JPH0530840B2 - - Google Patents

Info

Publication number
JPH0530840B2
JPH0530840B2 JP62155390A JP15539087A JPH0530840B2 JP H0530840 B2 JPH0530840 B2 JP H0530840B2 JP 62155390 A JP62155390 A JP 62155390A JP 15539087 A JP15539087 A JP 15539087A JP H0530840 B2 JPH0530840 B2 JP H0530840B2
Authority
JP
Japan
Prior art keywords
crude
lipoprotein
precipitate
freeze
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62155390A
Other languages
Japanese (ja)
Other versions
JPS6361000A (en
Inventor
Tsunetomo Takei
Yosaku Kanazawa
Kazuo Masuda
Juji Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tanabe Co Ltd
Original Assignee
Tokyo Tanabe Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tanabe Co Ltd filed Critical Tokyo Tanabe Co Ltd
Priority to JP62155390A priority Critical patent/JPS6361000A/en
Publication of JPS6361000A publication Critical patent/JPS6361000A/en
Publication of JPH0530840B2 publication Critical patent/JPH0530840B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はリポ蛋白質に関する。更に詳しくは、
顕著な肺胞内表面活性を有するサーフアクタント
の一構成成分であるリポ蛋白質及びそれの製造法
に関する。 従来の技術 近年、致死率の高い呼吸窮迫症候群の治療にお
いて、欠如した肺表面活性物質を代用物で補充す
る方法が重視され、その代用物として、哺乳動物
の肺臓組織に存在するリン脂質、中性脂質、総コ
レステロール及び炭水化物並びに微量の蛋白質か
らなる物質(以下TA−546と略す;特開昭55−
160721号公報)が報告されている。一方、哺乳動
物の肺胞内に散在する肺表面活性物質、例えば羊
の肺から肺洗浄法で分離採取した物質[ペデイア
トリツク・リサーチ(Pediatric Research)12
巻841頁1978年]にも、蛋白質が含まれているこ
とが報告されている。 発明が解決しようとする問題点 しかしながら、TA−546又は肺表面活性物質
に含有されている蛋白質は、いかなる種類又は組
成の蛋白質であるかは全く不明であり、両物質の
蛋白質の分析定量方法を考慮すれば、リポ蛋白質
とそれ以外の種々の蛋白質の総和で把握されてい
るにすぎないのが明白である。 本発明者らは、TA−546及び肺表面活性物質
を構成する個々の成分について鋭意研究した結
果、哺乳動物の肺臓由来蛋白質のうち、特にリ
ポ蛋白質が、ジパルミトイルホスフアチジルコリ
ンなどのコリンホスホグリセリド、ホスフアチジ
ルグリセロール又はホスフアチジルセリンなどの
酸性リン脂質及びパルミチン酸などの脂肪酸類の
三成分に加えて、肺胞内表面活性を示すのに不可
欠な一構成成分であること、並びにこのリポ蛋
白質は脂肪酸類とともに、肺胞内の気液面におけ
るコリンホスホグリセリド及び酸性リン脂質の吸
着拡散に関与し、かつ肺胞収縮時における表面張
力低下効果を助長する成分であり、これ単独では
肺胞内表面張力低下効果が全く発現しないことの
知見を得て本発明に到達した。 問題点を解決するための手段 本発明によれば、哺乳動物の肺臓又は人羊水か
ら得られるリポ蛋白質であつて、その化学組成が
一定比率のリン脂質分、蛋白質分、水分及び不明
組成分からなるリポ蛋白質が提供される。更に本
発明によれば、該リポ蛋白質の製造法が提供され
る。 本発明リポ蛋白質は以下のように製造される。 (a) 牛、馬、羊又は豚等の哺乳動物から摘出した
肺臓を拳大の塊に分断し、不要な血管、気管、
脂肪体及び血液等を除去したのち肉ひき機を用
いて細断する。つぎに得られた肺臓細片を生理
食塩液に0〜20℃で15〜120分間攪拌下で接触
させたのちこれを圧搾濾過し、粗抽出液を採取
する。人羊水を原料とする場合は、適当量の人
羊水を採集し、これをそのまま粗抽出液とす
る。 (b) この粗抽出液を0〜10℃で8000〜20000r.p.
m.の回転速度で遠心分離し粗沈澱物を得る。
粗沈澱物中に残存する不要な肺臓組織片は該沈
澱物を生理食塩液などの電解質溶液に再懸濁
し、これを500〜2000r.p.m.で遠心分離して除
去する。 (c) ついでこの粗沈澱物を水に懸濁し、これに塩
化ナトリウムを加えて液の比重を1.10〜1.20に
調整する。この調整液を0〜10℃で20〜180分
間、5000〜13000r.p.m.の回転速度で遠心分離
して三層に分け、上層の乳濁上薄部を分取す
る。 (d) この乳濁上薄部を水に懸濁し、得られた懸濁
液を水に対して4〜10℃で6〜24時間、セロハ
ン膜を用いて透析し、透析内液を得る。この透
析内液をついで凍結乾燥して粗乾燥物を得る。 (e) 得られた粗乾燥物を20〜200倍重量の酢酸エ
チル又はアセトンに−10〜10℃で接触させ、30
〜60分攪拌したのち不溶物を採取する、この不
溶物を乾燥し、ついで80〜200倍重量のクロロ
ホルム−メタノール混合液(容量比2:1)に
接触させ、10〜40分間攪拌したのち抽出濾液を
採取する。 (f) この抽出濾液を減圧乾固し、得られた固形残
渣を2〜15倍重量、好適には5〜8倍重量のク
ロロホルム−メタノール混合液(容量比2:1
乃至4:1)に溶解する。この溶液をセフアデ
ツクスLH−20、同LH−60又は同G−25(フア
ルマシア・フアインケミカル社製)などのよう
なデキストランゲルを担体としたカラムに付し
てゲル濾過し、ボイドボリユーム画分を採取す
る。使用するデキストランゲルカラムは予め固
形残渣を溶解する上述の混合液と同一の溶媒で
平衡化しておくのが望ましい。デキストランゲ
ルのカラムベツド体積はゲル濾過しようとする
固形残渣1gに対して600ml以上になるように
し、該カラムのデキストランゲル層の長さはカ
ラム直径の大小を問わず50cm以上、好適には80
cm以上になるようにするのが適当である。 (g) 上述のボイドボリユーム画分を減圧乾固し、
ついでこれを水に懸濁したのち凍結乾燥すると
リポ蛋白質が淡黄褐色乃至黄褐色の粉末として
得られる。 [リポ蛋白質の理化学的性質] (i) 分子量 SDS−ゲル電気泳動法(別冊蛋白質核酸酵
素;生体膜実験法(上)230頁1974年)に準じ
た方法により測定した分子量は30000〜38000で
ある。 (ii) 化学組成 このリポ蛋白質の化学組成比は第1表に示す
とおりである。同表において、組成比はリポ蛋
白質の総重量に対する各組成分の重量百分率で
ある。リン脂質分の重量はリポ蛋白質中のリン
含量をキングらの方法[バイオケミカル・ジヤ
ーナル(Biochemical Journal)26巻292頁
1932年]に準じた方法で測定し、そのリン含量
に25を乗じて求めた。蛋白質分の重量はデユー
リー・グリーブ(Dulley−Grieve)方法[ア
ナリテイカル・バイオケミストリー
(Analytical Biochemistry)64巻136頁1975
年]により定量し、牛血清アルブミンに換算し
て求めた。水分重量はカールフイツシヤー法で
測定した。なお不明組成分については、リポ蛋
白質の総重量と上述のようにして求めたリン脂
質分、蛋白質分及び水分の合計重量との差をそ
の重量とした。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to lipoproteins. For more details,
This invention relates to a lipoprotein, which is a component of surfactant, which has remarkable intraalveolar surface activity, and a method for producing the same. Prior Art In recent years, in the treatment of respiratory distress syndrome, which has a high mortality rate, emphasis has been placed on methods of replenishing the deficient pulmonary surfactant with substitutes. A substance consisting of sexual lipids, total cholesterol, carbohydrates, and a trace amount of protein (hereinafter abbreviated as TA-546; JP-A-55-
160721) has been reported. On the other hand, pulmonary surfactant substances scattered in the alveoli of mammals, such as substances isolated and collected from sheep lungs by lung lavage method [Pediatric Research 12
Vol. 841, 1978] has also been reported to contain proteins. Problems to be Solved by the Invention However, it is completely unknown what type or composition of protein contained in TA-546 or lung surfactant, and methods for analyzing and quantifying the protein of both substances are not yet known. If you take this into consideration, it is clear that it is only understood as the sum of lipoproteins and various other proteins. As a result of intensive research on the individual components constituting TA-546 and lung surfactants, the present inventors found that, among mammalian lung-derived proteins, lipoproteins in particular are phosphorylated by choline phosphorus such as dipalmitoylphosphatidylcholine. In addition to the three components of acidic phospholipids such as glyceride, phosphatidylglycerol or phosphatidylserine, and fatty acids such as palmitic acid, this is an essential component to exhibit intraalveolar surface activity; Together with fatty acids, lipoproteins are involved in the adsorption and diffusion of choline phosphoglyceride and acidic phospholipids on the air-liquid surface within the alveoli, and are components that promote the effect of lowering surface tension during alveolar contraction. The present invention was achieved based on the knowledge that the intracellular surface tension reducing effect was not expressed at all. Means for Solving the Problems According to the present invention, there is provided a lipoprotein obtained from mammalian lungs or human amniotic fluid, the chemical composition of which consists of a certain proportion of phospholipids, protein, water, and an unknown composition. Lipoproteins are provided. Further, according to the present invention, a method for producing the lipoprotein is provided. The lipoprotein of the present invention is produced as follows. (a) The lungs removed from mammals such as cows, horses, sheep, or pigs are divided into fist-sized pieces, and unnecessary blood vessels, tracheas,
After removing fat bodies and blood, it is shredded using a meat grinder. Next, the obtained lung pieces are brought into contact with a physiological saline solution for 15 to 120 minutes at 0 to 20° C. with stirring, and then filtered by compression to obtain a crude extract. When human amniotic fluid is used as a raw material, an appropriate amount of human amniotic fluid is collected and used as a crude extract. (b) This crude extract was heated at 0 to 10℃ for 8000 to 20000 r.p.
Centrifuge at a rotational speed of m. to obtain a crude precipitate.
Unwanted pieces of lung tissue remaining in the crude precipitate are removed by resuspending the precipitate in an electrolyte solution such as physiological saline and centrifuging it at 500 to 2000 rpm. (c) Next, suspend this crude precipitate in water, and add sodium chloride to adjust the specific gravity of the liquid to 1.10 to 1.20. This prepared solution is centrifuged at 0 to 10°C for 20 to 180 minutes at a rotational speed of 5,000 to 13,000 rpm to separate it into three layers, and the upper emulsion layer is separated. (d) Suspend this emulsified super-thin part in water, and dialyze the resulting suspension against water at 4-10°C for 6-24 hours using a cellophane membrane to obtain a dialysis solution. This dialyzed fluid is then freeze-dried to obtain a crude dry product. (e) Contact the obtained crude dry product with 20 to 200 times the weight of ethyl acetate or acetone at -10 to 10°C,
After stirring for ~60 minutes, insoluble matter is collected. This insoluble matter is dried, then brought into contact with a chloroform-methanol mixture (volume ratio 2:1) of 80 to 200 times its weight, stirred for 10 to 40 minutes, and then extracted. Collect the filtrate. (f) This extraction filtrate is dried under reduced pressure, and the resulting solid residue is mixed with a chloroform-methanol mixture (volume ratio 2:1) of 2 to 15 times the weight, preferably 5 to 8 times the weight.
to 4:1). This solution is subjected to gel filtration through a column using dextran gel as a carrier such as Cephadex LH-20, Cephadex LH-60, or Cephadex G-25 (manufactured by Pharmacia Fine Chemicals), and the void volume fraction is removed. Collect. It is desirable that the dextran gel column used be equilibrated in advance with the same solvent as the above-mentioned mixture for dissolving the solid residue. The volume of the dextran gel column bed should be 600 ml or more per 1 g of solid residue to be gel-filtered, and the length of the dextran gel layer of the column should be 50 cm or more regardless of the column diameter, preferably 80 cm or more.
It is appropriate to make it at least cm. (g) Dry the above void volume fraction under reduced pressure,
Next, this is suspended in water and then freeze-dried to obtain lipoprotein as a light yellowish brown to yellowish brown powder. [Physical and chemical properties of lipoproteins] (i) Molecular weight The molecular weight measured by a method based on SDS-gel electrophoresis (Separate volume Protein Nucleic Acid Enzyme; Biomembrane Experimental Methods (Part 1) p. 230, 1974) is 30,000 to 38,000. . (ii) Chemical composition The chemical composition ratio of this lipoprotein is as shown in Table 1. In the same table, the composition ratio is the weight percentage of each component relative to the total weight of the lipoprotein. The weight of phospholipids is determined by the method of King et al. [Biochemical Journal, Vol. 26, p. 292].
[1932], and the phosphorus content was multiplied by 25. The protein weight was calculated using the Dulley-Grieve method [Analytical Biochemistry, Vol. 64, p. 136, 1975]
2009] and converted into bovine serum albumin. The water weight was measured by the Karl Fischer method. For unknown components, the weight was defined as the difference between the total weight of lipoproteins and the total weight of phospholipid content, protein content, and water determined as described above.

