeding 100 mL of each feed medium,
When the sugar in the culture solution is consumed, the culture is finished,
The concentration of L-lysine accumulated in the culture solution was quantified. The results of three cultures are shown in Table 1.

【表1】 第1表より、本発明の方法は、L−リジンの生産性及び
収率がともに優れていることが理解できる。実施例2 グルコース30g/L、塩化アンモニウム10g/L、
尿素3g/L、KHPO1g/L、MgSO・7
O100mg/L、FeSO・7HO10mg
/L、MnSO・4HO8mg/L、大豆蛋白質加
水分解物(窒素として)1g/L、サイアミン塩酸塩
0.1mg/L、及びビチオン0.3mg/Lを含有す
る培地(pH7.0)を、500mL容振とうフラスコ
2本に各20mLづつ分注した。115℃で10分間加
熱殺菌後、この培地に、予めブイヨンスラント上で48
時間生育させたブレビバクテリウム・フラバムATCC
21475を1白金耳接種し、31.5℃で24時間
振とう培養した。以上は、種培養である。廃糖密を糖と
して80g/L、硫酸アンモニウム50g/L、KH
PO1g/L、MgSO・7HO1g/L、大豆
蛋白質加水分解物(窒素として)100mg/L、サイ
アミン塩酸塩0.1mg/L、及びビチオン0.3mg
/Lを含有する培地(pH7.0)を、2基の1L容ガ
ラス製小型発酵槽に300mLづつ分注し、120℃で
15分間加熱殺菌した。31.5℃まで冷却の後、上記
のフラスコ培養終了液を発酵槽1基当り15mLづつ添
加し、温度31.5℃、通気量1/2vvm、攪はん数
700rpmの条件で培養を行った。培養液中の糖濃度
が5g/L以下になった時点よりフィード培地のフィー
ドを開始した。フィード培地はグルコース(40g/d
L)、大豆蛋白質加水分解物(窒素として100mg/
L)、サイアミン塩酸塩(0.1mg/L)及びビチオ
ン(0.3mg/L)を含有していた。一方の発酵槽は
培地中の糖濃度が常に5g/L以下になるようにフィー
ド培地のフィード速度を調節しつつ培養を続け(本発
明)、もう一方は5〜15g/Lの糖濃度となるような
フィード速度で培養を続け(対照)、それぞれ100m
Lのフィード培養をフィード終了後、培養液中の糖が消
費し尽くされた時点で培養を終了し、培養液中に蓄積し
たL−リジン濃度を定量した。2基の発酵槽における培
養の結果を第2表に示した。
[Table 1] It can be seen from Table 1 that the method of the present invention is excellent in both productivity and yield of L-lysine. Example 2 Glucose 30 g / L, ammonium chloride 10 g / L,
Urea 3g / L, KH 2 PO 4 1g / L, MgSO 4 · 7
H 2 O100mg / L, FeSO 4 · 7H 2 O10mg
/ L, MnSO 4 .4H 2 O 8 mg / L, soy protein hydrolyzate (as nitrogen) 1 g / L, thiamine hydrochloride 0.1 mg / L, and biotin 0.3 mg / L (pH 7.0) Was dispensed into two 500 mL shake flasks, 20 mL each. After heat sterilization at 115 ° C for 10 minutes, this medium was preliminarily sown on a broth slant for 48 minutes.
Brevibacterium flavum ATCC grown for hours
One platinum loop was inoculated with 21475 and cultured at 31.5 ° C. for 24 hours with shaking. The above is the seed culture. 80 g / L as waste sugar concentrate, 50 g / L ammonium sulfate, KH 2
PO 4 1g / L, MgSO 4 · 7H 2 O1g / L, soybean protein hydrolyzate (as nitrogen) 100 mg / L, thiamine hydrochloride 0.1 mg / L, and biotin 0.3mg
A medium (pH 7.0) containing / L was dispensed into two 1-L small glass fermenters each in an amount of 300 mL and sterilized by heating at 120 ° C for 15 minutes. After cooling to 31.5 ° C., 15 mL of the above flask culture completed liquid was added to each fermenter, and the culture was carried out under the conditions of a temperature of 31.5 ° C., an aeration rate of 1/2 vvm, and a stirring number of 700 rpm. .. Feeding of the feed medium was started when the sugar concentration in the culture solution became 5 g / L or less. The feed medium is glucose (40 g / d
L), soy protein hydrolyzate (100 mg / nitrogen /
L), thiamine hydrochloride (0.1 mg / L) and biotin (0.3 mg / L). One of the fermenters continued to cultivate while adjusting the feed rate of the feed medium so that the sugar concentration in the medium was always 5 g / L or less (the present invention), and the other had a sugar concentration of 5 to 15 g / L. Culture was continued at the same feed rate (control), 100m each
After the feed culture of L was completed, the culture was terminated when the sugar in the culture medium was consumed, and the concentration of L-lysine accumulated in the culture medium was quantified. The results of culturing in two fermenters are shown in Table 2.

