JPH05308623A - Image signal decoder - Google Patents
Image signal decoderInfo
- Publication number
- JPH05308623A JPH05308623A JP11059392A JP11059392A JPH05308623A JP H05308623 A JPH05308623 A JP H05308623A JP 11059392 A JP11059392 A JP 11059392A JP 11059392 A JP11059392 A JP 11059392A JP H05308623 A JPH05308623 A JP H05308623A
- Authority
- JP
- Japan
- Prior art keywords
- block
- circuit
- image
- distortion
- coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Image Processing (AREA)
- Television Signal Processing For Recording (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は画像信号復号化装置に
関し、特に高圧縮符号化された後、伝送若しくは記録さ
れた画像を復号する画像信号復号化装置に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image signal decoding apparatus, and more particularly to an image signal decoding apparatus which decodes an image transmitted or recorded after being highly compression coded.
【0002】[0002]
【従来の技術】CCDに代表される固体撮像装置等によ
り撮像された動画像信号を、磁気ディスク、或いは磁気
テープ等の記憶装置にデジタルデータとして記録する場
合、そのデータ量は膨大なものとなる。このため、限ら
れた記憶容量の範囲で記録しようとするには、得られた
画像信号のデータに対し、何らかの高能率の圧縮を行う
ことが必要となる。2. Description of the Related Art When a moving image signal picked up by a solid-state image pickup device such as a CCD is recorded as digital data in a storage device such as a magnetic disk or a magnetic tape, the amount of data becomes enormous. .. Therefore, in order to record in a limited storage capacity range, it is necessary to compress the obtained image signal data with some high efficiency.
【0003】動画像の圧縮方式としては、ISOで提案
されている方式等(画像電子学会誌第20巻第4号参
照)、フレーム間相関を利用して高圧縮を達成する方法
が一般的である。この方法について図4を用いて簡単に
説明する。As a moving image compression method, a method such as the method proposed by ISO (see Journal of Image Electronics Engineers, Vol. 20, No. 4) is generally used to achieve high compression by utilizing inter-frame correlation. is there. This method will be briefly described with reference to FIG.
【0004】図4は、フレーム間相関を利用した従来の
動画像圧縮方式を示すブロック図である。同図に於い
て、差分回路1によって動き補償フレーム間予測画像が
引かれた予測誤差信号が、DCT(離散コサイン変換)
回路2でブロック毎にDCTされた後、量子化回路3で
量子化される。更に、この量子化結果は、符号化回路4
で可変長符号が割当てられて記録される。また、上記量
子化結果は、逆量子化回路5及び逆DCT回路6によっ
て復号化され、加算回路7によって上記動き補償フレー
ム間予測画像と加算される。そして、動き補償用可変遅
延機能を持つ画像メモリを内蔵した動き補償予測回路8
で動きベクトルを求め、次のフレームの動き補償フレー
ム間予測画像を作成するようにしている。FIG. 4 is a block diagram showing a conventional moving image compression method utilizing inter-frame correlation. In the figure, the prediction error signal from which the motion compensation interframe prediction image is subtracted by the difference circuit 1 is DCT (discrete cosine transform).
After the DCT is performed for each block in the circuit 2, the quantization is performed in the quantization circuit 3. Further, the quantization result is the coding circuit 4
A variable length code is assigned and recorded at. Further, the quantization result is decoded by the inverse quantization circuit 5 and the inverse DCT circuit 6, and is added by the addition circuit 7 to the motion-compensated interframe prediction image. Then, a motion compensation prediction circuit 8 incorporating an image memory having a variable delay function for motion compensation
Then, the motion vector is calculated in order to create the motion-compensated inter-frame predicted image of the next frame.
【0005】この一連の処理を繰返して全てのフレーム
を圧縮していくが、常に差分を符号化するのではなく、
入力画像そのものを符号化することもあり、これをIピ
クチャと称している。また、予測誤差画像には以下の2
種類のものがある。All the frames are compressed by repeating this series of processing, but the difference is not always coded.
The input image itself is sometimes coded, and this is called an I picture. In addition, the following 2
There are different types.
【0006】その一つは、Pピクチャと称され、今から
符号化しようとしている画像と、時間的に前に位置し、
既に復号化されたIピクチャまたはPピクチャの画像と
の差分をとるものである。実際には、動き補償された予
測画像との差を符号化するか差分をとらずに符号化す
る、いわゆるイントラ符号化の効率の良い方を選択して
いる。[0006] One of them is called a P picture, which is temporally located before the image to be encoded now.
This is the difference from the already decoded image of the I picture or P picture. In practice, a so-called intra-coding method, which has a higher efficiency in encoding the difference from the motion-compensated predicted image or encoding without taking the difference, is selected.
【0007】もう一つは、Bピクチャと称され、時間的
に前方、後方、若しくは前方と後方から作成された補間
画像との3種類の差分の符号化とイントラ符号化の中
で、一番効率の良いものを選択するものである。この予
測方式はブロック単位で切換えることができるようにな
っていて、ブロックタイプとして、選択情報を符号に付
加している。The other is called a B picture, and is the most significant of the three types of difference coding and intra coding of temporally forward, backward, or interpolated images created from forward and backward. Select the most efficient one. This prediction method can be switched in block units, and selection information is added to the code as a block type.
【0008】また、動き補償を行い、画像間の差分をと
り時間軸方向の冗長度を落とした後の信号には、空間方
向の冗長度を落とすために、DCTと可変長符号が使用
されている。DCTのような直交変換を利用した符号化
方法は、静止画像の圧縮にも広く用いられており、この
方式について図5を参照して、以下に説明する。In addition, DCT and variable length codes are used for the signal after motion compensation, the difference between images is obtained, and the redundancy in the time axis direction is reduced to reduce the redundancy in the spatial direction. There is. An encoding method using orthogonal transform such as DCT is also widely used for still image compression, and this method will be described below with reference to FIG.
【0009】図5は、DCTを利用した符号化方法によ
る静止画像の圧縮の動作を説明するもので、初めに、既
に時間軸方向の冗長度を落とした信号fが入力されると
(101)、その入力画像データfが所定の大きさのブ
ロックに分割されてfbを得(102)、分割されたブ
ロック毎に直交変換として2次元のDCTが行われてF
に変換される(103)。次に、各周波数成分に応じた
線形量子化が行われ(104)、この量子化された値F
Qに対して可変長符号化としてハフマン符号化が行われ
る(105)。その結果が、圧縮データCとして伝送ま
たは記録される。このとき、上記線形量子化の量子化幅
は、各周波数成分に対する視覚特性を考慮にいれた相対
的な量子化特性を表す量子化マトリックスが用意され、
この量子化マトリックスを定数倍することで量子化幅が
決定されている。FIG. 5 illustrates the operation of compressing a still image by a coding method using DCT. First, when a signal f whose redundancy in the time axis direction has already been reduced is input (101). , The input image data f is divided into blocks of a predetermined size to obtain f b (102), and two-dimensional DCT is performed as orthogonal transformation for each divided block to obtain F b.