【表】 (iii) 比旋光度 [α]23 D:−40°〜85° 測定溶媒は1%ドデシル硫酸ナトリウム水溶
液を用い、試料濃度は0.1%(W/V)とした。
測定機器はDIP−180型自動旋光計(日本分光
(株)社製)を用いた。 (iv) 吸収スペクトル 赤外線吸収スペクトル及び紫外線吸収スペクト
ルは図1及び図2に示すとおりである。 (v) 溶解性等 クロロホルム、ベンゼン、メタノール、エタ
ノール、ジメチルスルホキシド及び水に不溶。
クロロホルム−メタノール混合液(容量比2:
1乃至4:1)には0.1%(W/V)濃度では
溶解する。0.1規定水酸化ナトリウム水溶液に
も不溶。このリポ蛋白質は水及び含水有機溶媒
には不溶のため、それの酸性、塩基性、中性の
区別はできない。 (vi) 呈色反応 キサントプロテイン反応は陽性。しかし、ビ
ユウレツト反応については陽性、陰性の明確な
判定はできない。 (vii) 肺胞内表面張力低下作用 このリポ蛋白質の生理食塩液面における表面
張力低下作用をウイルヘルミー法及びキングら
の方法[アメリカン・ジヤーナル・オブ・フイ
ジオロジー(American Journal of
Physiology)223巻715頁1972年]で測定した
ところ、当該作用は全く認められなかつた。 上述の理化学的性質を有する本発明リポ蛋白質
は、コリンホスホグリセリド、酸性リン脂質及び
脂肪酸類と混合することにより、顕著な肺胞内表
面活性を有するサーフアクタントに調製すること
ができる。混合比は、最終的に得られるサーフア
クタントの乾燥総重量に対し、リポ蛋白質は0.1
〜10.0%(W/W)となるようにし、コリンホス
ホグリセリドは50.6〜85.0%(W/W)、酸性リ
ン脂質は、4.5〜37.6%(W/W)及び脂肪酸類
は4.6〜24.6%(W/W)となるように設定する。 コリンホスホグリセリドとしては、1,2−ジ
パルミトイルグリセロ−(3)−ホスホコリン(別名
ジパルミトイルホスフアチジルコリン)、1,2
−ジステアロイルグリセロ−(3)−ホスホコリン、
1−パルミトイル−2−ステアロイルグリセロ−
(3)−ホスホコリンもしくは1−ステアロイル−2
−パルミトイルグリセロ−(3)−ホスホコリンなど
のような1,2−ジアシルグリセロ−(3)−ホスホ
コリン、1−ヘキサデシル−2−パルミトイルグ
リセロ−(3)−ホスホコリンもしくは1−オクタデ
シル−2−パルミトイルグリセロ−(3)−ホスホコ
リンなどのような1−アルキル−2−アシルグリ
セロ−(3)−ホスホコリン又は1,2−ジヘキサデ
シルグリセロ−(3)−ホスホコリンなどのような
1,2−ジアルキルグリセロ−(3)−ホスホコリン
が適当である。これらの化合物についてはグリセ
ロール残基の2位の炭素に基づく光学異性体が知
られているが、本サーフアクタントにおいてはD
体、L体又はD体及びL体が混在しているいわゆ
るD・L体のいずれを問わず使用することができ
る。このほかにコリンホスホグリセリドとして
は、上述の単品からなるコリンホスホグリセリド
以外に、炭素数が14〜24個のアシル基、好適には
飽和アシル基を2個有する1,2−ジアシルグリ
セロ−(3)−ホスホコリンの二種以上からなる混合
物、更には当該混合物と上述の単品との混合物も
使用することができる。 酸性リン脂質としては、1,2−ジアシル−sn
−グリセロ−(3)−リン酸(別名L−α−ホスフア
チジン酸)、1,2−ジアシル−sn−グリセロ−
(3)−ホスホ−L−セリン(別名ホスフアチジルセ
リン)1,2−ジアシル−sn−グリセロ−(3)−ホ
スホ−sn−グリセロール(別名ホスフアチジルグ
リセロール)又は1,2−ジアシル−sn−グリセ
ロ−(3)−ホスホ−(1)−L−myo−イノシトール
(別名ホスフアチジルイノシトール)が適当であ
る。これらの化合物において、1位及び2位は同
一種類又は異なる種類のアシル基でそれぞれ置換
されていてもよい。ここでのアシル基としては炭
素数が14〜24個のものが適当である。 次に、脂肪酸類としては、遊離脂肪酸、脂肪酸
のアルカリ金属塩、脂肪酸アルキルエステル、脂
肪酸グリセリンエステルもしくは脂肪酸アミド又
はこれらの二種以上からなる混合物、更には脂肪
アルコール又は脂肪族アミンが適当である、本明
細書において「脂肪酸類」とは、ここでいう脂肪
アルコール及び脂肪族アミンも包含する意味であ
る。遊離脂肪酸としてはパルミチン酸、ステアリ
ン酸又はオレイン酸が適当であるが、パルミチン
酸が好適である。脂肪酸のアルカリ金属塩として
はパルミチン酸ナトリウム又はステアリン酸ナト
リウムが、脂肪酸アルキルエステルとしてはパル
ミチン酸エチルエステルが、脂肪酸グリセリンエ
ステルとしてはモノパルミチン又はモノステアリ
ンが、脂肪酸アミドとしてはパルミチン酸アミド
がそれぞれ適当である。脂肪アルコールとしては
ヘキサデシルアルコール又はオクタデシルアルコ
ールが、脂肪族アミンとしてはヘキサデシルアミ
ンが適当である。 上述のコリンホスホグリセリド、酸性リン脂質
及び脂肪酸類は動植物から分離された製品、半合
成品又は化学合成品のいずれでもよく、それらの
市販品を使用することができる。 混合方法としては、上述の四成分をそのまま練
り合せたのち乾燥してサーフアクタントとする方
法又は四成分を有機溶媒に溶解して混合し、この
溶液を減圧乾固し、得られた残留物を適当な懸濁
溶媒を用いて懸濁し、ついで凍結乾燥する方法
(以下溶液法と略す)のいずれでもよいが、得ら
れたサーフアクタント中の四成分が生理食塩液に
均質に懸濁されやすいという理由から溶液法が好
適である。溶液法において四成分を混合するのに
用いる有機溶媒としてはクロロホルム−メタノー
ル混合液(容量比2:1乃至4:1)が適当であ
る。また懸濁溶媒としては水又は水−エタノール
混合液(容量比4:1乃至20:1)が適当である
が、水−エタノール混合液が好適である。懸濁は
30〜60℃、好適には40〜50℃で、5〜60分間、好
適には15〜30分間かけて行なうのが望ましい。こ
の溶液法により得られるサーフアクタントには製
法上、微量の水分の残存は避けられないが、その
残存重量比率が総重量に対して5.0%(W/W)
以下になるまで乾燥するのが望ましい。かかる程
度まで乾燥すれば、水−エタノール混合液を用い
る場合でもエタノールの残存は検出不能となる。 作用及び発明の効果 本発明リポ蛋白質の作用効果を、上述のように
して得られる四成分からなるサーフアクタント
(以下四成分SFと略す)と、リポ蛋白質を含まな
い三成分からなるサーフアクタント(以下三成分
SFと略す)との各代表例における表面活性の比
較でもつて説明する。なお、三成分SFはリポ蛋
白質を配合しないことを除き、上述の四成分SF
と同一の方法で製造した。 表面活性の比較試験は、表面張力低下作用、気
液面拡散作用及び肺胞腔容量維持作用を実験する
ことにより行つた。実験操作は以下のとおりであ
る。 (i) 表面張力低下作用 四成分SF及び三成分SFを54.0cm2の表面積を
有する生理食塩液に、1cm2あたり1.0〜2.0μg
滴下し、37℃で該表面積を54.0〜21.6cm2の範囲
内で2〜5分かけて増減した際の表面張力をウ
イルヘルミー法に準じて連続的に測定し、最大
表面張力及び最小表面張力を求めた。 (ii) 気液面拡散作用 生理食塩液の液面に、表面積1cm2あたり0.8
〜1.5μgの四成分SF及び三成分SFを滴下し、
滴下直後からの表面張力を垂直板法で経時的に
測定し、平衡表面張力及びその到達時間を求め
た。 (iii) 肺胞腔容量維持作用 在胎期間27日の兎胎仔5匹を用いて、気道内
圧の漸減下における肺胞腔容量、特に気道内圧
が5cmH2O(気道内圧が5cmH2Oであるという
ことは、生体の肺胞が虚脱状態への臨界点にあ
ることを意味する)の時の当該容量を測定し
た。この測定は胎仔の頚部を切開し露出させた
気管に接続させた水マノメーターを用いて、四
成分SF又は三成分SFを投与したのち5分後か
ら連続的に行つた。気道内圧は気管に接続させ
た2チヤンネル独立駆動シリンジポンプNo.940
(米国ハーバード社製)を用いて増減した。四
成分SF及び三成分SFの投与はその濃度が1.0〜
6.0%(W/V)になるように調製した生理食
塩液懸濁液0.05〜0.5mlを気道内に直接注入す
る方法で行なつた。なお、四成分SF又は三成
分SFの懸濁液にかえて生理食塩液を用いた以
外は上述と同様な方法で測定した対照群におい
ては、気道内圧5cmH2Oでの肺胞腔容量は約
2ml/Kgにすぎなかつた。 比較試験の結果を以下の比較例1〜4に示す。
各比較例における四成分SF及び三成分SFの組成
含量は、リポ蛋白質、コリンホスホグリセリド、
酸性リン脂質及び脂肪酸類についてはそれらの配
合重量で、水分については得られる各サーフアク
タントの乾燥総重量と四成分又は三成分の配合総
重量のとの差で表示した。また、乾燥総重量に対
する四成分又は三成分及び水分の含有率も参考の
ため併記した。
[Table] (iii) Specific optical rotation [α] 23 D : -40° to 85° A 1% aqueous sodium dodecyl sulfate solution was used as the measurement solvent, and the sample concentration was 0.1% (W/V).
The measuring instrument is a DIP-180 automatic polarimeter (JASCO
Co., Ltd.) was used. (iv) Absorption spectrum The infrared absorption spectrum and ultraviolet absorption spectrum are as shown in FIGS. 1 and 2. (v) Solubility, etc. Insoluble in chloroform, benzene, methanol, ethanol, dimethyl sulfoxide and water.
Chloroform-methanol mixture (volume ratio 2:
1 to 4:1) at a concentration of 0.1% (W/V). Insoluble even in 0.1N aqueous sodium hydroxide solution. Since this lipoprotein is insoluble in water and water-containing organic solvents, it is not possible to distinguish between acidic, basic, and neutral lipoproteins. (vi) Color reaction Xanthoprotein reaction is positive. However, it is not possible to clearly determine whether the Bieurett reaction is positive or negative. (vii) Alveolar surface tension reducing effect The surface tension reducing effect of lipoproteins on the physiological saline surface was measured using the Wilhelmy method and the method of King et al. [American Journal of Physiology]
Physiology) Vol. 223, p. 715, 1972], no such effect was observed. By mixing the lipoprotein of the present invention having the above-mentioned physicochemical properties with choline phosphoglyceride, acidic phospholipid, and fatty acids, it can be prepared into a surfactant having remarkable intraalveolar surface activity. The mixing ratio is 0.1 for lipoprotein to the total dry weight of surfactant finally obtained.
~10.0% (W/W), choline phosphoglyceride 50.6~85.0% (W/W), acidic phospholipids 4.5~37.6% (W/W), and fatty acids 4.6~24.6% (W/W). W/W). Examples of choline phosphoglycerides include 1,2-dipalmitoylglycero-(3)-phosphocholine (also known as dipalmitoylphosphatidylcholine), 1,2-dipalmitoylglycero-(3)-phosphocholine (also known as dipalmitoylphosphatidylcholine),
-distearoylglycero-(3)-phosphocholine,
1-palmitoyl-2-stearoylglycero-
(3)-phosphocholine or 1-stearoyl-2
-1,2-diacylglycero-(3)-phosphocholine, 1-hexadecyl-2-palmitoylglycero-(3)-phosphocholine or 1-octadecyl-2-palmitoylglycero-, such as -palmitoylglycero-(3)-phosphocholine, etc. (3)-1-alkyl-2-acylglycero-(3)-phosphocholine such as (3)-phosphocholine or 1,2-dialkylglycero-(1,2-dihexadecylglycero-(3)-phosphocholine etc.) 3)-Phosphocholine is suitable. Optical isomers based on the 2nd carbon of the glycerol residue are known for these compounds, but in this surfactant, D
Any of the so-called D and L bodies, which are a mixture of D and L bodies, can be used. In addition to the single choline phosphoglyceride mentioned above, choline phosphoglycerides include 1,2-diacylglycero(3 A mixture of two or more types of )-phosphocholine or a mixture of the mixture and the above-mentioned single product can also be used. As an acidic phospholipid, 1,2-diacyl-sn
-Glycero-(3)-phosphoric acid (also known as L-α-phosphatidic acid), 1,2-diacyl-sn-glycero-