【表2】 実施例3 グルコース30g/L、塩化アンモニウム10g/L、
尿素3g/L、KHPO1g/L、MgSO・7
O100mg/L、FeSO・7HO10mg
/L、MnSO・4HO8mg/L、大豆蛋白質加
水分解物(窒素として)1g/L、サイアミン塩酸塩
0.1mg/L、及びビチオン0.3mg/Lを含有す
る培地(pH7.0)を、500mL容振とうフラスコ
に20mL分注した。115℃で10分間加熱殺菌後、
この培地に、予めブイヨンスラント上で48時間生育さ
せたブレビバクテリウム・フラバムATCC 2147
5を1白金耳接種し、31.5℃で24時間振とう培養
した。以上は、種培養である。廃糖密を糖として80g
/L、硫酸アンモニウム50g/L、KHPO1g
/L、MgSO・7HO1g/L、大豆蛋白質加水
分解物(窒素として)100mg/L、サイアミン塩酸
塩0.1mg/L、及びビチオン0.3mg/Lを含有
する培地(pH7.0)を、1L容ガラス製小型発酵槽
に300mL分注し、120℃で15分間加熱殺菌し
た。31.5℃まで冷却の後、上記のフラスコ培養終了
液(種培養液)を発酵槽に15mL添加し、温度31.
5℃、通気量1/2vvm、攪はん数700rpmの条
件で培養を行った。培養液中の糖濃度が5g/L以下に
なった時点よりフィード培地のフィードを開始した。フ
ィード培地はグルコース(40g/dL)、大豆蛋白質
加水分解物(窒素として100mg/L)、サイアミン
塩酸塩(0.1mg/L)及びビオチン(0.3mg/
L)を含有していた。培養液中の糖濃度が常に5g/L
以下になるようにフィード培地のフィード速度を調節し
つつ培養を続け、100mLのフィード培地をフィード
終了後培養液中の糖が消費し尽くされた時点で培養液1
00mLを培養槽から抜取った。さらにフィード培地を
フィードしつつ培養を続けた。この場合も培養液中の糖
濃度は5g/L以下になるようにした。100mLのフ
ィード培地をフィード終了後、培養液中の糖が消費し尽
くされた時点で培養を終了し、発酵槽内の培養液と先に
抜取った培養液とを合せその中に蓄積したL−リジン濃
度を定量した。その結果、リジンの生産性は3.8g/
L・hrであり、リジン収率は42%であった。実施例4 グルコース30g/L、塩化アンモニウム10g/L、
尿素3g/L、KHPO1g/L、MgSO・7
O100mg/L、FeSO・7HO10mg
/L、MnSO・4HO8mg/L、大豆蛋白質加
水分解物(窒素として)1g/L、サイアミン塩酸塩
0.1mg/L、及びビチオン0.3mg/Lを含有す
る培地(pH7.0)を、500mL容振とうフラスコ
2本に各20mLづつ分注した。115℃で10分間加
熱殺菌後、この培地に、予めブイヨンスラント上で48
時間生育させたコリネバクテリウム・アセトアシドフィ
ラムATCC 21491を1白金耳接種し、31.5
℃で24時間振とう培養した。以上は、種培養である。
廃糖密を糖として80g/L、硫酸アンモニウム50g
/L、KHPO1g/L、MgSO・7HO1
g/L、大豆蛋白質加水分解物(窒素として)100m
g/L、サイアミン塩酸塩0.1mg/L、及びビチオ
ン0.3mg/Lを含有する培地(pH7.0)を、2
基の1L容ガラス製小型発酵槽に300mLづつ分注
し、120℃で15分間加熱殺菌した。31.5℃まで
冷却の後、上記のフラスコ培養終了液を各発酵槽に15
mLづつ添加し、温度31.5℃、通気量1/2vv
m、攪はん数700rpmの条件で培養を行った。一方
の発酵槽では培養液中の糖濃度が5g/L以下になった
時点よりフィード培地のフィードを開始した。フィード
培地はグルコース(40g/dL)、大豆蛋白質加水分
解物(窒素として100mg/L)、サイアミン塩酸塩
(0.1mg/L)及びビチオン(0.3mg/L)を
含有していた。培養液中の糖濃度が常に5g/L以下に
なるようにフィード培地のフィード速度を調節しつつ培
養を続け、100mLのフィード培地をフィード終了後
培養液中の糖が消費し尽くされた時点で培養液100m
Lを培養槽から抜取った。さらにフィード培地をフィー
ドしつつ培養を続けた。この場合も培養液中の糖濃度は
5g/L以下になるようにした。100mLのフィード
培地をフィード終了後、培養液中の糖が消費し尽くされ
た時点で培養を終了し、発酵槽内の培養液と先に抜取っ
た培養液とを合せその中に蓄積したL−リジン濃度を定
量した。その結果、リジンの生産性は3.9g/L・h
rであり、リジン収率は41%であった。また、もう一
方の発酵槽については培養開始25時間経過後、連続培
養流加培地の添加を開始した。流加培地としては初発培
地を4倍に希釈したものを用いた。約1Lの流加培地を
希釈率0.05hr−1で流し連続培養による定常状態
を達成した後、培養液中のL−リジン濃度を定量した。
その結果、リジンの生産性は3.5g/L・hrであ
り、リジン収率は35%であった。
[Table 2] Example 3 Glucose 30 g / L, ammonium chloride 10 g / L,
Urea 3g / L, KH 2 PO 4 1g / L, MgSO 4 · 7
H 2 O100mg / L, FeSO 4 · 7H 2 O10mg
/ L, MnSO 4 .4H 2 O 8 mg / L, soy protein hydrolyzate (as nitrogen) 1 g / L, thiamine hydrochloride 0.1 mg / L, and biotin 0.3 mg / L (pH 7.0) 20 mL was dispensed into a 500 mL shake flask. After heat sterilization at 115 ° C for 10 minutes,
Brevibacterium flavum ATCC 2147 was grown in this medium on broth slants for 48 hours.
One platinum loop was inoculated with 5 and shake-cultured at 31.5 ° C. for 24 hours. The above is the seed culture. 80g of waste sugar concentrate as sugar
/ L, ammonium sulfate 50g / L, KH 2 PO 4 1g
/ L, MgSO 4 · 7H 2 O1g / L, soybean protein hydrolyzate (nitrogen as) 100 mg / L, thiamine hydrochloride 0.1 mg / L, and medium containing biotin 0.3 mg / L (pH 7.0) 300 mL was dispensed into a 1 L glass small fermentor and sterilized by heating at 120 ° C. for 15 minutes. After cooling to 31.5 ° C., 15 mL of the above flask culture completed solution (seed culture solution) was added to the fermenter, and the temperature was adjusted to 31.
The culture was carried out under the conditions of 5 ° C., an aeration rate of 1/2 vvm, and a stirring number of 700 rpm. Feeding of the feed medium was started when the sugar concentration in the culture solution became 5 g / L or less. The feed medium was glucose (40 g / dL), soy protein hydrolyzate (100 mg / L as nitrogen), thiamine hydrochloride (0.1 mg / L) and biotin (0.3 mg / L).
L) was contained. The sugar concentration in the culture solution is always 5 g / L
The culture was continued while adjusting the feed rate of the feed medium as follows, and when 100 mL of the feed medium had been fed, when the sugar in the culture solution was consumed, the culture solution 1
00 mL was withdrawn from the culture tank. Further, the culture was continued while feeding the feed medium. Also in this case, the sugar concentration in the culture solution was adjusted to 5 g / L or less. After 100 mL of the feed medium had been fed, the culture was terminated when the sugar in the culture solution was exhausted, and the culture solution in the fermenter was combined with the previously extracted culture solution to collect L accumulated therein. -The lysine concentration was quantified. As a result, the productivity of lysine was 3.8 g /
L · hr, and the lysine yield was 42%. Example 4 Glucose 30 g / L, ammonium chloride 10 g / L,
Urea 3g / L, KH 2 PO 4 1g / L, MgSO 4 · 7
H 2 O100mg / L, FeSO 4 · 7H 2 O10mg
/ L, MnSO 4 .4H 2 O 8 mg / L, soy protein hydrolyzate (as nitrogen) 1 g / L, thiamine hydrochloride 0.1 mg / L, and biotin 0.3 mg / L (pH 7.0) Was dispensed into two 500 mL shake flasks, 20 mL each. After heat sterilization at 115 ° C for 10 minutes, this medium was preliminarily sown on a broth slant for 48 minutes.
One platinum loop was inoculated with Corynebacterium acetoacidophilum ATCC 21491 grown for 3 hours, and then 31.5
The cells were shake-cultured at 24 ° C for 24 hours. The above is the seed culture.
80 g / L of waste sugar concentrate as sugar, 50 g of ammonium sulfate
/ L, KH 2 PO 4 1g / L, MgSO 4 · 7H 2 O1
g / L, soy protein hydrolyzate (as nitrogen) 100m
g / L, 0.1 mg / L of thiamine hydrochloride, and 0.3 mg / L of biotin (pH 7.0) were added to 2 media.
300 mL each was dispensed to the base 1 L small glass fermentor and heat-sterilized at 120 ° C. for 15 minutes. After cooling to 31.5 ° C., the flask culture completed liquid was added to each fermenter for 15 minutes.
Add each mL, temperature 31.5 ℃, aeration rate 1/2 vv
The culture was performed under the conditions of m. In one of the fermenters, the feed of the feed medium was started when the sugar concentration in the culture solution became 5 g / L or less. The feed medium contained glucose (40 g / dL), soy protein hydrolyzate (100 mg / L as nitrogen), thiamine hydrochloride (0.1 mg / L) and biotin (0.3 mg / L). The culture is continued while adjusting the feed rate of the feed medium so that the sugar concentration in the culture solution is always 5 g / L or less, and when 100 mL of the feed medium is completely fed, the sugar in the culture solution is consumed. Culture medium 100m
L was removed from the culture tank. Further, the culture was continued while feeding the feed medium. Also in this case, the sugar concentration in the culture solution was adjusted to 5 g / L or less. After 100 mL of the feed medium had been fed, the culture was terminated when the sugar in the culture solution was exhausted, and the culture solution in the fermenter was combined with the previously extracted culture solution to collect L accumulated therein. -The lysine concentration was quantified. As a result, the productivity of lysine was 3.9 g / L · h.
and the lysine yield was 41%. In the other fermentor, the addition of the continuous culture fed-batch medium was started 25 hours after the start of culture. As the feeding medium, a 4-fold diluted starting medium was used. About 1 L of a fed-batch medium was flown at a dilution rate of 0.05 hr −1 to achieve a steady state by continuous culture, and then the L-lysine concentration in the culture solution was quantified.
As a result, the lysine productivity was 3.5 g / L · hr, and the lysine yield was 35%.