(103). Next, linear quantization is performed according to each frequency component (104), and the quantized value F
Huffman coding is performed as variable length coding on Q (105). The result is transmitted or recorded as the compressed data C. At this time, the quantization width of the linear quantization is provided with a quantization matrix representing the relative quantization characteristics in consideration of the visual characteristics for each frequency component,
The quantization width is determined by multiplying this quantization matrix by a constant.
【0010】一方、圧縮データから画像データが再生さ
れるとき、可変長符号(C)がデコード(復号)される
ことで変換係数の量子化値FQが得られる(106)。
しかしながら、この値から量子化前の真値Fを得ること
は不可能であり、逆量子化によって得られる結果は、誤
差を含んだF′になる(107)。したがって、この値
(F′)に対してIDCT(逆離散コサイン変換)が行
われ(108)、その結果の値fb′が逆ブロック化さ
れて(109)、得られる画像データf′も誤差を含ん
だものになる。On the other hand, when the image data is reproduced from the compressed data, the quantized value FQ of the transform coefficient is obtained by decoding the variable length code (C) (106).
However, it is impossible to obtain the true value F before quantization from this value, and the result obtained by the inverse quantization becomes F'which includes an error (107). Therefore, IDCT (Inverse Discrete Cosine Transform) is performed on this value (F ') (108), the resulting value fb' is inversely blocked (109), and the resulting image data f'also has an error. It will be included.
【0011】よって、画像再生装置にて再生出力される
(110)再生画像f′は、画質が劣化してしまう。す
なわち、逆量子化によって得られる結果の値(F′)の
誤差が、いわゆる量子化誤差として再生画像(f′)の
画質劣化の原因となっている。Therefore, the image quality of the (110) reproduced image f'reproduced and output by the image reproducing apparatus is deteriorated. That is, the error in the value (F ') obtained as a result of the inverse quantization causes deterioration of the image quality of the reproduced image (f') as a so-called quantization error.
【0012】もう少し具体的に説明すると、先ず、入力
画像データが所定の大きさのブロック(例えば、8×8
の画素より成るブロック)に分割され、この分割された
ブロック毎に直交変換として2次元のDCTが行われ、
8×8のマトリクス上に順次格納される。More specifically, first, the input image data is a block having a predetermined size (for example, 8 × 8).
Of pixels), and the two-dimensional DCT is performed as an orthogonal transform for each of the divided blocks.
Sequentially stored in an 8 × 8 matrix.
【0013】画像データは、2次元平面で眺めてみる
と、濃淡情報の分布に基く周波数情報である空間周波数
を有している。したがって、上記DCTを行うことによ
り、画像データは、直流成分(DC)と交流成分(A
C)に変換され、8×8のマトリクス上には原点位置
(0,0位置)に直流成分(DC)の値を示すデータが
格納される。、そして、0,7位置には横軸方向の交流
成分(AC)の最大周波数値を示すデータが、7,0位
置には縦軸方向の交流成分(AC)の最大周波数値を示
すデータが、更に7,7位置には斜方向の交流成分(A
C)の最大周波数値を示すデータが、それぞれ格納され
る。また、中間位置では、それぞれの座標位置により関
係付けられる方向に於ける周波数データが、原点側よ
り、順次高い周波数のものが出現する形で格納されるこ
とになる。When viewed in a two-dimensional plane, the image data has a spatial frequency which is frequency information based on the distribution of grayscale information. Therefore, by performing the above DCT, the image data has a direct current component (DC) and an alternating current component (A).
C), and data indicating the value of the direct current component (DC) is stored at the origin position (0, 0 position) on the 8 × 8 matrix. Then, data indicating the maximum frequency value of the AC component (AC) in the horizontal axis is at the 0,7 position, and data indicating the maximum frequency value of the AC component (AC) in the vertical axis is at the 7,0 position. , And the AC component (A
Data indicating the maximum frequency value of C) is stored respectively. Further, at the intermediate position, the frequency data in the direction associated with each coordinate position is stored in such a manner that frequencies having higher frequencies appear from the origin side.
【0014】次に、このマトリクスに於ける各座標位置
の格納データを、各周波数成分毎の量子化幅で割ること
により、各周波数成分に応じた線形量子化が行われ、こ
の量子化された値に対し可変長符号化としてハフマン符
号化が行われる。このとき、直流成分(DC)に関して
は、近傍ブロックの直流成分との差分値をハフマン符号
化する。交流成分(AC)に関しては、ジグザグスキャ
ンと称される低い周波数成分から高い周波数成分へのス
キャンが行われ、無効(値が「0」)の成分の連続する
個数(零のラン数)と、それに続く有効な成分の値の2
次元のハフマン符号化が行われてデータとされる。Next, the stored data at each coordinate position in this matrix is divided by the quantization width for each frequency component to perform linear quantization according to each frequency component, and this quantization is performed. Huffman coding is performed as variable-length coding on the value. At this time, with respect to the DC component (DC), the difference value from the DC component of the neighboring block is Huffman-encoded. Regarding the AC component (AC), a scan from a low frequency component called a zigzag scan to a high frequency component is performed, and a continuous number (zero run number) of invalid (value “0”) components, 2 of the effective component value that follows
Dimensional Huffman coding is performed to obtain data.
【0015】[0015]
【発明が解決しようとする課題】この方法に於いて、圧
縮率は上記量子化の量子化幅を変化させることによって
制御されるのが一般的であり、圧縮率が高くなるほど、
量子化幅は大きくなる。したがって、量子化誤差が大き
くなり、再生画像の画質劣化が目立つようになる。In this method, the compression rate is generally controlled by changing the quantization width of the above quantization, and the higher the compression rate, the more
The quantization width becomes large. Therefore, the quantization error becomes large, and the image quality deterioration of the reproduced image becomes noticeable.
【0016】この変換係数の量子化誤差は、再生画像に
於いてブロック境界部分に不連続が発生する、いわゆる
ブロック歪みや、エッジ近傍の平坦部分に靄状のものが
見えるモスキートノイズとして現われる傾向にある。こ
れらの歪みは視覚的に目立つために、例えS/Nが良好
であっても、主観的な印象は悪くなってしまう。The quantization error of the transform coefficient tends to appear as so-called block distortion, in which discontinuity occurs at a block boundary portion in a reproduced image, or mosquito noise in which a haze-like object is seen in a flat portion near an edge. is there. Since these distortions are visually conspicuous, even if the S / N is good, the subjective impression is deteriorated.
【0017】そこで、復号器によって再生された画像
に、歪み除去処理として低域通過型瀘波器(ローパスフ
ィルタ)をかける方法が考え出された。このフィルタ
は、比較的良好に歪みを除去することができるが、画像
中にエッジ等が含まれている場合は、それがぼけてしま
い、逆にぼけを減らすために通過する低域の度合いを緩
くすると、ブロック歪みを完全に除去することができな
くなるといった不具合があった。Therefore, a method of applying a low-pass filter (low-pass filter) to the image reproduced by the decoder as distortion removal processing has been devised. This filter can remove distortion relatively well, but if an image contains edges, etc., they will be blurred, and conversely, the degree of low frequencies that pass will be reduced to reduce blur. If it is made loose, there is a problem that the block distortion cannot be completely removed.