(3)-Phospho-L-serine (also known as phosphatidylserine) 1,2-diacyl-sn-glycero-(3)-phospho-sn-glycerol (also known as phosphatidylglycerol) or 1,2-diacyl-sn -Glycero-(3)-phospho-(1)-L-myo-inositol (also known as phosphatidylinositol) is suitable. In these compounds, the 1st and 2nd positions may be substituted with the same or different acyl groups. The acyl group here preferably has 14 to 24 carbon atoms. Next, as the fatty acids, free fatty acids, alkali metal salts of fatty acids, fatty acid alkyl esters, fatty acid glycerin esters, fatty acid amides, or mixtures of two or more thereof, and furthermore, fatty alcohols or fatty amines are suitable. As used herein, the term "fatty acids" includes fatty alcohols and aliphatic amines. Suitable free fatty acids are palmitic acid, stearic acid or oleic acid, with palmitic acid being preferred. Sodium palmitate or sodium stearate is suitable as the alkali metal salt of fatty acid, ethyl palmitate is suitable as fatty acid alkyl ester, monopalmitine or monostearin is suitable as fatty acid glycerin ester, and palmitic acid amide is suitable as fatty acid amide. be. Hexadecyl alcohol or octadecyl alcohol is suitable as the fatty alcohol, and hexadecylamine is suitable as the aliphatic amine. The above-mentioned choline phosphoglyceride, acidic phospholipid, and fatty acids may be products separated from animals or plants, semisynthetic products, or chemically synthesized products, and commercially available products thereof can be used. The mixing method is to knead the above-mentioned four components as they are and then dry them to form a surfactant, or to dissolve the four components in an organic solvent and mix them, and dry this solution under reduced pressure to form the resulting residue. Any method may be used in which the surfactant is suspended in a suitable suspension solvent and then freeze-dried (hereinafter referred to as the solution method), but the four components in the obtained surfactant are homogeneously suspended in physiological saline. The solution method is preferred because it is easy. As the organic solvent used to mix the four components in the solution method, a chloroform-methanol mixture (volume ratio 2:1 to 4:1) is suitable. As the suspending solvent, water or a water-ethanol mixture (volume ratio 4:1 to 20:1) is suitable, and a water-ethanol mixture is preferred. Suspension is
It is desirable to carry out the reaction at a temperature of 30 to 60°C, preferably 40 to 50°C, for 5 to 60 minutes, preferably 15 to 30 minutes. Due to the manufacturing process, it is unavoidable that a small amount of water remains in the surf actant obtained by this solution method, but the residual weight ratio is 5.0% (W/W) of the total weight.
It is preferable to dry it until it becomes below. When dried to such a degree, residual ethanol becomes undetectable even when a water-ethanol mixture is used. Actions and Effects of the Invention The action and effects of the lipoprotein of the present invention are shown in the surfactant composed of four components obtained as described above (hereinafter abbreviated as four-component SF) and the surfactant composed of three components not containing lipoproteins. (The following three components
It will also be explained by comparing the surface activity of each representative example with SF (abbreviated as SF). The three-component SF is the same as the four-component SF mentioned above, except that it does not contain lipoproteins.
Manufactured using the same method. A comparative test of surface activity was conducted by experimenting with surface tension lowering effect, air-liquid surface diffusion effect, and alveolar space capacity maintenance effect. The experimental procedure was as follows. (i) Surface tension lowering effect Add 1.0 to 2.0 μg of four-component SF and three-component SF to a physiological saline solution having a surface area of 54.0 cm 2 per 1 cm 2
The surface tension was measured continuously according to the Wilhelmy method when the surface area was increased or decreased over 2 to 5 minutes within the range of 54.0 to 21.6 cm 2 at 37°C, and the maximum and minimum surface tensions were determined. I asked for it. (ii) Air-liquid surface diffusion effect On the liquid surface of physiological saline, 0.8 per cm 2 of surface area.
Drop ~1.5 μg of four-component SF and three-component SF,
Immediately after dropping, the surface tension was measured over time using the vertical plate method, and the equilibrium surface tension and the time to reach it were determined. (iii) Alveolar space capacity maintenance effect Using five rabbit fetuses with a gestation period of 27 days, the alveolar space volume under gradual decrease in airway pressure, especially when the airway pressure was 5 cmH 2 O (airway pressure was 5 cmH 2 O). This means that the alveoli of the living body are at the critical point of collapse). This measurement was carried out continuously starting 5 minutes after the administration of the four-component SF or the three-component SF using a water manometer connected to the trachea exposed through an incision in the neck of the fetus. Airway pressure is measured using a 2-channel independently driven syringe pump No.940 connected to the trachea.
(manufactured by Harvard, USA). When administering four-component SF and three-component SF, the concentration is 1.0~
The test was performed by directly injecting 0.05 to 0.5 ml of a physiological saline suspension prepared to a concentration of 6.0% (W/V) into the respiratory tract. In the control group, which was measured in the same manner as above except that physiological saline was used instead of the four-component SF or three-component SF suspension, the alveolar space volume at an airway pressure of 5 cmH 2 O was approximately It was only 2ml/Kg. The results of the comparative tests are shown in Comparative Examples 1 to 4 below.
The compositional contents of the four-component SF and the three-component SF in each comparative example are lipoprotein, choline phosphoglyceride,
Acidic phospholipids and fatty acids were expressed by their combined weights, and moisture was expressed by the difference between the dry total weight of each surfactant obtained and the combined total weight of the four or three components. In addition, the contents of the four components or three components and water relative to the total dry weight are also listed for reference.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 上述の比較例1〜4から、本発明リポ蛋白質を
配合することにより、サーフアクタントの優れ
た表面張力低下効果の実現、サーフアクタント
の気液面拡散時間の短縮及び低い平衡表面張力の
発揮並びに十分な肺胞腔容量の確保等を可能な
らしめることが明白であり、従つて、本発明リポ
蛋白質はサーフアクタントの気液面拡散及び肺胞
収縮時の肺胞腔内表面張力の低下において側面か
ら重要な役割を担う成分であることが認められ
る。 本発明を実施例をもつて更に説明する。 実施例 1 (a) 牛の摘出肺臓128.3Kgを水で洗浄し、付着し
ている血液等を除去し、ついでこれを拳大の肉
塊に分断しハサミを用いて不要な血管、気管等
を切除した。この肉塊を肉ひき機を用いて細断
し肺臓細片120.1Kgを得た。この肺臓細片と生
理食塩液490とを混和し、4℃で100分間攪拌
し、ついで得られた混合液を濾過袋に注入して
圧搾濾過し粗抽出液470を得た。 (b) この粗抽出液を10000r.p.m.で遠心分離し粗
沈澱物を採取した。得られた粗沈澱物を100
の生理食塩液に再懸濁し、2000r.p.m.で10分間
遠心分離し残存する組織片等を沈澱物として除
去した。上層懸濁液は再度10000r.p.m.で遠心
分離し、粗沈澱物を再採取した。 (c) かくして得られた粗沈澱物を水85に懸濁
し、これに塩化ナトリウム25.7Kgを加え、液の
比重を約1.20に調整した。この調整液を10000r.
p.m.で50分間0℃で遠心分離して三層に分け、
乳濁上薄部を分取した。 (d) この乳濁上薄部を蒸留水に懸濁し蒸留水に対
してセロハン膜を用いて透析し、透析内液を得
た。この透析内液を凍結乾燥したところ960g
の粗乾燥物を得た。 (e) この粗乾燥物に5℃に冷却した酢酸エチル48
を添加し、45分間攪拌したのち減圧濾過し不
溶物を濾取した。この不溶物を乾燥したのち、
これにクロロホルム−メタノール混合液(容量
比2:1)28を添加し30分間攪拌後に濾紙濾
過し抽出濾液を得た。濾過残渣には再度、同混
合液28を添加し30分間攪拌後に濾紙濾過し2
次抽出濾液を得た。この操作はもう一回繰り返
し行い3次抽出濾液まで得た。得られた抽出濾
液は合算して82であつた。 (f) この抽出濾液を減圧乾固したところ160.4g
の固形残渣を得た。この固形残渣を25.0gずつ
6回に分けて以外の操作を行つた。まず、各固
形残渣25.0gをそれぞれクロロホルム−メタノ
ール混合液(容量比2:1)170mlに溶解した。
次に得られた各溶液をそれぞれ別個に同混合液
で平衡化したセフアデツクスLH−20カラム
(直径15.5cm×90cm;カラムベツド体積17.0)
に付し、同混合液を用いて流速5ml/分で溶出
してゲル濾過し、ボイドボリユーム画分をそれ
ぞれ採取した。6回の操作で得られたボイドボ
リユーム画分は全量で6480mlであつた。この画
分の微量を用い無菌試験を行つたところ無菌で
あることが確認されたので以下は無菌条件下で
操作した。 (g) ボイドボリユーム画分を減圧乾固し、ついで
これを無菌水に懸濁したのち凍結乾燥したとこ
ろリポ蛋白質8.3gが淡黄褐色粉末として得ら
れた。分子量は34000、比旋光度[α]23 Dは−
69°であつた。また化学組成はリン脂質分62.1
%(W/W)、蛋白質分31.3%(W/W)、水分
4.6%(W/W)及び不明組成分2.0%(W/
W)であつた。 実施例 2 (a) 牛の摘出肺臓15Kgに実施例1の(a)工程で述べ
たのと同様な操作をして肺臓細片13.7Kgを得
た。これを生理食塩液68に添加し、8℃で60
分間攪拌し、ついで得られた液を濾過袋に注入
して圧搾濾過し粗抽出液61を得た。 (b) この粗抽出液を12000r.p.m.で遠心分離し粗
沈澱物を採取した。得られた粗沈澱物に生理食
塩液11を加えて懸濁したのち、4℃で1500r.
p.m.の回転速度で遠心分離し残存する不要な組
織片等を沈澱物として除去した。上層懸濁液は
12000r.p.m.で遠心分離し、粗沈澱物を再採取
した。 (c) この粗沈澱物を水10に懸濁し、これに塩化
ナトリウム2.23Kgを加えて液の比重を約1.15に
調整し、ついでこの調整液を8000r.p.m.で60分