【発明の効果】本発明により、従来の回分方式の発酵と
同様の高い生産物蓄積濃度と高い収率を維持し、かつ従
来の連続方式同様の高い生産性を持ったL−リジン発酵
が可能となった。換言すれば、L−リジンの工業生産の
大幅な生産性向上とコストダウンが可能となった。
Industrial Applicability According to the present invention, L-lysine fermentation can be carried out while maintaining the high product accumulation concentration and high yield as in the conventional batch system fermentation and having the high productivity as in the conventional continuous system. Became. In other words, it has become possible to significantly improve the industrial production of L-lysine and reduce the cost.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年12月19日[Submission date] December 19, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばコーン等の飼料
用穀物中に不足しているためブロイラーや豚用の飼料に
添加物として用いられる重要なアミノ酸であるL−リジ
ンの発酵法による製造法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to the production of L-lysine, which is an important amino acid used as an additive in feed for broilers and pigs by fermentation, due to lack in feed grains such as corn. It is about law.

【0002】[0002]

【従来の技術】従来から知られている発酵法によるL−
リジンの製造法は、L−リジン生産能を有する微生物を
回分方式又は連続方式で培養し、培地中にL−リジンを
蓄積させこれを採取するものである。
2. Description of the Prior Art L- by a conventionally known fermentation method
The method for producing lysine is to culture a microorganism capable of producing L-lysine in a batch system or a continuous system to accumulate L-lysine in a medium and collect the L-lysine.

【0003】回分方式の場合、炭素源や窒素源を含んだ
液体培地を発酵槽に投入して回分培養するか、または通
常炭素源のみを含む培地を連続的または断続的に添加し
て流加培養する。連続方式の場合、発酵槽に培地を連続
的に供給し、同量の培養液を連続的に取り出して槽内の
菌体量や生産物濃度等を一定の定常値を保って培養が行
われる。
In the case of the batch system, a liquid medium containing a carbon source or a nitrogen source is put into a fermenter for batch culture, or a medium containing only a carbon source is continuously or intermittently added and fed. Incubate. In the case of the continuous system, the culture medium is continuously supplied to the fermentation tank, the same amount of the culture solution is continuously taken out, and the culture is carried out while maintaining a constant steady value such as the bacterial cell amount and the product concentration in the tank. ..

【0004】[0004]

【発明が解決しようとする課題】L−リジン発酵を行な
う場合、従来の回分方式では、培養液中の生産物の濃度
や収率については高い値を得ることが出来るが、生産性
については高い値を得るのが難しく、一方、従来の連続
方式では、生産性については高い値を得ることが出来る
が、生産物の濃度や収率については高い値を得るのが難
しい。しかるに、L−リジンの需要増大に応え、これを
より安価に製造するためには、従来以上にL−リジン発
酵の生産性を高め、生産物蓄積濃度や収率を高める必要
がある。
When performing L-lysine fermentation, a conventional batch system can obtain high values for the concentration and yield of the product in the culture broth, but high productivity. It is difficult to obtain a value, while in the conventional continuous method, it is possible to obtain a high value for productivity, but it is difficult to obtain a high value for the concentration and yield of the product. However, in order to meet the increasing demand for L-lysine and to produce it at a lower cost, it is necessary to increase the productivity of L-lysine fermentation more than ever, and to increase the product accumulation concentration and yield.

【0005】このような技術的背景下において、本発明
の目的は、従来の回分方式と連続方式との各利点を合わ
せもつ新規な発酵法による、生産性、生産物蓄積濃度及
び収率のいずれもが高いL−リジンの製造法の提供にあ
る。
Under such a technical background, the object of the present invention is to improve productivity, accumulated product concentration and yield by the novel fermentation method which has the advantages of both the conventional batch system and continuous system. It is to provide a method for producing L-lysine which is expensive.

【0006】[0006]

【課題を解決するための手段】本発明者は、L−リジン
生産菌によるL−リジン発酵の方法について種々研空を
重ねた結果、L−リジン生産菌を炭素源や窒素源を含む
液体培地に接種し、対数増殖終了時以降に炭素源および
増殖促進効果を持つ栄養素の両方を含むフィード培地を
培養液中の炭素源の濃度が5g/L以下に保持される様
にフィードしつつ培養を続けることにより、従来の回分
方式の発酵と同様の高い生産物蓄積濃度と高い収率を維
持したまま、連続方式の発酵の高い生産性を持ったL−
リジン発酵が可能であることを発見し、この知見に基づ
き本発明を完成した。
Means for Solving the Problems The present inventor has conducted various researches on a method of L-lysine fermentation by an L-lysine-producing bacterium, and as a result, the L-lysine-producing bacterium is a liquid medium containing a carbon source and a nitrogen source. And a feed medium containing both a carbon source and a nutrient having a growth promoting effect after the end of logarithmic growth is fed while maintaining the concentration of the carbon source in the culture solution at 5 g / L or less. By continuing, while maintaining the same high product accumulation concentration and high yield as in conventional batch fermentation, L- with high productivity in continuous fermentation
It was discovered that lysine fermentation was possible, and the present invention was completed based on this finding.

【0007】すなわち、本発明は、L−リジン生産能を
有する微生物を液体培地に接種し、該微生物の対数増殖
終了時以降に炭素源および増殖促進効果を持つ栄養素の
両方を含むフィード培地を培養液中の炭素源の濃度が5
g/L以下に保持される様にフィードしつつ培養し、培
養液中に生成蓄積したL−リジンを採取することを特徴
とする発酵法によるL−リジンの製造法に関する。
That is, the present invention inoculates a liquid medium with a microorganism capable of producing L-lysine, and cultures a feed medium containing both a carbon source and nutrients having a growth promoting effect after the end of logarithmic growth of the microorganism. The concentration of carbon source in the liquid is 5
The present invention relates to a method for producing L-lysine by a fermentation method, which comprises culturing while feeding so as to be maintained at g / L or less and collecting L-lysine produced and accumulated in the culture solution.

【0008】以下、本発明について逐次説明する。The present invention will be sequentially described below.