【0018】また、この不具合を解消するため、画像中
のエッジの有無や歪みを検出し、その結果によってフィ
ルタを作用させるかどうかを切換えるようにして、歪み
の存在する部分にだけフィルタをかける方法もある。In order to solve this problem, the presence or absence of edges in the image and distortion are detected, and whether to apply the filter or not is switched according to the result, and only the portion where the distortion exists is filtered. There is also.
【0019】しかしながら、従来例で示したような歪み
除去方法では、依然として画像にぼけを生じる欠点があ
るうえに、ブロック歪み量等を計算する必要があるた
め、処理時間を長く必要とし、故に回路の大きさと消費
電力は、非常に大きなものとなってしまっていた。した
がって、小型化や高速性を重要視する製品、特に動画像
を扱うものに、上述した方式を応用することは困難であ
った。However, the distortion removal method as shown in the conventional example still has a drawback that an image is blurred, and since it is necessary to calculate the block distortion amount and the like, a long processing time is required and therefore the circuit is The size and power consumption of the device had become very large. Therefore, it has been difficult to apply the above-described method to products that place importance on downsizing and high speed, particularly those that handle moving images.
【0020】この発明は上記課題に鑑みてなされたもの
で、簡単な回路により、画像中にぼけ等を生じさせずに
高速に歪みを除去することのできる画像信号復号化装置
を提供することを目的とする。The present invention has been made in view of the above problems, and it is an object of the present invention to provide an image signal decoding apparatus capable of removing distortion at high speed without causing blurring in an image with a simple circuit. To aim.
【0021】[0021]
【課題を解決するための手段】すなわちこの発明は、ブ
ロック毎の直交変換と量子化と可変長符号を用いて圧縮
された動画像データを復号化する画像信号復号化装置に
於いて、上記復号化して得られた画像データに対してブ
ロック歪み除去を行う歪み除去処理手段と、上記変換係
数から各ブロック毎の信号の帯域を求めると共に、その
結果とブロック毎の動きベクトル及びブロックタイプ情
報等に基いて歪み除去の特性をブロック毎に変化させる
ようにした歪み除去処理を決定して上記歪み除去処理手
段を制御する判定手段とを具備することを特徴とする。That is, the present invention provides an image signal decoding apparatus for decoding moving image data compressed using orthogonal transformation, quantization and variable length coding for each block. Distortion removal processing means for removing block distortion from the image data obtained by the conversion, and the band of the signal for each block is obtained from the transform coefficient, and the result and the motion vector and block type information for each block are obtained. And a determination means for controlling the distortion removal processing means by determining the distortion removal processing for changing the distortion removal characteristics for each block based on the distortion removal processing.
【0022】[0022]
【作用】この発明にあっては、ブロック毎の直交変換と
量子化と可変長符号を行って圧縮された動画像データを
復号化する画像信号復号化装置に於いて、復号して得ら
れた結果に対してブロック歪み除去を行う歪み除去処理
部を設ける。その歪み除去処理は、変換係数から各ブロ
ック毎の信号の帯域を求め、その結果とブロック毎の動
きベクトル及びブロックタイプ情報等に基いて、歪み除
去の特性をブロック毎に変化させるようにして行う。According to the present invention, it is obtained by decoding in an image signal decoding apparatus for decoding compressed moving image data by performing orthogonal transformation, quantization and variable length coding for each block. A distortion removal processing unit that removes block distortion for the result is provided. The distortion removal processing is performed by obtaining the signal band for each block from the transform coefficient, and changing the distortion removal characteristics for each block based on the result and the motion vector and block type information for each block. ..
【0023】[0023]
【実施例】初めに、この発明の概念について説明する。First, the concept of the present invention will be described.
【0024】画像の歪みの目立ちやすさは、近傍の画像
の有する空間周波数によって変化する。例えば、細かな
構造のある高い空間周波数まで成分を有しているような
部分にブロック歪みが発生している場合には、ブロック
歪みはあまり目立たない。逆に、比較的変化の緩やかな
低い空間周波数成分しかない部分にブロック歪みが発生
している場合は、ブロック歪みが目立ちやすくなる。The degree of conspicuousness of image distortion varies depending on the spatial frequency of nearby images. For example, when block distortion occurs in a portion having a fine structure and having a component up to a high spatial frequency, the block distortion is not so noticeable. On the contrary, when the block distortion is generated in the portion having only the low spatial frequency component whose change is relatively gradual, the block distortion becomes conspicuous.
【0025】一方、ブロック歪みはブロック境界での不
連続性によるものなので、非常に高い空間周波数まで成
分を有している。したがって、歪みの近傍の画像の有す
る空間周波数よりも高い空間周波数成分を除去すること
によって、ブロック歪みを目立たなくすることができ
る。On the other hand, since the block distortion is due to the discontinuity at the block boundary, it has a component up to a very high spatial frequency. Therefore, the block distortion can be made inconspicuous by removing the spatial frequency component higher than the spatial frequency of the image near the distortion.
【0026】次に、動きに注目すると、動きのある部分
では画像のぼけに対する目立ちやすさは、動きが大きい
ほど目立たなくなる。故に、動きの大きさに応じて、画
質的に除いても構わない周波数帯域は変化することにな
り、例えば細かい構造を有しているブロックであって
も、激しく動いている部分に対しては、強いローパスフ
ィルタリングを行うようにしている。Next, paying attention to the movement, in the moving portion, the degree of conspicuousness with respect to the blur of the image becomes less noticeable as the movement increases. Therefore, the frequency band, which may be excluded in terms of image quality, changes depending on the magnitude of the movement, and even for a block having a fine structure, for example, even for a block that is moving violently, , I try to do strong low-pass filtering.
【0027】また、モスキートノイズは、比較的ゆっく
りした動きのときに最も目立つという特徴を有してい
る。したがって、動き量からモスキートノイズが目立ち
やすいと判断された場合には、歪み除去処理の特性をモ
スキートノイズ除去に合わせたものにする。Further, the mosquito noise has the characteristic that it is most noticeable when the movement is relatively slow. Therefore, when it is determined that the mosquito noise is conspicuous from the amount of movement, the characteristics of the distortion removal process are set to match those of the mosquito noise removal.
【0028】一方、動きの激しいブロックでは、動きベ
クトルが検出できなくて動き補償を行うことができず、
イントラ符号化が選択されることがある。したがって、
動き量を知る手段としては、動きベクトルを用いている
が、各ブロックのタイプも歪み除去特性決定のための情
報として利用することができる。この発明では、変換係
数とブロック毎の動きベクトル及びブロックタイプ情報
等を使用して、上述したように、歪み除去の特性を適応
的に変化させる。On the other hand, in a block having a large amount of motion, the motion vector cannot be detected and the motion cannot be compensated.
Intra coding may be selected. Therefore,
Although a motion vector is used as a means for knowing the amount of motion, the type of each block can also be used as information for determining the distortion removal characteristics. In the present invention, the distortion removal characteristic is adaptively changed as described above by using the transform coefficient, the motion vector for each block, the block type information, and the like.