間10℃で遠心分離し乳濁上薄部を分取した。 (d) この乳濁上薄部を蒸留水に懸濁し、蒸留水に
対してセロハン膜を用いて透析し、ついで得ら
れた透析内液を凍結乾燥して粗乾燥物79gを得
た。 (e) この粗乾燥物にアセトン8を4℃で加え、
60分間攪拌した後濾紙濾過を行い不溶物を濾取
した。乾燥後この不溶物をクロロホルム−メタ
ノール混合液(容量比2:1)14に接触させ
40分間攪拌し、ついで濾紙濾過を行い抽出濾液
13.8を得た。 (f) この抽出濾液を減圧乾固し、固形残渣20.5g
を得た。得られた固形残渣をクロロホルム−メ
タノール混合液(容量比5:2)120mlに溶解
し、これを同混合液で平衡化したセフアデツク
スLH−20カラム(直径15.5cm×88cm;カラム
ベツド体積16.6)に付した。このカラムを同
混合液を用いて流速1ml/分で溶出してゲル濾
過し、ボイドボリユーム画分915mlを採取した。
この画分の微量を用い無菌試験を行つたところ
無菌であることが確認されたので以下は無菌条
件下で行つた。 (g) 上述のボイドボリユーム画分を減圧乾固し、
これを無菌水に懸濁しついで凍結乾燥し、黄褐
色のリポ蛋白質粉末1.5g得た。分子量は
34000、比旋光度[α]23 Dは−40°であり、化学
組成はリン脂質分70.2%(W/W)、蛋白質分
23.4%(W/W)、水分4.0%(W/W)及び不
明組成分2.4%(W/W)であつた。 実施例 3 (a) 豚の摘出肺臓36Kgに実施例1の(a)工程で述べ
たのと同様な操作をして肺臓細片33.5Kgを得
た。これを生理食塩液168に添加し、10℃で
30分間攪拌し、ついで得られた液を濾過袋に注
入したのち圧搾濾過し粗抽出液145を得た。 (b) この粗抽出液を14000r.p.m.で遠心分離し粗
沈澱物を得た。得られた粗沈澱物に生理食塩液
20を加えて懸濁したのち、4℃で1000r.p.m.
の回転速度で遠心分離し残存する不要な組織片
を沈澱物として除去した。上層懸濁液は
13000r.p.m.で遠心分離し、粗沈澱物を再採取
した。 (c) この粗沈澱物を水26に懸濁し、これに塩化
ナトリウム5.8Kgを加えて液の比重を約1.15に
調整し、ついでこの調整液を8000r.p.m.で30分
間4℃で遠心分離し乳濁上薄部を分取した。 (d) この乳濁上薄部を蒸留水に懸濁し蒸留水に対
してセロハン膜を用いて透析し、ついで得られ
た透析内液を凍結乾燥して粗乾燥物163gを得
た。 (e) この粗乾燥物にアセトン15を6℃で加え、
30分間攪拌した後濾紙濾過を行い不溶物を濾取
した。乾燥後この不溶物をクロロホルム−メタ
ノール混合液(容量比2:1)23に接触させ
20分間攪拌し、ついで濾紙濾過を行い抽出濾液
22を得た。 (f) この抽出濾液を減圧乾固し、固形残渣46.2g
を得た。得られた固形残渣20.0gをクロロホル
ム−メタノール混合液(容量比3:1)120ml
に溶解し、これを同混合液で平衡化したセフア
デツクスLH−20カラム(直径15.5cm×88cm;
カラムベツド体積16.6)に付した。このカラ
ムを同混合液を用いて流速3ml/分で溶出して
ゲル濾過し、ボイドボリユーム画分910mlを採
取した。この画分の微量を用いて無菌試験を行
つたところ無菌であることが確認されたので以
下の操作は無菌条件で行つた。 (g) 上述のボイドボリユーム画分を減圧乾固し、
これを無菌水に懸濁しついで凍結乾燥し、黄褐
色のリポ蛋白質粉末1.1g得た。分子量は
32000、比旋光度[α]23 Dは−51°であり、化学
組成はリン脂質分69.2%(W/W)、蛋白質分
26.4%(W/W)、水分3.0%(W/W)及び不
明組成分1.4%(W/W)であつた。 実施例 4 (a) 馬の摘出肺臓15Kgに実施例1の(a)工程で述べ
たのと同様な操作をして肺臓細片13.1Kgを得
た。これを生理食塩液65に添加し、4℃で30
分間攪拌し、ついで得られた液を濾過袋に注入
したのち圧搾濾過し粗抽出液56を得た。 (b) この粗抽出液を13000r.p.m.で遠心分離し粗
沈澱物を得た。得られた粗沈澱物に生理食塩液
9を加えて懸濁したのち、4℃で1500r.p.m.
の回転速度で遠心分離し残存する不要な組織片
を沈澱物として除去した。上層懸濁液は
10000r.p.m.で遠心分離し、粗沈澱物を再採取
した。 (c) この粗沈澱物を水10に懸濁し、これに塩化
ナトリウム2.86Kgを加えて液の比重を約1.20に
調整し、ついでこの調整液を8000r.p.m.で60分
間4℃で遠心分離し乳濁上薄部を分散した。 (d) この乳濁上薄部を蒸留水に懸濁し、蒸留水に
対してセロハン膜を用いて透析し、ついで得ら
れた透析内液を凍結乾燥して粗乾燥物76gを得
た。 (e) この粗乾燥物に酢酸エチル8を10℃で加
え、60分間攪拌した後濾紙濾過を行い不溶物を
濾取した。乾燥後この不溶物をクロロホルム−
メタノール混合液(容量比2:1)14に接触
させ20分間攪拌し、ついで濾紙濾過を行い抽出
濾液13.1を得た。 (f) この抽出濾液を減圧乾固し、固形残渣18.1g
を得た。得られた固形残渣をクロロホルム−メ
タノール混合液(容量比2:1)120mlに溶解
し、これを同混合液で平衡化したセフアデツク
スLH−20カラム(直径15.5cm×88cm;カラム
ベツド体積16.6)に付した。このカラムを同
混合液を用いて流速1ml/分で溶出してゲル濾
過し、ボイドボリユーム画分880mlを採取した。
この画分の微量を用い無菌試験を行つたところ
無菌であることが確認されたので以下は無菌条
件下で行つた。 (g) 上述のボイドボリユーム画分を減圧乾固し、
これを無菌水に懸濁しついで凍結乾燥し、黄褐
色のリポ蛋白質粉末0.8g得た。分子量は
38000、比旋光度[α]23 Dは−85°であり、化学
組成はリン脂質分48.5%(W/W)、蛋白質分
48.0%(W/W)、水分1.8%(W/W)及び不
明組成分1.7%(W/W)であつた。 実施例 5 (a) 羊の摘出肺臓15Kgに実施例1の(a)工程で述べ
たのと同様な操作をして肺臓細片13.4Kgを得
た。これを生理食塩液70に添加し、4℃で60
分間攪拌し、ついで得られた液を濾過袋に注入
したのち圧搾濾過し粗抽出液65を得た。 (b) この粗抽出液を14000r.p.m.で遠心分離し粗
沈澱物を得た。得られた粗沈澱物に生理食塩液
9を加えて懸濁したのち、4℃で1000r.p.m.
の回転速度で遠心分離し残存する不要な組織片
を沈澱物として除去した。上層懸濁液は
10000r.p.m.で遠心分離し、粗沈澱物を再採取
した。 (c) この粗沈澱物を水10に懸濁し、これに塩化
ナトリウム2.86Kgを加えて液の比重を約1.20に
調整し、ついでこの調整液を8000r.p.m.で60分
間4℃で遠心分離し乳濁上薄部を分取した。 (d) この乳濁上薄部を蒸留水に懸濁し、蒸留水に
対してセロハン膜を用いて透析し、ついで得ら
れた透析内液を凍結乾燥して粗乾燥物71gを得
た。 (e) この粗乾燥物に酢酸エチル8を10℃で加
え、60分間攪拌した後濾紙濾過を行い不溶物を
濾取した。乾燥後この不溶物をクロロホルム−
メタノール混合液(容量比2:1)14に接触
させ30分間攪拌し、ついで濾紙濾過を行い抽出
濾液13.7を得た。 (f) この抽出濾液を減圧乾固し、固形残渣17.5g
を得た。得られた固形残渣をクロロホルム−メ
タノール混合液(容量比2:1)120mlに溶解
し、これを同混合液で平衡化したセフアデツク
スLH−20カラム(直径15.5cm×88cm;カラム
ベツド体積16.6)に付した。このカラムを同
混合物を用いて流速1ml/分で溶出してゲル濾
過し、ボイドボリユーム画分860mlを採取した。
この画分の微量を用いて無菌試験を行つたとこ
ろ無菌であることが確認されたので以下の操作
は無菌条件下で行つた。 (g) 上述のボイドボリユーム画分を減圧乾固し、
これを無菌水に懸濁しついで凍結乾燥し、黄褐
色のリポ蛋白質粉末0.7g得た。分子量は
30000、比旋光度[α]23 Dは−79°であり、化学
組成はリン脂質分47.9%(W/W)、蛋白質分
44.8%(W/W)、水分5.0%(W/W)及び不
明組成分2.3%(W/W)であつた。 実施例 6 (a) 25人分の人羊水9.6を採集し、これをその
まま粗抽出液とした。 (b) この粗抽出液を14000r.p.m.で遠心分離し粗
沈澱物を得た。得られた粗沈澱物に生理食塩液
230mlを加えて懸濁したのち、4℃で1500r.p.
m.の回転速度で遠心分離し上層懸濁液を得た。
この上層懸濁液を12000r.p.m.で遠心分離し、
粗沈澱物を再採取した。 (c) この粗沈澱物を水50mlに懸濁し、これに塩化
ナトリウム14.3gを加えて液の比重を約1.20に
調整し、ついでこの調整液を8000r.p.m.で60分
間4℃で遠心分離し乳濁上薄部を分取した。 (d) この乳濁上薄部を蒸留水に懸濁し、蒸留水に
対してセロハン膜を用いて透析し、ついで得ら
れた透析内液を凍結乾燥して粗乾燥物2.3gを
得た。 (e) この粗乾燥物に酢酸エチル230mlを8℃で加
え、30分間攪拌した後濾紙濾過を行い不溶物を
濾取した。乾燥後この不溶物をクロロホルム−
メタノール混合液(容量比2:1)400mlに接
触させ30分間攪拌し、ついで濾紙濾過を行い抽
出濾液390mlを得た。 (f) この抽出濾液を減圧乾固し、固形残渣680mg
を得た。得られた固形残渣をクロロホルム−メ
タノール混合液(容量比3:1)4mlに溶解
し、これを同混合液で平衡化したセフアデツク
スLH−20カラム(直径2.48cm×90cm;カラム
ベツド体積435ml)に付した。このカラムを同
混合液を用いて流速0.2ml/分で溶出してゲル
濾過し、ボイドボリユーム画分24mlを採取し
た。この画分の微量を用いて無菌試験を行つた
ところ無菌であることが確認されたので以下の
操作は無菌条件下で行つた。 (g) 上述のボイドボリユーム画分を減圧乾固し、
これを無菌水に懸濁しついで凍結乾燥し、黄褐
色のリポ蛋白質粉末25mg得た。分子量は36000、
比旋光度[α]23 Dは−63°であり、化学組成はリ
ン脂質分66.3%(W/W)、蛋白質分28.9%
(W/W)、水分2.8%(W/W)及び不明組成
分2.0%(W/W)であつた。なお、本実施例
における水分の測定は微量水分測定法で行つ
た。
[Table] From the above Comparative Examples 1 to 4, by blending the lipoprotein of the present invention, an excellent effect of lowering the surface tension of the surf actant can be realized, a shortening of the diffusion time of the surf actant on the air-liquid surface, and a low equilibrium surface. It is clear that the lipoproteins of the present invention enable tension to be exerted and sufficient alveolar space capacity to be secured. Therefore, the lipoprotein of the present invention can be used to improve the air-liquid surface diffusion of surfactant and the alveolar inner surface during alveolar contraction. It is recognized that it is a component that plays an important role in reducing tension. The present invention will be further explained with examples. Example 1 (a) 128.3 kg of removed lung from a cow was washed with water to remove adhering blood, etc., and then it was cut into fist-sized chunks of meat and unnecessary blood vessels, trachea, etc. were removed using scissors. It was removed. This meat mass was shredded using a meat grinder to obtain 120.1 kg of lung pieces. The lung pieces and physiological saline 490 were mixed and stirred at 4°C for 100 minutes, and the resulting mixture was poured into a filter bag and filtered by compression to obtain a crude extract 470. (b) This crude extract was centrifuged at 10,000 rpm to collect a crude precipitate. 100% of the obtained crude precipitate
The tissue was resuspended in physiological saline and centrifuged at 2000 rpm for 10 minutes to remove remaining tissue pieces as a precipitate. The upper suspension was centrifuged again at 10,000 rpm, and the crude precipitate was collected again. (c) The crude precipitate thus obtained was suspended in 85 g of water, and 25.7 kg of sodium chloride was added to adjust the specific gravity of the liquid to about 1.20. Add this adjustment solution to 10,000 r.
Separate into three layers by centrifugation at 0 °C for 50 min at pm.
The upper thin part of the emulsion was collected. (d) This emulsified upper thin part was suspended in distilled water and dialyzed against distilled water using a cellophane membrane to obtain a dialysis solution. When this dialysis fluid was freeze-dried, it weighed 960 g.
A crude dry product was obtained. (e) Ethyl acetate cooled to 5°C to this crude dry product
was added, stirred for 45 minutes, and then filtered under reduced pressure to remove insoluble materials. After drying this insoluble material,
A chloroform-methanol mixture (volume ratio 2:1) 28 was added to this, and after stirring for 30 minutes, the mixture was filtered with a filter paper to obtain an extracted filtrate. The same mixture 28 was added to the filtration residue again, stirred for 30 minutes, and then filtered with filter paper.
A subsequent extraction filtrate was obtained. This operation was repeated once more to obtain a third extraction filtrate. The total amount of extracted filtrates was 82. (f) This extracted filtrate was dried under reduced pressure and weighed 160.4 g.