【0009】本発明の方法においては、L−リジン生産
能を有する微生物には特別の制限はなく、L−リジン生
産能を有する微生物であればいずれの微生物も使用でき
る。このような微生物としては、例えば、L−リジン生
産性付与のために必要な性質(ホモセリン要求性、S−
(2−アミノエチル)−L−システイン耐性、α−クロ
ロカプロラクタム耐性等)を有しているブレビバクテリ
ウム属またはコリネバクテリウム属に属する微生物を挙
げることができ、より具体的には、例えば、ブレビバク
テリウム・ラクトフェルメンタムATCC 2180
0、ブレビバクテリウム・フラバムATCC 2147
5、及びコリネバクテリウム・アセトグルタミクムAT
CC 21491を挙げることができる。
In the method of the present invention, there is no particular limitation on the microorganism capable of producing L-lysine, and any microorganism can be used as long as it is capable of producing L-lysine. Examples of such a microorganism include, for example, properties necessary for imparting L-lysine productivity (homoserine requirement, S-
(2-aminoethyl) -L-cysteine resistance, α-chlorocaprolactam resistance, etc.) can be mentioned as a microorganism belonging to the genus Brevibacterium or the genus Corynebacterium. More specifically, for example, Brevibacterium lactofermentum ATCC 2180
0, Brevibacterium flavum ATCC 2147
5, and Corynebacterium acetoglutamicum AT
CC 21491 can be mentioned.

【0010】液体培地についても特別な制限はなく、炭
素源、窒素源などの有機乃び無機の栄養源並びにその他
の微量栄養素を含む従来公知の完全液体培地を使用する
ことができる。
The liquid medium is not particularly limited, and a conventionally known complete liquid medium containing organic and inorganic nutrients such as carbon source and nitrogen source and other micronutrients can be used.

【0011】本発明の方法において使用されるフィード
用炭素源は、前述のリジン生産菌が資化可能な炭素源で
あれば、糖、有機酸、アルコール等一般に発酵原料(炭
素源)として使われるものであれば何でもよい。また、
増殖促進効果を持つ栄養素とは、L−リジン生産菌の増
殖を速めるのに有効なアミノ酸、ビタミン及びそれらを
含有する天然物等をいう。具体的に例示すれば、大豆蛋
白質加水分解物、酵母エキス、コーンスティープリカー
等である。
The carbon source for feed used in the method of the present invention is generally used as a fermentation raw material (carbon source) such as sugar, organic acid and alcohol, as long as it is a carbon source that can be assimilated by the lysine-producing bacterium. Anything will do. Also,
The nutrient having a growth promoting effect refers to amino acids, vitamins and natural products containing them which are effective in accelerating the growth of L-lysine-producing bacteria. Specific examples are soy protein hydrolyzate, yeast extract, corn steep liquor and the like.

【0012】さて、従来の技術においてフィードされる
培地は、前述のように、流加培養においては通常炭素源
のみを含む培地であり、連続方式においては完全液体培
地である。これに対して、本発明の方法においてはフィ
ードされる培地は、炭素源及び増殖促進効果を持つ栄養
素の両方を含む培地であって、このようなフィード培地
は本発明の方法の特徴の1つである。
The medium fed in the conventional technique is a medium which normally contains only a carbon source in the fed-batch culture as described above, and is a complete liquid medium in the continuous system. On the other hand, the medium to be fed in the method of the present invention is a medium containing both a carbon source and nutrients having a growth promoting effect, and such a feed medium is one of the features of the method of the present invention. Is.

【0013】本発明の方法において、フィードされる培
地は当該微生物の対数増殖終了時以降フィードする。対
数増殖終了時前のフィードは菌の初期生育を害するおそ
れがあり避けるべきである。
In the method of the present invention, the medium to be fed is fed after the end of the logarithmic growth of the microorganism. Feeding before the end of logarithmic growth may impair the initial growth of the bacterium and should be avoided.

【0014】対数増殖終了時以降にフィードする培地の
フィード方法は、連続的でも断続的であってもよい。ま
た、フィードすることにより発酵槽内の培養液の量が該
発酵槽の仕込容量の許容量を越えることが予想される場
合には、予めもしくは許容量に達した時点で培養液の一
部を発酵槽外へ取り出すことによりさらにフィードを行
うことも出来る。
The method of feeding the medium fed after the end of logarithmic growth may be continuous or intermittent. Further, when it is expected that the amount of the culture solution in the fermenter exceeds the allowable amount of the charged capacity of the fermenter by feeding, a part of the culture solution is preliminarily or when the allowable amount is reached. Further feeding can be performed by taking it out of the fermenter.

【0015】しかして、培地のフィードに関して重要な
ことは、培養液中の炭素源濃度が常に5g/L以下に保
たれるようにフィードすることが必要であって、これも
本発明方法の特徴である。このためには、適時培養液を
サンプリングして炭素源濃度を直接分析する方法も採用
出来るし、pHや溶存酸素濃度を測定しその変化から炭
素源の欠乏状態を感知して培地のフィードを制御する方
法等も採用できる。炭素源濃度が常に5g/L以下に保
たれないと菌の生育やL−リジンの生成速度が低下し、
やはり本発明の目的に沿わないこととなる。
However, what is important regarding the feeding of the medium is that it is necessary to feed so that the carbon source concentration in the culture solution is always kept at 5 g / L or less, which is also a feature of the method of the present invention. Is. For this purpose, it is possible to employ a method of directly analyzing the carbon source concentration by sampling the culture solution at appropriate times, measuring the pH and dissolved oxygen concentration, and sensing the carbon source deficiency state from the changes to control the medium feed. It is also possible to adopt a method of doing so. If the carbon source concentration is not always kept below 5 g / L, the growth of bacteria and the production rate of L-lysine decrease,
After all, the purpose of the present invention will not be met.

【0016】本発明の方法の特徴は以上の通りであっ
て、その他の発酵条件等には特別の制限はない。例え
ば、本発明の方法によりL−リジン発酵する場合の温度
は、使用するリジン生産菌の増殖可能な温度であればよ
く、通常25〜45℃、好ましくは30〜40℃であ
り、発酵pHは、通常5.8〜8.5、好ましくは6.
5〜7.5である。pHの調整には、無機又は有機の酸
性又はアルカリ性物質、更には尿素、炭酸カルシウム、
アンモニアガスなどを使用することができる。また、本
発明において使用する発酵槽の形状は、通常アミノ酸発
酵等に使用されるものであればどの様な形状でもよく、
タービン翼を備えた完全混合槽、エアーリフト型発酵槽
等が使用できる。
The characteristics of the method of the present invention are as described above, and other fermentation conditions and the like are not particularly limited. For example, the temperature for L-lysine fermentation by the method of the present invention may be any temperature at which the lysine-producing bacterium used can grow, and is usually 25 to 45 ° C, preferably 30 to 40 ° C, and the fermentation pH is , Usually 5.8 to 8.5, preferably 6.
It is 5 to 7.5. To adjust the pH, inorganic or organic acidic or alkaline substances, as well as urea, calcium carbonate,
Ammonia gas or the like can be used. The shape of the fermenter used in the present invention may be any shape as long as it is usually used for amino acid fermentation and the like,
A complete mixing tank equipped with turbine blades, an air lift type fermentation tank, etc. can be used.

【0017】また、培養終了した発酵液からのL−リジ
ンの採取も、イオン交換樹脂法、晶析法等の従来からの
公知の方法及びその組合せにより行うことが出来る。
L-lysine can also be collected from the fermented liquid after the culture by a conventionally known method such as an ion exchange resin method or a crystallization method, or a combination thereof.