【0029】いま、注目ブロックの直交変換係数を8画
素×8画素のDCT係数とし、各係数の絶対値を閾値と
比較すると、一般的なブロックでは、ある周波数より低
い周波数に相当する係数が有意係数と判定される。この
場合、このブロックには水平方向及び垂直方向に対し
て、それぞれ有意係数の周波数までの情報でほぼ表しき
れる程度の構造が含まれているということがわかる。そ
こで、このブロックに対するフィルタ特性は、水平及び
垂直の両方向共に、有意係数より高い周波数をカットす
るような特性にすればよいことになる。Now, if the orthogonal transform coefficient of the block of interest is a DCT coefficient of 8 pixels × 8 pixels and the absolute value of each coefficient is compared with a threshold value, in a general block, a coefficient corresponding to a frequency lower than a certain frequency is significant. Judged as a coefficient. In this case, it can be seen that this block includes a structure that can be almost completely represented by the information up to the frequency of the significant coefficient in the horizontal direction and the vertical direction. Therefore, the filter characteristic for this block should be such that frequencies higher than the significant coefficient are cut in both the horizontal and vertical directions.
【0030】ところが、空間周波数面でフィルタリング
を行う場合、フィルタの特性を変化させながら処理を行
うことはできないので、画像をブロッキングしてから空
間周波数面でフィルタリングして逆変換後に合成しなけ
ればならない。そして、そのときにブロッキングの影響
を考慮しなければならないといった問題点も存在する。
そこで、このフィルタリングを実空間での畳み込みで実
現し、畳み込まれる係数をブロック毎に変化させるよう
にした。However, in the case of performing filtering in the spatial frequency plane, it is impossible to perform processing while changing the characteristics of the filter. Therefore, it is necessary to block the image, filter in the spatial frequency plane, and synthesize after inverse transformation. .. Then, there is a problem that the influence of blocking must be taken into consideration at that time.
Therefore, this filtering is realized by convolution in the real space, and the convolved coefficient is changed for each block.
【0031】このフィルタリングのカーネルサイズは有
限なので、理想的なシャープなカットオフ特性を得るの
は無理であるが、実用上は問題がなく、フィルタ係数と
カーネルサイズの決め方も任意であって、計算時間やカ
ットオフ特性を考慮して決定される。Since the kernel size of this filtering is finite, it is impossible to obtain an ideal sharp cutoff characteristic, but there is no problem in practical use, and the filter coefficient and the kernel size can be arbitrarily determined, and the calculation It is determined in consideration of time and cutoff characteristics.
【0032】したがって、このように圧縮データを復号
して得た変換係数の有意データの有している帯域を保存
するような畳み込みローパスフィルタをブロック毎に適
応的にかけることで、各ブロック内の構造をぼけさせず
に歪みを除去することができるようになる。また、復号
化処理の途中結果である変換係数を用いてフィルタの特
性を決定するので、画像中のエッジの有無やブロック歪
みを検出する必要はなく、回路的に非常に簡単な構成で
実現できるうえに、処理内容も閾値と比較するだけなの
で、処理に要する時間も短くできる。以下、図面を参照
してこの発明の実施例を説明する。Therefore, a convolutional low-pass filter that preserves the band of the significant data of the transform coefficient obtained by decoding the compressed data in this way is adaptively applied to each block. The distortion can be removed without blurring the structure. In addition, since the characteristics of the filter are determined by using the transform coefficient that is the intermediate result of the decoding process, it is not necessary to detect the presence or absence of an edge or block distortion in the image, and it can be realized with a very simple circuit configuration. Moreover, since the processing content is simply compared with the threshold value, the time required for the processing can be shortened. Embodiments of the present invention will be described below with reference to the drawings.
【0033】図1は、この発明による画像信号復号化装
置が適用された画像データの復号化装置の構成を示すブ
ロック図である。同図に於いて、11は可変長符号復号
回路であり、画像のブロック毎の符号データが復号化さ
れる。そして、逆量子化回路12、逆DCT回路13を
介して加算回路14に出力される。この加算回路14の
出力は、動き補償予測回路15を経て自身に加算される
と共に、歪み除去処理回路16を通じて画像出力部17
に供給される。また、判定回路18は、逆量子化回路1
2の出力を受けて最適な歪み除去処理を決定し、歪み除
去処理回路16を制御するものである。FIG. 1 is a block diagram showing the structure of an image data decoding apparatus to which the image signal decoding apparatus according to the present invention is applied. In the figure, 11 is a variable length code decoding circuit, which decodes code data for each block of an image. Then, it is output to the addition circuit 14 via the inverse quantization circuit 12 and the inverse DCT circuit 13. The output of the adder circuit 14 is added to itself via the motion compensation prediction circuit 15 and also the image output unit 17 through the distortion removal processing circuit 16.
Is supplied to. Further, the determination circuit 18 is the inverse quantization circuit 1
It receives the output of 2 and determines the optimum distortion removal processing, and controls the distortion removal processing circuit 16.
【0034】このように構成された復号化装置に於い
て、画像のブロック毎の符号データは、可変長符号復号
回路11で復号化され、逆量子化回路12及び逆DCT
回路13によってフレーム間差分信号に戻される。そし
て、このフレーム間差分信号は、加算回路14にて、動
き補償予測回路15からの予測信号と加算される。その
結果は、次のフレームの予測信号を得るために動き補償
予測回路15へ出力されると共に、歪み除去処理回路1
6で最適な歪み除去処理が施された後、画像出力部17
に出力される。In the thus constructed decoding device, the code data for each block of the image is decoded by the variable length code decoding circuit 11, and the inverse quantization circuit 12 and the inverse DCT are used.
The circuit 13 restores the interframe difference signal. Then, this inter-frame difference signal is added to the prediction signal from the motion compensation prediction circuit 15 in the addition circuit 14. The result is output to the motion compensation prediction circuit 15 to obtain the prediction signal of the next frame, and the distortion removal processing circuit 1
After performing the optimum distortion removal processing in 6, the image output unit 17
Is output to.
【0035】動き補償予測回路15は、再生画像信号
と、画像符号データと同時に送られてきた動きベクトル
及びブロックタイプ情報によって、次フレームの動き補
償予測信号を出力する。また、判定回路18は、逆量子
化回路12の出力から、各ブロック毎の周波数帯域を縦
横両方向についてそれぞれ求め、その結果と動きベクト
ル及びブロックタイプによって最適な歪み除去処理を決
定し、歪み除去処理回路16を制御するものである。The motion compensation prediction circuit 15 outputs a motion compensation prediction signal for the next frame based on the reproduced image signal and the motion vector and block type information sent together with the image code data. In addition, the determination circuit 18 obtains the frequency band of each block in both the vertical and horizontal directions from the output of the inverse quantization circuit 12, determines the optimum distortion removal processing based on the result, the motion vector and the block type, and performs the distortion removal processing. It controls the circuit 16.
【0036】こうして、ブロック単位で記録されていた
情報の帯域は、ほとんど失われることなくフィルタリン
グすることができる。つまり、低い空間周波数成分しか
ないブロックには、広い範囲に渡って平均化するような
強いローパスフィルタリングを行い、逆に比較的高い空
間周波数成分まで含んでいるブロックには、あまりぼか
さないような弱いローパスフィルタリングを行うこと
で、ブロック内の構造がぼけない程度のローパスフィル
タリングを実現することができる。In this way, the band of information recorded in block units can be filtered with almost no loss. In other words, strong low-pass filtering that averages over a wide range is performed on blocks with only low spatial frequency components, and conversely, weak low-frequency filtering that blocks relatively high spatial frequency components does not blur too much. By performing the low-pass filtering, it is possible to realize the low-pass filtering to the extent that the structure in the block is not blurred.