A solid residue was obtained. This solid residue was divided into six 25.0 g portions and the other operations were performed. First, 25.0 g of each solid residue was dissolved in 170 ml of a chloroform-methanol mixture (volume ratio 2:1).
Next, each of the obtained solutions was equilibrated with the same mixture separately into a Sephadex LH-20 column (diameter 15.5 cm x 90 cm; column bed volume 17.0).
The mixture was eluted with the same mixture at a flow rate of 5 ml/min and subjected to gel filtration, and void volume fractions were collected. The total volume of the void volume fraction obtained through the six operations was 6480 ml. A sterility test using a trace amount of this fraction confirmed that it was sterile, so the following operations were carried out under sterile conditions. (g) The void volume fraction was dried under reduced pressure, and then suspended in sterile water and freeze-dried to obtain 8.3 g of lipoprotein as a pale yellowish brown powder. The molecular weight is 34000, and the specific rotation [α] 23 D is −
It was 69°. In addition, the chemical composition is phospholipid content 62.1
% (W/W), protein content 31.3% (W/W), moisture
4.6% (W/W) and unknown composition 2.0% (W/W)
W) It was. Example 2 (a) 15 kg of removed cow lung was subjected to the same operation as described in step (a) of Example 1 to obtain 13.7 kg of lung fragments. This was added to physiological saline solution 68 and heated to 8℃ for 60 minutes.
After stirring for a minute, the resulting liquid was poured into a filter bag and filtered by compression to obtain a crude extract 61. (b) This crude extract was centrifuged at 12,000 rpm to collect a crude precipitate. Physiological saline 11 was added to the obtained crude precipitate and suspended, and then heated at 4°C for 1500 r.
It was centrifuged at a rotational speed of pm to remove remaining unnecessary tissue pieces as a precipitate. The upper suspension is
It was centrifuged at 12000 rpm and the crude precipitate was collected again. (c) This crude precipitate was suspended in 10 ml of water, 2.23 kg of sodium chloride was added thereto to adjust the specific gravity of the liquid to approximately 1.15, and the adjusted liquid was then centrifuged at 8000 rpm for 60 minutes at 10°C. The upper thin part of the emulsion was collected. (d) This emulsified upper thin part was suspended in distilled water and dialyzed against the distilled water using a cellophane membrane.The resulting dialyzed solution was then freeze-dried to obtain 79 g of a crude dry product. (e) Add acetone 8 to this crude dry product at 4°C,
After stirring for 60 minutes, filter paper filtration was performed to remove insoluble matter. After drying, this insoluble material was brought into contact with a chloroform-methanol mixture (volume ratio 2:1)14.
Stir for 40 minutes, then filter with filter paper to extract the extracted filtrate.
Got 13.8. (f) This extraction filtrate was dried under reduced pressure to obtain 20.5 g of solid residue.
I got it. The obtained solid residue was dissolved in 120 ml of a chloroform-methanol mixture (volume ratio 5:2) and applied to a Sephadex LH-20 column (diameter 15.5 cm x 88 cm; column bed volume 16.6) equilibrated with the same mixture. did. This column was eluted with the same mixture at a flow rate of 1 ml/min and subjected to gel filtration, and 915 ml of void volume fraction was collected.
When a sterility test was conducted using a trace amount of this fraction, it was confirmed that it was sterile, so the following steps were carried out under sterile conditions. (g) Dry the above void volume fraction under reduced pressure,
This was suspended in sterile water and freeze-dried to obtain 1.5 g of yellow-brown lipoprotein powder. The molecular weight is
34000, specific optical rotation [α] 23 D is -40°, and the chemical composition is 70.2% (W/W) phospholipid and protein.
23.4% (W/W), moisture 4.0% (W/W), and unknown composition 2.4% (W/W). Example 3 (a) 36 kg of isolated pig lung was subjected to the same operation as described in step (a) of Example 1 to obtain 33.5 kg of lung fragments. Add this to physiological saline solution 168 and heat at 10℃.
After stirring for 30 minutes, the resulting liquid was poured into a filter bag and filtered by compression to obtain crude extract 145. (b) This crude extract was centrifuged at 14000 rpm to obtain a crude precipitate. Physiological saline solution is added to the obtained crude precipitate.
20 and suspended at 1000r.pm at 4℃.
The sample was centrifuged at a rotational speed of 100 mL to remove remaining unnecessary tissue fragments as a precipitate. The upper suspension is
It was centrifuged at 13000 rpm and the crude precipitate was collected again. (c) This crude precipitate was suspended in water 26, and 5.8 kg of sodium chloride was added thereto to adjust the specific gravity of the liquid to approximately 1.15.Then, this adjusted liquid was centrifuged at 8000 rpm for 30 minutes at 4°C. The upper thin part of the emulsion was collected. (d) The emulsified upper thin part was suspended in distilled water and dialyzed against the distilled water using a cellophane membrane, and the resulting dialyzed solution was then freeze-dried to obtain 163 g of a crude dry product. (e) Add acetone 15 to this crude dry product at 6℃,
After stirring for 30 minutes, filter paper filtration was performed to remove insoluble matter. After drying, this insoluble material was brought into contact with a chloroform-methanol mixture (volume ratio 2:1)23.
Stir for 20 minutes, then filter with filter paper to extract the extracted filtrate.
Got 22. (f) This extracted filtrate was dried under reduced pressure to obtain 46.2 g of solid residue.
I got it. 20.0 g of the obtained solid residue was added to 120 ml of a chloroform-methanol mixture (volume ratio 3:1).
Sephadex LH-20 column (diameter 15.5cm x 88cm;
The column bed volume was 16.6). This column was eluted with the same mixture at a flow rate of 3 ml/min and subjected to gel filtration, and a void volume fraction of 910 ml was collected. A sterility test using a trace amount of this fraction confirmed that it was sterile, so the following operations were performed under sterile conditions. (g) Dry the above void volume fraction under reduced pressure,
This was suspended in sterile water and freeze-dried to obtain 1.1 g of yellow-brown lipoprotein powder. The molecular weight is
32000, the specific optical rotation [α] 23 D is -51°, and the chemical composition is 69.2% (W/W) phospholipid and protein.
26.4% (W/W), moisture 3.0% (W/W), and unknown composition 1.4% (W/W). Example 4 (a) 15 kg of excised horse lung was subjected to the same operation as described in step (a) of Example 1 to obtain 13.1 kg of lung fragments. This was added to physiological saline solution 65°C and heated to 4°C for 30°C.
After stirring for a minute, the resulting liquid was poured into a filter bag and filtered by compression to obtain a crude extract 56. (b) This crude extract was centrifuged at 13000 rpm to obtain a crude precipitate. Physiological saline solution 9 was added to the obtained crude precipitate and suspended, and then heated at 1500 rpm at 4°C.
The sample was centrifuged at a rotational speed of 100 mL to remove remaining unnecessary tissue fragments as a precipitate. The upper suspension is