【0018】[0018]

【実施例】以下、本発明を実施例により更に説明する。実施例1 グルコース30g/L、塩化アンモニウム10g/L、
尿素3g/L、KHPO1g/L、MgSO・7
O100mg/L、FeSO・7HO10mg
/L、MnSO.4HO8mg/L、大豆蛋白質加
水分解物(窒素として)1g/L、サイアミン塩酸塩
0.1mg/L及びビチオン0.3mg/Lを含有する
培地(pH7.0)を、500mL容振とうフラスコ3
本に各20mLづつ分注した。115℃で10分間加熱
殺菌後、この培地に、予めブイヨンスラント上で48時
間生育させたブレビバクテリウム・ラクトフェルメンタ
ムATCC 21800を1白金耳接種し、31.5℃
で24時間振とう培養した。以上は、種培養である。
EXAMPLES The present invention will be further described below with reference to examples. Example 1 Glucose 30 g / L, ammonium chloride 10 g / L,
Urea 3g / L, KH 2 PO 4 1g / L, MgSO 4 · 7
H 2 O100mg / L, FeSO 4 · 7H 2 O10mg
/ L, MnSO 4 . 4H 2 O 8mg / L, soybean protein hydrolyzate (as nitrogen) 1g / L, thiamine hydrochloride 0.1mg / L and biotin 0.3mg / L containing medium (pH 7.0) 500mL shake flask Three
20 mL each was dispensed into the book. After heat sterilization at 115 ° C for 10 minutes, 1 platinum loop of Brevibacterium lactofermentum ATCC 21800 which had been grown on broth slant for 48 hours was inoculated into this medium at 31.5 ° C.
The cells were shake-cultured for 24 hours. The above is the seed culture.

【0019】廃糖を糖として80g/L、硫酸アンモ
ニウム50g/L、KHPO1g/L、MgSO
・7HO1g/L、大豆蛋白質加水分解物(窒素とし
て)100mg/L、サイアミン塩酸塩0.1mg/L
及びビチオン0.3mg/Lを含有する培地(pH7.
0)を、3基の1L容ガラス製小型発酵槽に300mL
づつ分注し、120℃で15分間加熱殺菌した。31.
5℃まで冷却後、上記のフラスコ培養終了液を発酵槽1
基当り15mLづつ添加し、温度31.5℃、通気量1
/2vvm、撹はん数700rpmの条件で培養を行っ
た。
[0019] The waste molasses as a sugar 80g / L, ammonium sulfate 50g / L, KH 2 PO 4 1g / L, MgSO 4
・ 7H 2 O 1 g / L, soybean protein hydrolyzate (as nitrogen) 100 mg / L, thiamine hydrochloride 0.1 mg / L
And a medium containing 0.3 mg / L of biotin (pH 7.
0) 300 mL in 3 small 1 L glass fermenters
Each was dispensed and heat sterilized at 120 ° C. for 15 minutes. 31.
After cooling to 5 ° C., the above-mentioned flask culture completed liquid was added to fermenter
Add 15mL per group, temperature 31.5 ℃, aeration 1
The culture was carried out under the condition of / 2 vvm and the stirring number was 700 rpm.

【0020】3基の内の1基については、培養液中の糖
が消費尽くされた時点で培養を終了し(従来の回分培
養)、培養液中に蓄積したL−リジン濃度を酸性−銅ニ
ンヒドリン発色法により定量した。他の2基について
は、培養液中の糖濃度が5g/L以下になった時点より
フィード培地のフィードを開始した。この内の1基につ
いては、フィード培地はグルコース(40g/dL)の
みを含有し(従来の流加培養)、他の1基については、
培地はグルコース(40g/dL)、大豆蛋白加水分解
物(窒素として100mg/L)、サイアミン塩酸塩
(0.1mg/L)及びビチオン(0.3mg/L)を
含有していた(本発明)。いずれも培養液中の糖濃度が
5g/L以下になるようにフィード培地のフィード速度
を調節しつつ培養を続け、それぞれ100mLのフィー
ド培地をフィード終了後、培養液中の糖が消費し尽くさ
れた時点で培養を終了し、培養液中に蓄積したL−リジ
ン濃度を定量した。
For one of the three, the culture was terminated when the sugar in the culture solution was exhausted (conventional batch culture), and the concentration of L-lysine accumulated in the culture solution was adjusted to acidic-copper. It was quantified by the ninhydrin color development method. For the other two groups, the feeding of the feed medium was started when the sugar concentration in the culture solution became 5 g / L or less. For one of these, the feed medium contains only glucose (40 g / dL) (conventional fed-batch culture), for the other one,
The medium contained glucose (40 g / dL), soybean protein hydrolyzate (100 mg / L as nitrogen), thiamine hydrochloride (0.1 mg / L) and biotin (0.3 mg / L) (invention). .. In both cases, the culture was continued while adjusting the feed rate of the feed medium so that the sugar concentration in the culture solution was 5 g / L or less, and after the completion of feeding 100 mL of each feed medium, the sugar in the culture solution was consumed up. At that point, the culture was terminated and the concentration of L-lysine accumulated in the culture solution was quantified.

【0021】3基の培養の結果を第1表に示した。The results of three cultures are shown in Table 1.

【0022】[0022]

【表1】 第1表より、本発明の方法は、L−リジンの生産性及び
収率がともに優れていることが理解できる。実施例2 グルコース30g/L、塩化アンモニウム10g/L、
尿素3g/L、KHPOL、MgSO・7H
100mg/L、FeSO・7HO10mg/L、
MnSO・4HO8mg/L、大豆蛋白質加水分解
物(窒素として)1g/L、サイアミン塩酸塩0.1m
g/L、及びビチオン0.3mg/Lを含有する培地
(pH7.0)を、500mL容振とうフラスコ2本に
各20mLづつ分注した。115℃で10分間加熱殺菌
後、この培地に、予めブイヨンスラント上で48時間生
育させたブレビバクテリウム・フラバムATCC 21
475を1白金耳接種し、31.5℃で24時間振とう
培養した。以上は、種培養である。
[Table 1] It can be seen from Table 1 that the method of the present invention is excellent in both productivity and yield of L-lysine. Example 2 Glucose 30 g / L, ammonium chloride 10 g / L,
Urea 3g / L, KH 2 PO 4 L, MgSO 4 · 7H 2 O
100mg / L, FeSO 4 · 7H 2 O10mg / L,
MnSO 4 .4H 2 O 8 mg / L, soybean protein hydrolyzate (as nitrogen) 1 g / L, thiamine hydrochloride 0.1 m
A medium (pH 7.0) containing g / L and 0.3 mg / L of biotin was dispensed into two 500 mL shake flasks, 20 mL each. After heat sterilization at 115 ° C. for 10 minutes, Brevibacterium flavum ATCC 21 preliminarily grown on broth slant for 48 hours was added to this medium.
One platinum loop was inoculated with 475 and cultured at 31.5 ° C. for 24 hours with shaking. The above is the seed culture.