【0037】つまり、カットオフ周波数特性の異なるコ
ンボリューションフィルタの中から注目画素毎に最適な
ものを選ぶようにしている。フィルタの特性は、フィル
タの係数及びサイズを変化させていて、強いローパスフ
ィルタリングの場合は注目画素の周囲の比較的広い範囲
の画素値の平均となるような係数であり、フィルタのサ
イズも大きなものとしている。一方、弱いローパスフィ
ルタリングの場合は注目画素の周囲の比較的狭い範囲の
画素値の平均となるような係数であり、フィルタのサイ
ズも小さなものとしている。That is, the optimum filter is selected for each pixel of interest from the convolution filters having different cutoff frequency characteristics. The characteristics of the filter are such that the coefficient and size of the filter are changed, and in the case of strong low-pass filtering, the coefficient is an average of pixel values in a relatively wide range around the pixel of interest, and the filter size is large. I am trying. On the other hand, in the case of weak low-pass filtering, the coefficient is an average of pixel values in a relatively narrow range around the target pixel, and the filter size is also small.
【0038】また、動きに応じて、更に強いローパスフ
ィルタリングや、モスキートノイズ除去フィルタリング
が適当と判断されたブロックに対して、そのようなフィ
ルタリングを行うことができるので、動き量に応じて目
立ちやすい歪みを効果的に除去することができ、しかも
画像中にぼけ等の劣化を生じさせることがなくなる。Further, such filtering can be performed on a block for which stronger low-pass filtering or mosquito noise removal filtering is determined to be appropriate according to the motion, so that distortion that is more noticeable depending on the amount of motion Can be effectively removed, and deterioration such as blurring does not occur in the image.
【0039】図2は図1の判定回路18の一例を示すブ
ロック構成図である。同図に於いて、先ず、逆量子化回
路12からの出力が入力端19より絶対値回路20に入
り絶対値が計算される。この計算結果は、閾値比較回路
21に於いて、予め定められていた閾値と比較され、有
意係数とそうでないものとに分けられる。その結果は、
水平方向最高周波数判定回路22及び垂直方向最高周波
数判定回路23に供給され、それぞれの方向の最高周波
数が求められ、この各最高周波数が水平方向フィルタ決
定回路24及び垂直方向フィルタ決定回路25へ供給さ
れて、それぞれの方向のフィルタのカーネルサイズ及び
係数が決定される。このとき、動きベクトルとブロック
タイプ情報も考慮されている。そして、これらの情報が
出力端26及び27から歪み除去処理回路16に出力さ
れる。FIG. 2 is a block diagram showing an example of the judgment circuit 18 shown in FIG. In the figure, first, the output from the inverse quantization circuit 12 enters the absolute value circuit 20 from the input terminal 19 and the absolute value is calculated. The calculation result is compared with a predetermined threshold value in the threshold value comparison circuit 21, and is divided into a significant coefficient and a non-significant coefficient. The result is
The maximum frequency in the horizontal direction is supplied to the maximum frequency determination circuit 22 and the maximum frequency in the vertical direction determination circuit 23, the maximum frequency in each direction is obtained, and the maximum frequencies are supplied to the horizontal filter determination circuit 24 and the vertical filter determination circuit 25. Thus, the kernel size and coefficient of the filter in each direction are determined. At this time, the motion vector and block type information are also taken into consideration. Then, these pieces of information are output from the output terminals 26 and 27 to the distortion removal processing circuit 16.
【0040】そして、水平方向及び垂直方向のそれぞれ
の最高周波数が、水平方向フィルタ決定回路24及び垂
直方向フィルタ決定回路25へ供給されて、それぞれの
方向のフィルタのカーネルサイズ及び係数が決定され
る。このとき、動きベクトルとブロックタイプ情報も考
慮されている。この最高周波数判定とフィルタ決定につ
いて、水平方向の場合を例にとって以下に説明する。Then, the respective maximum frequencies in the horizontal and vertical directions are supplied to the horizontal direction filter determination circuit 24 and the vertical direction filter determination circuit 25, and the kernel size and coefficient of the filter in each direction are determined. At this time, the motion vector and block type information are also taken into consideration. The determination of the highest frequency and the determination of the filter will be described below by taking the case of the horizontal direction as an example.
【0041】ブロックのデータは、閾値比較回路21に
よって、図3に示されるような順番に、ジグザグにスキ
ャンされて与えられる。したがって、水平方向最高周波
数判定回路22では、入ってきた有意係数が何番目の係
数であったかによって、それが第何列の係数であるのか
を調べ、全ての有意係数のうちの最大の列番号によって
水平方向の最高周波数が求められる。The data of the block is zigzag scanned and given by the threshold comparison circuit 21 in the order shown in FIG. Therefore, in the horizontal direction maximum frequency determination circuit 22, the number of the coefficient of the incoming significant coefficient is checked depending on the coefficient of the column, and the maximum column number of all the significant coefficients is used. The highest horizontal frequency is required.
【0042】例えば、1番目の係数が有意係数の場合、
一時メモリに「1」が出力され、次に14番目の係数が
有意係数であったとすると、図3から第2行第4列であ
ることがわかる。したがって、一時メモリの値と列番号
4とを比較して、大きい方の値が一時メモリに記憶され
る。このようにして、ブロック中の全ての有意係数に対
して判定が終了した時点で、一時メモリの値が出力され
る。したがって、例えば14番目以降に20番目の係数
が有意係数であったとしても、第2列の係数であるか
ら、水平方向最高周波数判定回路22の出力は変化しな
い。For example, when the first coefficient is a significant coefficient,
If “1” is output to the temporary memory and the 14th coefficient is the significant coefficient next, it can be seen from FIG. 3 that it is in the second row, fourth column. Therefore, the value in the temporary memory is compared with the column number 4, and the larger value is stored in the temporary memory. In this way, the values in the temporary memory are output when the determination is completed for all the significant coefficients in the block. Therefore, for example, even if the 20th coefficient after the 14th is a significant coefficient, since it is the coefficient in the second column, the output of the horizontal maximum frequency determination circuit 22 does not change.
【0043】このようにして最高周波数を求めた後、水
平方向フィルタ決定回路24にて上記最高周波数に対応
したフィルタが選択される。ここで、動きベクトル及び
ブロックタイプによって動きが大きいと判断された場合
には、選択されたフィルタを、より強いローパスフィル
タに変更するようにしている。また、ゆっくりとした動
きと判断された場合には、ローパスフィルタリングの後
で、モスキートノイズ除去フィルタリングが行われるよ
うに、歪み除去処理回路16に指示するようにしてい
る。After obtaining the highest frequency in this way, the horizontal filter determination circuit 24 selects the filter corresponding to the highest frequency. Here, if it is determined that the motion is large based on the motion vector and the block type, the selected filter is changed to a stronger low-pass filter. When it is determined that the movement is slow, the distortion removal processing circuit 16 is instructed to perform the mosquito noise removal filtering after the low-pass filtering.