It was centrifuged at 10,000 rpm and the crude precipitate was collected again. (c) This crude precipitate was suspended in 10 g of water, and 2.86 kg of sodium chloride was added to adjust the specific gravity of the liquid to approximately 1.20.Then, this adjusted liquid was centrifuged at 8000 rpm for 60 minutes at 4°C. The upper thin part of the emulsion was dispersed. (d) This emulsified upper thin part was suspended in distilled water and dialyzed against the distilled water using a cellophane membrane.The resulting dialyzed solution was then freeze-dried to obtain 76 g of a crude dry product. (e) Ethyl acetate 8 was added to this crude dry product at 10°C, stirred for 60 minutes, and then filtered with a filter paper to remove insoluble matter. After drying, remove the insoluble matter with chloroform.
The mixture was brought into contact with a methanol mixture (volume ratio 2:1) 14 and stirred for 20 minutes, and then filtered with a filter paper to obtain an extracted filtrate 13.1. (f) This extraction filtrate was dried under reduced pressure to obtain 18.1 g of solid residue.
I got it. The obtained solid residue was dissolved in 120 ml of a chloroform-methanol mixture (volume ratio 2:1) and applied to a Sephadex LH-20 column (diameter 15.5 cm x 88 cm; column bed volume 16.6) equilibrated with the same mixture. did. This column was eluted with the same mixture at a flow rate of 1 ml/min and subjected to gel filtration, and 880 ml of void volume fraction was collected.
When a sterility test was conducted using a trace amount of this fraction, it was confirmed that it was sterile, so the following steps were carried out under sterile conditions. (g) Dry the above void volume fraction under reduced pressure,
This was suspended in sterile water and freeze-dried to obtain 0.8 g of yellow-brown lipoprotein powder. The molecular weight is
38000, specific optical rotation [α] 23 D is -85°, and the chemical composition is phospholipid content 48.5% (W/W), protein content
48.0% (W/W), moisture 1.8% (W/W), and unknown composition 1.7% (W/W). Example 5 (a) 15 kg of removed sheep lung was subjected to the same operation as described in step (a) of Example 1 to obtain 13.4 kg of lung fragments. Add this to 70% physiological saline solution and store at 4°C for 60%
After stirring for a minute, the resulting liquid was poured into a filter bag and filtered by compression to obtain a crude extract 65. (b) This crude extract was centrifuged at 14000 rpm to obtain a crude precipitate. Physiological saline solution 9 was added to the obtained crude precipitate to suspend it, and then the mixture was heated at 1000 rpm at 4°C.
The sample was centrifuged at a rotational speed of 100 mL to remove remaining unnecessary tissue fragments as a precipitate. The upper suspension is
It was centrifuged at 10,000 rpm and the crude precipitate was collected again. (c) This crude precipitate was suspended in 10 g of water, and 2.86 kg of sodium chloride was added to adjust the specific gravity of the liquid to approximately 1.20.Then, this adjusted liquid was centrifuged at 8000 rpm for 60 minutes at 4°C. The upper thin part of the emulsion was collected. (d) This emulsified upper thin part was suspended in distilled water and dialyzed against the distilled water using a cellophane membrane.The resulting dialyzed solution was then freeze-dried to obtain 71 g of a crude dry product. (e) Ethyl acetate 8 was added to this crude dry product at 10°C, stirred for 60 minutes, and then filtered with a filter paper to remove insoluble matter. After drying, remove the insoluble matter with chloroform.
It was brought into contact with a methanol mixture (volume ratio 2:1) 14 and stirred for 30 minutes, and then filtered with a filter paper to obtain an extracted filtrate 13.7. (f) This extracted filtrate was dried under reduced pressure to obtain 17.5 g of solid residue.
I got it. The obtained solid residue was dissolved in 120 ml of a chloroform-methanol mixture (volume ratio 2:1) and applied to a Sephadex LH-20 column (diameter 15.5 cm x 88 cm; column bed volume 16.6) equilibrated with the same mixture. did. This column was eluted with the same mixture at a flow rate of 1 ml/min and subjected to gel filtration, and 860 ml of void volume fraction was collected.
A sterility test using a trace amount of this fraction confirmed that it was sterile, so the following operations were performed under sterile conditions. (g) Dry the above void volume fraction under reduced pressure,
This was suspended in sterile water and freeze-dried to obtain 0.7 g of yellow-brown lipoprotein powder. The molecular weight is
30000, specific optical rotation [α] 23 D is -79°, and the chemical composition is phospholipid content 47.9% (W/W), protein content
44.8% (W/W), moisture 5.0% (W/W), and unknown composition 2.3% (W/W). Example 6 (a) 9.6 ml of human amniotic fluid from 25 people was collected and used as a crude extract. (b) This crude extract was centrifuged at 14000 rpm to obtain a crude precipitate. Physiological saline solution is added to the obtained crude precipitate.
After adding 230 ml and suspending, incubate at 1500 r.p. at 4°C.
Centrifugation was performed at a rotational speed of m. to obtain an upper layer suspension.
This upper layer suspension was centrifuged at 12000rpm,
The crude precipitate was re-collected. (c) This crude precipitate was suspended in 50 ml of water, 14.3 g of sodium chloride was added thereto to adjust the specific gravity of the liquid to approximately 1.20, and the adjusted liquid was then centrifuged at 8000 rpm for 60 minutes at 4°C. The upper thin part of the emulsion was collected. (d) This emulsified upper thin part was suspended in distilled water and dialyzed against the distilled water using a cellophane membrane.The resulting dialyzed solution was then freeze-dried to obtain 2.3 g of a crude dry product. (e) 230 ml of ethyl acetate was added to this crude dry product at 8°C, stirred for 30 minutes, and then filtered with a filter paper to remove insoluble matter. After drying, remove the insoluble matter with chloroform.
The mixture was brought into contact with 400 ml of a methanol mixture (volume ratio 2:1) and stirred for 30 minutes, and then filtered through a filter paper to obtain 390 ml of an extracted filtrate. (f) The extracted filtrate was dried under reduced pressure to obtain a solid residue of 680 mg.
I got it. The obtained solid residue was dissolved in 4 ml of a chloroform-methanol mixture (volume ratio 3:1) and applied to a Sephadex LH-20 column (diameter 2.48 cm x 90 cm; column bed volume 435 ml) equilibrated with the same mixture. did. This column was eluted with the same mixture at a flow rate of 0.2 ml/min and subjected to gel filtration, and 24 ml of void volume fraction was collected. A sterility test using a trace amount of this fraction confirmed that it was sterile, so the following operations were performed under sterile conditions. (g) Dry the above void volume fraction under reduced pressure,
This was suspended in sterile water and freeze-dried to obtain 25 mg of yellow-brown lipoprotein powder. Molecular weight is 36000,
The specific optical rotation [α] 23 D is −63°, and the chemical composition is 66.3% phospholipid (W/W) and 28.9% protein.
(W/W), moisture content was 2.8% (W/W), and unknown composition was 2.0% (W/W). Note that the moisture content in this example was measured by a trace moisture measurement method.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明リポ蛋白質のKBr錠法による赤
外線吸収スペクトルを示し、図2は該リポ蛋白質
1.37mgを1%ドデシル硫酸ナトリウム水溶液10ml
に溶解して得られた溶液を用いて測定した紫外線
吸収スペクトルを示す。
Figure 1 shows the infrared absorption spectrum of the lipoprotein of the present invention by the KBr tablet method, and Figure 2 shows the infrared absorption spectrum of the lipoprotein of the present invention.
1.37 mg in 10 ml of 1% sodium dodecyl sulfate aqueous solution
The figure shows an ultraviolet absorption spectrum measured using a solution obtained by dissolving .