【0023】廃糖を糖として80g/L、硫酸アンモ
ニウム50g/L、KHPO1g/L、MgS
.7HO1g/L、大豆蛋白質加水分解物(窒素
として)100mg/L、サイアミン塩酸塩0.1mg
/L、及びビチオン0.3mg/Lを含有する培地(p
H7.0)を、2基の1L容ガラス製小型発酵槽に30
0mLづつ分注し、120℃で15分間加熱殺菌した。
31.5℃まで冷却の後、上記のフラスコ培養終了液を
発酵槽1基当り15mLづつ添加し、温度31.5℃、
通気量1/2vvm、撹はん数700rpmの条件で培
養を行った。
[0023] 80g / L of waste molasses as sugar, ammonium sulfate 50g / L, KH 2 PO 4 1g / L, MgS
O 4 . 7H 2 O 1 g / L, soy protein hydrolyzate (as nitrogen) 100 mg / L, thiamin hydrochloride 0.1 mg
/ L and medium containing 0.3 mg / L of biotin (p
H7.0) into two 1L glass small fermenters
It was dispensed in 0 mL aliquots and sterilized by heating at 120 ° C for 15 minutes.
After cooling to 31.5 ° C, 15 mL of the above flask culture completed liquid was added to each fermentor, and the temperature was 31.5 ° C.
The culture was performed under the conditions of an aeration rate of 1/2 vvm and a stirring rate of 700 rpm.

【0024】培養液中の糖濃度が5g/L以下になった
時点よりフィード培地のフィードを開始した。フィード
培地はグルコース(40g/dL)、大豆蛋白質加水分
解物(窒素として100mg/L)、サイアミン塩酸塩
(0.1mg/L)及びビチオン(0.3mg/L)を
含有していた。一方の発酵槽は培地中の糖濃度が常に5
g/L以下になるようにフィード培地のフィード速度を
調節しつつ培養を続け(本発明)、もう一方は5〜15
g/Lの糖濃度となるようなフィード速度で培養を続け
(対照)、それぞれ100mLのフィード培養をフィー
ド終了後、培養液中の糖が消費し尽くされた時点で培養
を終了し、培養液中に蓄積したL−リジン濃度を定量し
た。
Feeding of the feed medium was started when the sugar concentration in the culture solution became 5 g / L or less. The feed medium contained glucose (40 g / dL), soy protein hydrolyzate (100 mg / L as nitrogen), thiamine hydrochloride (0.1 mg / L) and biotin (0.3 mg / L). One fermentor always had a sugar concentration of 5 in the medium.
Culturing is continued while adjusting the feed rate of the feed medium so as to be g / L or less (the present invention), and the other is 5 to 15
Cultivation was continued at a feed rate such that the sugar concentration was g / L (control), and after each 100 mL of feed culture had been fed, the culture was terminated when the sugar in the culture medium was consumed, and The L-lysine concentration accumulated therein was quantified.

【0025】2基の発酵槽における培養の結果を第2表
に示した。
The results of culturing in two fermenters are shown in Table 2.

【0026】[0026]

【表2】 実施例3 グルコース30g/L、塩化アンモニウム10g/L、
尿素3g/L、KHPO1g/L、MgSO・7
O100mg/L、FeSO・7HO10mg
/L、MnSO.4HO8mg/L、大豆蛋白質加
水分解物(窒素として)1g/L、サイアミン塩酸塩
0.1mg/L、及びビチオン0.3mg/Lを含有す
る培地(pH7.0)を、500mL容振とうフラスコ
に20mL分注した。115℃で10分間加熱殺菌後、
この培地に、予めブイヨンスラント上で48時間生育さ
せたブレビバクテリウム・フラバムATCC 2147
5を1白金耳接種し、31.5℃で24時間振とう培養
した。以上は、種培養である。
[Table 2] Example 3 Glucose 30 g / L, ammonium chloride 10 g / L,
Urea 3g / L, KH 2 PO 4 1g / L, MgSO 4 · 7
H 2 O100mg / L, FeSO 4 · 7H 2 O10mg
/ L, MnSO 4 . 500 mL of a medium (pH 7.0) containing 4 mg / L of 4H 2 O, 1 g / L of soybean protein hydrolyzate (as nitrogen), 0.1 mg / L of thiamine hydrochloride, and 0.3 mg / L of biotin was shaken. 20 mL was dispensed into the flask. After heat sterilization at 115 ° C for 10 minutes,
Brevibacterium flavum ATCC 2147 was grown in this medium on broth slants for 48 hours.
One platinum loop was inoculated with 5 and shake-cultured at 31.5 ° C. for 24 hours. The above is the seed culture.

【0027】廃糖を糖として80g/L、硫酸アンモ
ニウム50g/L、KHPO1g/L、MgSO
・7HO1g/L、大豆蛋白質加水分解物(窒素とし
て)100mg/L、サイアミン塩酸塩0.1mg/
L、及びビチオン0.3mg/Lを含有する培地(pH
7.0)を、1L容ガラス製小型発酵槽に300mL分
注し、120℃で15分間加熱殺菌した。31.5℃ま
で冷却の後、上記のフラスコ培養終了液(種培養液)を
発酵槽に15mL添加し、温度31.5℃、通気量1/
2vvm、撹はん数700rpmの条件で培養を行っ
た。
[0027] The waste molasses as a sugar 80g / L, ammonium sulfate 50g / L, KH 2 PO 4 1g / L, MgSO 4
7H 2 O 1 g / L, soybean protein hydrolyzate (as nitrogen) 100 mg / L, thiamin hydrochloride 0.1 mg /
L, and medium containing 0.3 mg / L of biotin (pH
7.0) was dispensed into a 1 L glass small fermentor in an amount of 300 mL, and sterilized by heating at 120 ° C. for 15 minutes. After cooling to 31.5 ° C., 15 mL of the above flask culture completed liquid (seed culture liquid) was added to the fermentor, and the temperature was 31.5 ° C.
The culture was carried out under the conditions of 2 vvm and a stirring number of 700 rpm.

【0028】培養液中の糖濃度が5g/L以下になった
時点よりフィード培地のフィードを開始した。フィード
培地はグルコース(40g/dL)、大豆蛋白質加水分
解物(窒素として100mg/L)、サイアミン塩酸塩
(0.1mg/L)及びビオチン(0.3mg/L)を
含有していた。培養液中の糖濃度が常に5g/L以下に
なるようにフィード培地のフィード速度を調節しつつ培
養を続け、100mLのフィード培地をフィード終了後
培養液中の糖が消費し尽くされた時点で培養液100m
Lを培養槽から抜取った。
Feeding of the feed medium was started when the sugar concentration in the culture solution became 5 g / L or less. The feed medium contained glucose (40 g / dL), soy protein hydrolyzate (100 mg / L as nitrogen), thiamine hydrochloride (0.1 mg / L) and biotin (0.3 mg / L). The culture is continued while adjusting the feed rate of the feed medium so that the sugar concentration in the culture solution is always 5 g / L or less, and when 100 mL of the feed medium is completely fed, the sugar in the culture solution is consumed. Culture medium 100m
L was removed from the culture tank.

【0029】さらにフィード培地をフィードしつつ培養
を続けた。この場合も培養液中の糖濃度は5g/L以下
になるようにした。100mLのフィード培地をフィー
ド終了後、培養液中の糖が消費し尽くされた時点で培養
を終了し、発酵槽内の培養液と先に抜取った培養液とを
合せその中に蓄積したL−リジン濃度を定量した。
Further, the culture was continued while feeding the feed medium. Also in this case, the sugar concentration in the culture solution was adjusted to 5 g / L or less. After 100 mL of the feed medium had been fed, the culture was terminated when the sugar in the culture solution was exhausted, and the culture solution in the fermenter was combined with the previously extracted culture solution to collect L accumulated therein. -The lysine concentration was quantified.