【0044】ローパスフィルタの種類としては、この出
力が「0」から「8」までの値を取り得るので、水平方
向フィルタ決定回路24では、9通りのフィルタのみを
用意しておけばよいことになるが、通常は4乃至5通り
以下で充分である。As for the type of low-pass filter, since this output can take values from "0" to "8", the horizontal direction filter determination circuit 24 only needs to prepare 9 types of filters. However, 4 to 5 or less are usually sufficient.
【0045】尚、垂直方向についても全く同様の方法で
フィルタを決定し、係数の順番と行番号及び列番号の対
応とフィルタ特性は、テーブルとして予め保持させてい
る。また、モスキートノイズ除去フィルタとしては、シ
グマフィルタを用いている。ここで、モスキートノイズ
除去に用いているシグマフィルタの例について説明す
る。The filters are determined in the same manner in the vertical direction, and the order of the coefficients, the correspondence between the row number and the column number, and the filter characteristic are held in advance as a table. A sigma filter is used as the mosquito noise removal filter. Here, an example of the sigma filter used for mosquito noise removal will be described.
【0046】注目画素の近傍±2画素について注目画素
との差をとり、その絶対値が閾値より小さい場合にその
差をある重み付けをして注目画素に加えていくものであ
る。このフィルタにより、平坦部に現れるも靄状のノイ
ズは軽減される。The difference between the target pixel and ± 2 pixels in the vicinity of the target pixel is calculated, and when the absolute value is smaller than the threshold value, the difference is weighted and added to the target pixel. With this filter, haze-like noise that appears in the flat portion is reduced.
【0047】尚、フィルタリングに先立ってフィルタ特
性を決めるためのデータや、各ブロックの再生データを
全て求めておいてそれをメモリに格納しておいてフィル
タリングするようにしても良い。次に、この発明の他の
実施例について説明する。It is also possible to obtain all the data for determining the filter characteristics and the reproduction data of each block before filtering and store it in the memory for filtering. Next, another embodiment of the present invention will be described.
【0048】この発明が適用されるような装置の符号化
に於いて圧縮率を上げていくと、量子化幅が大きくなっ
て、係数が0に量子化される確率が高くなる。特に、高
周波成分は一般的にパワーが少ないので、ほとんどが0
に量子化される傾向にある。そこで、変換係数が有意係
数であるかどうかを判定するのに各係数の絶対値を閾値
と比較するのではなく、各係数の値が零であるかどうか
で判断するようにした方法も効果がある。この場合、図
1の判定回路18への入力は、可変長符号復号回路11
からのものを用いることができるようになる。When the compression rate is increased in the coding of the apparatus to which the present invention is applied, the quantization width increases and the probability that the coefficient is quantized to 0 increases. In particular, high frequency components generally have little power, so most of them are zero.
Tends to be quantized into. Therefore, in order to determine whether the conversion coefficient is a significant coefficient, instead of comparing the absolute value of each coefficient with a threshold value, the method of determining whether the value of each coefficient is zero is also effective. is there. In this case, the input to the decision circuit 18 of FIG.
You will be able to use the one from.
【0049】更に他の実施例としては、有意係数が非常
に低い周波数成分だけか、若しくは全くないようなブロ
ックが連続している場合、それらをまとめてマクロブロ
ックとしてとらえることにし、このマクロブロックに広
い範囲で強いローパスフィルタをかけるようにしたもの
がある。As still another embodiment, when there are consecutive blocks in which only significant frequency components or very few significant coefficients are continuous, they are collectively regarded as a macro block, and this macro block is selected. There is one that applies a strong low-pass filter in a wide range.
【0050】これは例えば、画像中の空や白壁等のよう
に、諧調が非常にゆっくり変化している部分が高圧縮の
ために、交流成分が全て失われて階段状になってしまっ
た場合に、ブロック単位のフィルタリングで歪み除去処
理を行ったとしても、マクロ的にみると歪みは除去し切
れておらず、これを画像として観察した場合に、人間の
視覚の特性のために依然としてエッジが存在するように
見えてしまう。そこで、交流成分がほとんど失われてい
るような数ブロック、或いは数十ブロックの塊をマクロ
ブロックとしてとらえ、このマクロブロック内で大きな
範囲でスムージングするようにすれば、滑らかな諧調が
得られる。This is because, for example, a portion where the gradation is changing very slowly, such as the sky or a white wall in the image, is highly compressed and all the AC components are lost, resulting in a staircase. In addition, even if distortion removal processing is performed by filtering in block units, the distortion is not completely removed from a macro perspective, and when this is observed as an image, the edges still remain due to the human visual characteristics. It seems to exist. Therefore, if a block of several blocks or tens of blocks in which almost no AC component is lost is regarded as a macro block and smoothing is performed in a large range within this macro block, a smooth gradation can be obtained.
【0051】尚、この発明は、上述した実施例で使用し
たブロックサイズ、直交変換の種類、可変長符号化の種
類等に限定されるものではない。また、フィルタは水平
方向と垂直方向とで別々にかけているが、2次元のフィ
ルタを1度にかけるようにしても構わない。更に、ブロ
ック全体にかけるのではなくブロック境界近傍だけにフ
ィルタをかけるようにしても良い。The present invention is not limited to the block size, the type of orthogonal transform, the type of variable length coding, etc. used in the above-mentioned embodiment. Further, the filters are separately applied in the horizontal direction and the vertical direction, but a two-dimensional filter may be applied at once. Furthermore, instead of applying to the entire block, the filtering may be applied only to the vicinity of the block boundary.
【0052】[0052]
【発明の効果】以上のようにこの発明によれば、簡単な
回路により、画像中にぼけ等を生じさせずに高速に歪み
を除去することのできる画像信号復号化装置を提供する
ことができ、応用する装置のコストダウンと小型化が図
れ、動画像の再生機能付きデジタル電子カメラ等にも利
用できる。更に、標準的な圧縮方式に対しても復号化装
置への工夫のみで効果が上げられ、勿論従来通りの再生
もでき、また、歪み除去の程度を自由に設定することが
できる。As described above, according to the present invention, it is possible to provide an image signal decoding apparatus capable of removing distortion at high speed without causing blurring in an image with a simple circuit. The cost and size of the applied device can be reduced, and the device can be used for a digital electronic camera with a moving image reproducing function. Further, even with respect to the standard compression method, the effect can be improved only by devising the decoding device, of course, the conventional reproduction can be performed, and the degree of distortion removal can be freely set.
【図1】この発明による画像信号復号化装置が適用され
た画像データの復号化装置の構成を示すブロック図であ
る。FIG. 1 is a block diagram showing a configuration of an image data decoding device to which an image signal decoding device according to the present invention is applied.
【図2】図1の判定回路18の一例を示すブロック構成
図である。FIG. 2 is a block configuration diagram showing an example of a determination circuit 18 of FIG.
【図3】図1の閾値比較回路21により与えられるブロ
ックのデータを示した図である。FIG. 3 is a diagram showing data of a block given by a threshold comparison circuit 21 of FIG.