Claims (1)

【特許請求の範囲】 1 哺乳動物の肺臓又は人羊水から得られるリポ
蛋白質であつて、総重量に対する組成比が、リン
脂質分は47.9〜70.2%(W/W)、蛋白質分は23.4
〜48.0%(W/W)、水分は1.8〜5.0%(W/W)
及び不明組成分は1.4〜2.4%(W/W)であり、
分子量が30000〜38000であることを特徴とするリ
ポ蛋白質。 2 (a)哺乳動物の肺臓細片の生理食塩液に接触さ
せるか又は人羊水を採集し、粗抽出液を得る工
程、(b)該粗抽出液を遠心分離し粗沈澱物を得る工
程、(c)該粗沈澱物の水性懸濁液に塩化ナトリウム
を添加して比重を調整し、得られた調整液を遠心
分離して乳濁上薄部を分取する工程、(d)該乳濁上
薄部の水性懸濁液を透析して透析内液を得、つい
でこれを凍結乾燥して粗乾燥物を得る工程、(e)該
粗乾燥物を酢酸エチル又はアセトンに接触させて
不溶物を採取し、この不溶物をクロロホルム−メ
タノール混合液に接触させ、抽出液を採取する工
程、(f)該抽出液からデキストランゲルを用いたゲ
ル濾過により、ボイドボリユーム画分を採取する
工程及び(g)該ボイドボリユーム画分を減圧乾固
し、得られた固形残渣の水性懸濁液を凍結乾燥す
る工程からなることを特徴とするリポ蛋白質の製
造法。
[Scope of Claims] 1. A lipoprotein obtained from mammalian lungs or human amniotic fluid, with a composition ratio of phospholipid content of 47.9 to 70.2% (W/W) and protein content of 23.4% to the total weight.
~48.0% (W/W), moisture 1.8~5.0% (W/W)
and unknown composition is 1.4 to 2.4% (W/W),
A lipoprotein characterized by a molecular weight of 30,000 to 38,000. 2 (a) a step of contacting mammalian lung fragments with a physiological saline solution or collecting human amniotic fluid to obtain a crude extract; (b) a step of centrifuging the crude extract to obtain a crude precipitate; (c) adding sodium chloride to the aqueous suspension of the crude precipitate to adjust the specific gravity, centrifuging the resulting adjusted solution to separate the emulsified upper thin part; (d) the milk A step of dialyzing the aqueous suspension of the upper thin part to obtain a dialysis solution, and then freeze-drying this to obtain a crude dry product, (e) bringing the crude dry product into contact with ethyl acetate or acetone to make it insoluble. (f) collecting a void volume fraction from the extract by gel filtration using a dextran gel; (g) A method for producing lipoproteins, which comprises the steps of drying the void volume fraction under reduced pressure and freeze-drying an aqueous suspension of the obtained solid residue.
JP62155390A 1987-06-24 1987-06-24 Lipoprotein and production thereof Granted JPS6361000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62155390A JPS6361000A (en) 1987-06-24 1987-06-24 Lipoprotein and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62155390A JPS6361000A (en) 1987-06-24 1987-06-24 Lipoprotein and production thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58038189A Division JPS59164724A (en) 1983-03-10 1983-03-10 Surfactant and remedy for respiratory distress syndrome containing the same