【0030】その結果、リジンの生産性は3.8g/L
・hrであり、リジン収率は42%であった。実施例4 グルコース30g/L、塩化アンモニウム10g/L、
尿素3g/L、KHPO1g/L、MgSO・7
O100mg/L、FeSO・7HO10mg
/L、MnSO・4HO8mg/L、大豆蛋白質加
水分解物(窒素として)1g/L、サイアミン塩酸塩
0.1mg/L、及びビチオン0.3mg/Lを含有す
る培地(pH7.0)を、500mL容振とうフラスコ
2本に各20mLづつ分注した。115℃で10分間加
熱殺菌後、この培地に、予めブイヨンスラント上で48
時間生育させたコリネバクテリウム・アセトグルタミク
ムATCC 21491を1白金耳接種し、31.5℃
で24時間振とう培養した。以上は、種培養である。
As a result, the productivity of lysine was 3.8 g / L.
-Hr and the lysine yield was 42%. Example 4 Glucose 30 g / L, ammonium chloride 10 g / L,
Urea 3g / L, KH 2 PO 4 1g / L, MgSO 4 · 7
H 2 O100mg / L, FeSO 4 · 7H 2 O10mg
/ L, MnSO 4 .4H 2 O 8 mg / L, soy protein hydrolyzate (as nitrogen) 1 g / L, thiamine hydrochloride 0.1 mg / L, and biotin 0.3 mg / L (pH 7.0) Was dispensed into two 500 mL shake flasks, 20 mL each. After heat sterilization at 115 ° C for 10 minutes, this medium was preliminarily sown on a broth slant for 48 minutes.
Corynebacterium aceto Gurutamiku <br/> beam ATCC twenty-one thousand four hundred and ninety-one obtained by time grow 1 loopful inoculated, 31.5 ° C.
The cells were shake-cultured for 24 hours. The above is the seed culture.

【0031】廃糖を糖として80g/L、硫酸アンモ
ニウム50g/L、KHPO1g/L、MgSO
・7HO1g/L、大豆蛋白質加水分解物(窒素とし
て)100mg/L、サイアミン塩酸塩0.1mg/
L、及びビチオン0.3mg/Lを含有する培地(pH
7.0)を、2基の1L容ガラス製小型発酵槽に300
mLづつ分注し、120℃で15分間加熱殺菌した。3
1.5℃まで冷却の後、上記のフラスコ培養終了液を各
発酵槽に15mLづつ添加し、温度31.5℃、通気量
1/2vvm、撹はん数700rpmの条件で培養を行
った。
[0031] The waste molasses as a sugar 80g / L, ammonium sulfate 50g / L, KH 2 PO 4 1g / L, MgSO 4
7H 2 O 1 g / L, soybean protein hydrolyzate (as nitrogen) 100 mg / L, thiamin hydrochloride 0.1 mg /
L, and medium containing 0.3 mg / L of biotin (pH
7.0) in 2 small 1L glass fermenters 300
It was dispensed by mL and heat sterilized at 120 ° C. for 15 minutes. Three
After cooling to 1.5 ° C, 15 mL of the above flask culture completed liquid was added to each fermentor, and the culture was performed under the conditions of a temperature of 31.5 ° C, an aeration rate of 1/2 vvm, and a stirring number of 700 rpm.

【0032】一方の発酵槽では培養液中の糖濃度が5g
/L以下になった時点よりフィード培地のフィードを開
始した。フィード培地はグルコース(40g/dL)、
大豆蛋白質加水分解物(窒素として100mg/L)、
サイアミン塩酸塩(0.1mg/L)及びビチオン
(0.3mg/L)を含有していた。培養液中の糖濃度
が常に5g/L以下になるようにフィード培地のフィー
ド速度を調節しつつ培養を続け、100mLのフィード
培地をフィード終了後培養液中の糖が消費し尽くされた
時点で培養液100mLを培養槽から抜取った。
In one fermenter, the sugar concentration in the culture solution was 5 g
Feeding of the feed medium was started from the time when it became less than / L. The feed medium is glucose (40 g / dL),
Soy protein hydrolyzate (100 mg / L as nitrogen),
It contained thiamine hydrochloride (0.1 mg / L) and biotin (0.3 mg / L). The culture is continued while adjusting the feed rate of the feed medium so that the sugar concentration in the culture solution is always 5 g / L or less, and when 100 mL of the feed medium is completely fed, the sugar in the culture solution is consumed. 100 mL of the culture solution was withdrawn from the culture tank.

【0033】さらにフィード培地をフィードしつつ培養
を続けた。この場合も培養液中の糖濃度は5g/L以下
になるようにした。100mLのフィード培地をフィー
ド終了後、培養液中の糖が消費し尽くされた時点で培養
を終了し、発酵槽内の培養液と先に抜取った培養液とを
合せその中に蓄積したL−リジン濃度を定量した。
Further, the culture was continued while feeding the feed medium. Also in this case, the sugar concentration in the culture solution was adjusted to 5 g / L or less. After 100 mL of the feed medium had been fed, the culture was terminated when the sugar in the culture solution was exhausted, and the culture solution in the fermenter was combined with the previously extracted culture solution to collect L accumulated therein. -The lysine concentration was quantified.

【0034】その結果、リジンの生産性は3.9g/L
・hrであり、リジン収率は41%であった。
As a result, the productivity of lysine was 3.9 g / L.
-Hr and the lysine yield was 41%.

【0035】また、もう一方の発酵槽については培養開
始25時間経過後、連続培養流加培地の添加を開始し
た。流加培地としては初発培地を4倍に希釈したものを
用いた。約1Lの流加培地を希釈率0.05hr−1
流し連続培養による定常状態を達成した後、培養液中の
L−リジン濃度を定量した。
In the other fermentor, the continuous culture fed-batch medium was added 25 hours after the start of culture. As the feeding medium, a 4-fold diluted starting medium was used. About 1 L of a fed-batch medium was flown at a dilution rate of 0.05 hr −1 to achieve a steady state by continuous culture, and then the L-lysine concentration in the culture solution was quantified.

【0036】その結果、リジンの生産性は3.5g/L
・hrであり、リジン収率は35%であった。
As a result, the productivity of lysine was 3.5 g / L.
-Hr and the lysine yield was 35%.

【0037】[0037]

【発明の効果】本発明により、従来の回分方式の発酵と
同様の高い生産物蓄積濃度と高い収率を維持し、かつ従
来の連続方式同様の高い生産性を持ったL−リジン発酵
が可能となった。換言すれば、L−リジンの工業生産の
大幅な生産性向上とコストダウンが可能となった。
Industrial Applicability According to the present invention, L-lysine fermentation can be carried out while maintaining the high product accumulation concentration and high yield as in the conventional batch system fermentation and having the high productivity as in the conventional continuous system. Became. In other words, it has become possible to significantly improve the industrial production of L-lysine and reduce the cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 洋介 佐賀県佐賀郡諸富町大字諸富津450 味の 素株式会社九州工場内 (72)発明者 戸坂 修 佐賀県佐賀郡諸富町大字諸富津450 味の 素株式会社九州工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yosuke Yoyama 450 Morotomi, Morotomi-cho, Saga-gun, Saga Prefecture Inside the Ajinomoto Co., Inc. Kyushu Factory (72) Inventor Osamu Tosaka 450 Morotomizu, Morotomi-cho, Saga-gun, Saga Prefecture Nomoto Co., Ltd. Kyushu factory

Claims (1)