【図4】従来のフレーム間相関を利用した従来の動画像
圧縮方式を示すブロック図である。FIG. 4 is a block diagram showing a conventional moving image compression method using conventional inter-frame correlation.
【図5】従来のDCTを利用した符号化方法による静止
画像の圧縮の動作を説明する図である。FIG. 5 is a diagram for explaining the operation of compressing a still image by a conventional coding method using DCT.
1…差分回路、2…DCT回路、3…量子化回路、4…
符号化回路、5、12…逆量子化回路、6、13…逆D
CT回路、7、14…加算回路、8、15…動き補償予
測回路、11…可変長符号復号回路、16…歪み除去処
理回路、17…画像出力部、18…判定回路。1 ... Difference circuit, 2 ... DCT circuit, 3 ... Quantization circuit, 4 ...
Encoding circuit, 5, 12 ... Inverse quantization circuit, 6, 13 ... Inverse D
CT circuit, 7, 14 ... Addition circuit, 8, 15 ... Motion compensation prediction circuit, 11 ... Variable length code decoding circuit, 16 ... Distortion removal processing circuit, 17 ... Image output section, 18 ... Judgment circuit.
Claims (1)
符号を用いて圧縮された動画像データを復号化する画像
信号復号化装置に於いて、 上記復号化して得られた画像データに対してブロック歪
み除去を行う歪み除去処理手段と、 上記変換係数から各ブロック毎の信号の帯域を求めると
共に、その結果とブロック毎の動きベクトル及びブロッ
クタイプ情報等に基いて歪み除去の特性をブロック毎に
変化させるようにした歪み除去処理を決定して上記歪み
除去処理手段を制御する判定手段とを具備することを特
徴とする画像信号復号化装置。1. An image signal decoding device for decoding moving image data compressed using orthogonal transformation, quantization and variable length coding for each block, with respect to image data obtained by the above decoding. Distortion removal processing means for removing block distortion, and the signal band for each block is obtained from the transform coefficient, and the distortion removal characteristics are determined for each block based on the result and the motion vector and block type information for each block. The image signal decoding apparatus according to claim 1, further comprising: a determination unit that determines the distortion removal processing to be changed to and controls the distortion removal processing unit.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11059392A JP3365784B2 (en) | 1992-04-30 | 1992-04-30 | Image signal decoding device |
US08/054,844 US5479211A (en) | 1992-04-30 | 1993-04-29 | Image-signal decoding apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11059392A JP3365784B2 (en) | 1992-04-30 | 1992-04-30 | Image signal decoding device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05308623A true JPH05308623A (en) | 1993-11-19 |
JP3365784B2 JP3365784B2 (en) | 2003-01-14 |
Family
ID=14539793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11059392A Expired - Fee Related JP3365784B2 (en) | 1992-04-30 | 1992-04-30 | Image signal decoding device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3365784B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998054892A1 (en) * | 1997-05-28 | 1998-12-03 | Sony Corporation | Block distortion reduction method and device and encoding method and device |
EP0714209A3 (en) * | 1994-11-24 | 1999-07-28 | Victor Company Of Japan, Ltd. | Method and device for decoding image data |
WO2002093935A1 (en) * | 2001-05-10 | 2002-11-21 | Matsushita Electric Industrial Co., Ltd. | Image processing apparatus |
US6748113B1 (en) | 1999-08-25 | 2004-06-08 | Matsushita Electric Insdustrial Co., Ltd. | Noise detecting method, noise detector and image decoding apparatus |
US7095787B2 (en) | 2001-11-29 | 2006-08-22 | Matsushita Electric Industrial Co., Ltd. | Coding distortion removal method, moving picture coding method, moving picture decoding method, and apparatus for realizing the same, program |
JP2007174690A (en) * | 2007-01-26 | 2007-07-05 | Monolith Co Ltd | Image encoding method, image decoding method, image encoding device and image decoding device |
US7372905B2 (en) | 2002-07-11 | 2008-05-13 | Matsushita Electric Industrial Co., Ltd. | Filtering intensity decision method, moving picture encoding method, and moving picture decoding method |
JP2009065716A (en) * | 1997-10-25 | 2009-03-26 | Samsung Electronics Co Ltd | Image data post-processing method and apparatus for reducing quantization effect |
USRE41089E1 (en) | 1998-11-13 | 2010-01-26 | Lg Electronics, Inc. | Method of decoding a current image |
US7742531B2 (en) | 2001-11-29 | 2010-06-22 | Panasonic Corporation | Coding distortion removal method, video encoding method, video decoding method, and apparatus and program for the same |
WO2011016678A3 (en) * | 2009-08-04 | 2011-06-30 | Samsung Electronics Co., Ltd. | Apparatus and method for deblocking filtering image data and video decoding apparatus and method using the same |
JP2012502591A (en) * | 2008-09-11 | 2012-01-26 | グーグル・インク | Video coding system and method using adaptive loop filter |
US8311130B2 (en) | 2000-10-20 | 2012-11-13 | Panasonic Corporation | Block distortion detection method, block distortion detection apparatus, block distortion removal method, and block distortion removal apparatus |
-
1992
- 1992-04-30 JP JP11059392A patent/JP3365784B2/en not_active Expired - Fee Related
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0714209A3 (en) * | 1994-11-24 | 1999-07-28 | Victor Company Of Japan, Ltd. | Method and device for decoding image data |
US6167157A (en) * | 1994-11-24 | 2000-12-26 | Victor Company Of Japan, Ltd. | Method of reducing quantization noise generated during a decoding process of image data and device for decoding image data |
WO1998054892A1 (en) * | 1997-05-28 | 1998-12-03 | Sony Corporation | Block distortion reduction method and device and encoding method and device |
US6434275B1 (en) | 1997-05-28 | 2002-08-13 | Sony Corporation | Block distortion reduction method and device and encoding method and device |
JP2014200104A (en) * | 1997-10-25 | 2014-10-23 | サムスン エレクトロニクス カンパニー リミテッド | Video data post-processing method for reducing quantization effect |
JP2012249321A (en) * | 1997-10-25 | 2012-12-13 | Samsung Electronics Co Ltd | Image data post-processing method for reducing quantization effect |
JP2009065716A (en) * | 1997-10-25 | 2009-03-26 | Samsung Electronics Co Ltd | Image data post-processing method and apparatus for reducing quantization effect |
USRE41400E1 (en) | 1998-11-13 | 2010-06-29 | Lg Electronics Ltd. | Method of decoding a current image |
USRE41835E1 (en) | 1998-11-13 | 2010-10-19 | Lg Electronics, Inc. | Method of decoding a current image |
USRE41526E1 (en) | 1998-11-13 | 2010-08-17 | Lg Electronics, Inc. | Method and apparatus for restoring compressed image processing system and method of decoding a current image |
USRE41089E1 (en) | 1998-11-13 | 2010-01-26 | Lg Electronics, Inc. | Method of decoding a current image |
USRE41907E1 (en) | 1998-11-13 | 2010-11-02 | Lg Electronics, Inc. | Method of decoding a current image |
US6748113B1 (en) | 1999-08-25 | 2004-06-08 | Matsushita Electric Insdustrial Co., Ltd. | Noise detecting method, noise detector and image decoding apparatus |
US8311130B2 (en) | 2000-10-20 | 2012-11-13 | Panasonic Corporation | Block distortion detection method, block distortion detection apparatus, block distortion removal method, and block distortion removal apparatus |
US7561752B2 (en) | 2001-05-10 | 2009-07-14 | Panasonic Corporation | Image processing apparatus |
WO2002093935A1 (en) * | 2001-05-10 | 2002-11-21 | Matsushita Electric Industrial Co., Ltd. | Image processing apparatus |