Publications (2)

Publication Number Publication Date
JPS6361000A JPS6361000A (en) 1988-03-17
JPH0530840B2 true JPH0530840B2 (en) 1993-05-11

Family

ID=15604906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62155390A Granted JPS6361000A (en) 1987-06-24 1987-06-24 Lipoprotein and production thereof

Country Status (1)

Country Link
JP (1) JPS6361000A (en)

Also Published As

Publication number Publication date
JPS6361000A (en) 1988-03-17

Similar Documents

Publication Publication Date Title
US4603124A (en) Surfactant and pharmaceutical compositions containing same
AU619462B2 (en) Natural pulmonary surfactant, method of preparation and pharmaceutical compositions
US4338301A (en) Lung tissue extract useful for treating hyaline-membrane disease and method for producing the extract
US4397839A (en) Surface active material and process for preparing same
US4323563A (en) Fat emulsion for intravenous injection
EP0689579B1 (en) Method for extracting sphingomyelin
EP0145005B1 (en) Pulmonary surfactant, process for its preparation and its pharmaceutical use
DE68903209T2 (en) METHOD FOR SEPARATING GLYCOLIPIDES FROM A LIPID MIXTURE AND USE OF THE FRACTIONS OBTAINED.
JP3103582B2 (en) Low viscosity, high concentration surfactant suspension
JPH0530840B2 (en)
JP3376582B2 (en) Synthetic peptide, pulmonary surfactant containing the same and therapeutic agent for respiratory distress syndrome
Schroeder Phospholipid polar head group manipulation modulates concanavalin A agglutinability of LM fibroblasts
DE19729641C2 (en) Antihemolytic liposomal preparation and process for the manufacture thereof
RU2066189C1 (en) Method of preparing lipid complex and complex of amino acids and peptides
JP2024524512A (en) Method for preparing pulmonary surfactant
RU2066198C1 (en) Method of pulmonary surfactant preparing
JPS60237023A (en) Drug for treating breathing difficulty syndrome derived fromsurfactant defect and manufacture
RU1767743C (en) Method of reagent preparing for determination of activated partial thromboplastin time
JPS58183620A (en) Substance activating lung surface and its preparation
DD225840C2 (en) METHOD FOR THE PRODUCTION OF A MEANS FOR TREATING DISORDERS WHICH COME WITH CHANGES IN THE PULMONARY SURFACTANT SYSTEM