【特許請求の範囲】 【請求項1】 L−リジン生産能を有する微生物を液体
培地に接種し、該微生物の対数増殖終了時以降に炭素源
および増殖促進効果を持つ栄養素の両方を含むフィード
培地を培養液中の炭素源の濃度が5g/L以下に保持さ
れる様にフィードしつつ培養し、培養液中に生成蓄積し
たL−リジンを採取することを特徴とする発酵法による
L−リジンの製造法。
Claims: 1. A feed medium inoculating a liquid medium with a microorganism capable of producing L-lysine and containing both a carbon source and a nutrient having a growth promoting effect after the end of logarithmic growth of the microorganism. L-lysine by a fermentation method, in which L-lysine produced and accumulated in the culture solution is collected by culturing while feeding so that the concentration of the carbon source in the culture solution is maintained at 5 g / L or less. Manufacturing method.
JP12699291A 1990-11-30 1991-03-12 Production method of L-lysine by fermentation method Expired - Fee Related JP3074781B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP12699291A JP3074781B2 (en) 1991-03-12 1991-03-12 Production method of L-lysine by fermentation method
FR9114851A FR2669935B1 (en) 1990-11-30 1991-11-29 PROCESS AND APPARATUS FOR REGULATING THE CONCENTRATION OF CARBON SOURCE IN THE AEROBIC CULTURE OF A MICROORGANISM.
BE9101098A BE1008008A3 (en) 1990-11-30 1991-11-29 Method and apparatus for adjusting the concentration of carbon source in aerobic culture microorganism.
BR919105208A BR9105208A (en) 1990-11-30 1991-11-29 PROCESS FOR AEROBIC CULTIVATION OF A MICROORGANISM IN A Batch-fed CULTURE, CONTINUOUS CULTURE OR CONTINUOUS CULTURE CULTURE, APPLIANCE TO CONTROL THE CONCENTRATION OF THE SUBSTRATE CARBON SOURCE AND PROCESS TO PRODUCE LIS
ITMI913198A IT1256566B (en) 1990-11-30 1991-11-29 PROCEDURE AND EQUIPMENT TO CONTROL THE CONCENTRATION OF THE CARBON SOURCE IN AN AEROBIC CULTURE OF A MICROORGANISM
MYPI91002222A MY121534A (en) 1990-11-30 1991-11-29 Method and apparatus for controlling carbon source concentration in aerobic cultivation of a microorganism.
FR9202315A FR2676234B1 (en) 1990-11-30 1992-02-27 PROCESS AND APPARATUS FOR REGULATING THE CONCENTRATION OF CARBON SOURCE IN THE AEROBIC CULTURE OF A MICROORGANISM.
CN92101496A CN1041534C (en) 1991-03-12 1992-03-09 Method and apparatus for controlling carbon source concentration in aerobic cultivation of microorganism
CN97112748A CN1117869C (en) 1991-03-12 1997-06-10 Process for producing L-lysine by fermentation
US08/905,713 US5912113A (en) 1990-11-30 1997-08-04 Method and apparatus for controlling carbon source concentration in aerobic cultivation of a microorganism
US09/192,565 US6025169A (en) 1990-11-30 1998-11-17 Process for production of lysine by fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12699291A JP3074781B2 (en) 1991-03-12 1991-03-12 Production method of L-lysine by fermentation method

Publications (2)

Publication Number Publication Date
JPH0530985A true JPH0530985A (en) 1993-02-09
JP3074781B2 JP3074781B2 (en) 2000-08-07

Family

ID=14948980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12699291A Expired - Fee Related JP3074781B2 (en) 1990-11-30 1991-03-12 Production method of L-lysine by fermentation method

Country Status (1)

Country Link
JP (1) JP3074781B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038695A1 (en) 2004-10-07 2006-04-13 Ajinomoto Co., Inc. Process for producing basic substance
JP2008259451A (en) * 2007-04-12 2008-10-30 Mitsubishi Chemicals Corp Method for preparing organic acid-producing microorganism strain and method for producing organic acid
US10767200B2 (en) 2016-02-24 2020-09-08 Ajinomoto Co., Inc. Method for producing L-amino acid

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI361834B (en) 2005-04-12 2012-04-11 Kyowa Hakko Bio Co Ltd A method for producing amino acids
EP3819629A4 (en) 2018-07-06 2022-04-13 Ajinomoto Co., Inc. Sensor cover, sensor device provided with same, liquid property measuring method and method for producing metabolite in aeration culture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038695A1 (en) 2004-10-07 2006-04-13 Ajinomoto Co., Inc. Process for producing basic substance
JPWO2006038695A1 (en) * 2004-10-07 2008-05-15 味の素株式会社 Production method of basic substances
JP4844396B2 (en) * 2004-10-07 2011-12-28 味の素株式会社 Production method of basic substances
EP2818555A2 (en) 2004-10-07 2014-12-31 Ajinomoto Co., Inc. Method for producing a basic substance
EP2818556A2 (en) 2004-10-07 2014-12-31 Ajinomoto Co., Inc. Method for producing a basic substance
EP2818554A2 (en) 2004-10-07 2014-12-31 Ajinomoto Co., Inc. Method for producing a basic substance
JP2008259451A (en) * 2007-04-12 2008-10-30 Mitsubishi Chemicals Corp Method for preparing organic acid-producing microorganism strain and method for producing organic acid
US10767200B2 (en) 2016-02-24 2020-09-08 Ajinomoto Co., Inc. Method for producing L-amino acid

Also Published As

Publication number Publication date
JP3074781B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
US5912113A (en) Method and apparatus for controlling carbon source concentration in aerobic cultivation of a microorganism
US4275157A (en) Method for the production of L-lysine
JPS6236673B2 (en)
KR910008625B1 (en) Process for the biotechnologoical proparation of poly - d - ( - ) - 3 - hydroxybutyric acid
US5250423A (en) Method for the production of L-lysine employing thermophilic corynebacterium thermoaminogenes
US3909353A (en) Method of producing L-phenylalanine by fermentation
JPH03505396A (en) Improved fermentation methods for carboxylic acids
KR910002857B1 (en) Process for the biotechnological preparation of poly -d- (-) -3- hydroxybutyric acid
JP3704737B2 (en) Method for producing L-leucine
JP3074781B2 (en) Production method of L-lysine by fermentation method
US5188947A (en) Process and microorganism for producing l-ornithine by corynebacterium, brevibacterium, or athrobacter
JPH10127298A (en) Fermentation by controlling osmol concentration for preparation of acarbose
CN1038669A (en) The preparation method of L-L-Ala
JPS6224074B2 (en)
CN1117869C (en) Process for producing L-lysine by fermentation
US6133000A (en) Fermentative preparation of amino acids
JPS63258588A (en) Production of l-valine by fermentation
KR900005771B1 (en) Process for the preparation of glutamic acid
SU440848A1 (en) METHOD OF OBTAINING L-LYSIN
US20060270004A1 (en) Fermentation processes with low concentrations of carbon-and nitrogen-containing nutrients
KR910008636B1 (en) Process for producing l - arginine
RU2084520C1 (en) Strain of bacterium brevibacterium flavum - a producer of l-glutamine (variants)
JPS62289192A (en) Continuous production of amino acid by fermentation
SU526295A3 (en) Method for producing lysine
RU2059726C1 (en) Strain of bacterium corynebacterium sp - a producer of l-leucine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100609

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100609

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100609

LAPS Cancellation because of no payment of annual fees