JP4621810B2 (en) * | 2001-11-29 | 2011-01-26 | パナソニック株式会社 | Image coding / decoding device |
US9900614B2 (en) | 2001-11-29 | 2018-02-20 | Godo Kaisha Ip Bridge 1 | Picture decoding method for decoding coded picture data and performing distortion removal by comparing pixel difference values with threshold |
US7782962B2 (en) | 2001-11-29 | 2010-08-24 | Panasonic Corporation | Coding distortion removal method, video encoding method, video decoding method, and apparatus and program for the same |
JP2010259097A (en) * | 2001-11-29 | 2010-11-11 | Panasonic Corp | Image coding decoding device |
US7742531B2 (en) | 2001-11-29 | 2010-06-22 | Panasonic Corporation | Coding distortion removal method, video encoding method, video decoding method, and apparatus and program for the same |
US7899123B2 (en) | 2001-11-29 | 2011-03-01 | Panasonic Corporation | Coding distortion removal method, video encoding method, video decoding method, and apparatus and program for the same |
US10992962B2 (en) | 2001-11-29 | 2021-04-27 | Godo Kaisha Ip Bridge 1 | Image coding and decoding method for removal of coding distortion by comparing pixel difference values with threshold |
US10965954B2 (en) | 2001-11-29 | 2021-03-30 | Godo Kaisha Ip Bridge 1 | Picture decoding method for decoding coded picture data and performing distortion removal by comparing pixel difference values with threshold |
US10958940B2 (en) | 2001-11-29 | 2021-03-23 | Godo Kaisha Ip Bridge 1 | Image decoding apparatus for removal of coding distortion by comparing pixel difference value with threshold |
US8254468B2 (en) | 2001-11-29 | 2012-08-28 | Panasonic Corporation | Video coding distortion removal method and apparatus using a filter |
US10939134B2 (en) | 2001-11-29 | 2021-03-02 | Godo Kaisha Ip Bridge 1 | Picture decoding method for decoding coded picture data and performing distortion removal by comparing pixel difference values with threshold |
US10511857B2 (en) | 2001-11-29 | 2019-12-17 | Godo Kaisha Ip Bridge 1 | Picture decoding method for decoding coded picture data and performing distortion removal by comparing pixel difference values with threshold |
US8345770B2 (en) | 2001-11-29 | 2013-01-01 | Panasonic Corporation | Video coding and decoding method for selective coding distortion removal using a filter |
US8369421B2 (en) | 2001-11-29 | 2013-02-05 | Panasonic Corporation | Coding distortion removal method by selectively filtering based on a pixel difference |
US8488683B2 (en) | 2001-11-29 | 2013-07-16 | Panasonic Corporation | Selective filtering based on the motion compensation error of two adjacent transform blocks |
US7095787B2 (en) | 2001-11-29 | 2006-08-22 | Matsushita Electric Industrial Co., Ltd. | Coding distortion removal method, moving picture coding method, moving picture decoding method, and apparatus for realizing the same, program |
US10015517B2 (en) | 2001-11-29 | 2018-07-03 | Godo Kaisha Ip Bridge 1 | Picture decoding method for decoding coded picture data and performing distortion removal by comparing pixel difference values with threshold |
US9118899B2 (en) | 2001-11-29 | 2015-08-25 | Panasonic Intellectual Property Corporation Of America | Selective coding distortion removal between two adjacent transform blocks based on their locations |
US9888258B2 (en) | 2001-11-29 | 2018-02-06 | Godo Kaisha Ip Bridge 1 | Image coding and decoding system for removal of coding distortion by comparing pixel difference values with thresholds |
US7792195B2 (en) | 2001-11-29 | 2010-09-07 | Panasonic Corporation | Coding distortion removal method, video encoding method, video decoding method, and apparatus and program for the same |
US8976869B2 (en) | 2002-07-11 | 2015-03-10 | Panasonic Intellectual Property Corporation Of America | Filtering strength determination method, moving picture coding method and moving picture decoding method |
US7372905B2 (en) | 2002-07-11 | 2008-05-13 | Matsushita Electric Industrial Co., Ltd. | Filtering intensity decision method, moving picture encoding method, and moving picture decoding method |
US8116384B2 (en) | 2002-07-11 | 2012-02-14 | Panasonic Corporation | Filtering strength determination method, moving picture coding method and moving picture decoding method |
JP2007174690A (en) * | 2007-01-26 | 2007-07-05 | Monolith Co Ltd | Image encoding method, image decoding method, image encoding device and image decoding device |
JP2012502591A (en) * | 2008-09-11 | 2012-01-26 | グーグル・インク | Video coding system and method using adaptive loop filter |
WO2011016678A3 (en) * | 2009-08-04 | 2011-06-30 | Samsung Electronics Co., Ltd. | Apparatus and method for deblocking filtering image data and video decoding apparatus and method using the same |
Also Published As
Publication number | Publication date |
---|---|
JP3365784B2 (en) | 2003-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5479211A (en) | Image-signal decoding apparatus | |
US5565921A (en) | Motion-adaptive image signal processing system | |
JP4455487B2 (en) | Decoding device, decoding method, and program | |
US5844614A (en) | Video signal decoding apparatus | |
US5949908A (en) | Method of reducing quantization noise generated during a decoding process of image data and device for decoding image data | |
US5850294A (en) | Method and apparatus for post-processing images | |
US6466625B1 (en) | Picture signal processing method and apparatus | |
JP4004089B2 (en) | Video signal decoding system and noise suppression method | |
JP2673778B2 (en) | Noise reduction device for video decoding | |
JPH08237669A (en) | Picture signal processor, picture signal processing method and picture signal decoder | |
JPH09163373A (en) | Noise reduction device | |
JP3365784B2 (en) | Image signal decoding device | |
US5754699A (en) | Method of reducing mosquito noise generated during decoding process of image data and device for decoding image data using the same | |
KR20040102211A (en) | System for and method of sharpness enhancement for coded digital video | |
JP3792837B2 (en) | Deblocking filter | |
WO2002096117A1 (en) | Deblocking block-based video data | |
JPH10224790A (en) | Filter eliminating block noise in companded image and filter method | |
JP2919986B2 (en) | Image signal decoding device | |
JP3081658B2 (en) | Image signal encoding device and image signal decoding device | |
JP3317982B2 (en) | Image signal decoding device | |
JP2901656B2 (en) | Image coding device | |
JP3176227B2 (en) | Image signal decoding device | |
JPH06311499A (en) | Picture signal decoding device | |
JPH11298898A (en) | Block distortion reduction circuit | |
JPH09149417A (en) | Dynamic image signal decoder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20010130 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071101 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081101 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091101 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101101 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101101 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111101 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |