JPH05307719A - Magnetic domain observation and magnetization measuring instrument - Google Patents

Magnetic domain observation and magnetization measuring instrument

Info

Publication number
JPH05307719A
JPH05307719A JP10947192A JP10947192A JPH05307719A JP H05307719 A JPH05307719 A JP H05307719A JP 10947192 A JP10947192 A JP 10947192A JP 10947192 A JP10947192 A JP 10947192A JP H05307719 A JPH05307719 A JP H05307719A
Authority
JP
Japan
Prior art keywords
light
magnetic domain
magnetization
lens
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10947192A
Other languages
Japanese (ja)
Inventor
Tatsuo Mifune
達雄 三舩
Yuji Komata
雄二 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10947192A priority Critical patent/JPH05307719A/en
Publication of JPH05307719A publication Critical patent/JPH05307719A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain the instrument capable of performing two different kinds of measurement as magnetic domain observation and magnetization measurement in a short time by utilizing the Kerr effect. CONSTITUTION:This is a microscopic device for detecting a magnetic domain pattern of a magnetic substance as to be light and shade corresponding to the size of magnetization and a difference in its direction by the longitudinal Kerr effect with polarized light. The device is equipped with a CCD camera 2 and a light oscilloscope 4 as detectors, and is also equipped with a rotatable mirror 1 between the CCD camera 2 and a head 3 of the light oscilloscope, where by making the light to be detected by changing the angle of the mirror 1 incident upon either the CCD camera 2 or the head 3 of the light oscilloscope, the magnetic domain observation and magnetization measurement is carried out in a short changeover time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気ヘッドの磁性膜の磁
区観察および磁化測定に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to magnetic domain observation and magnetization measurement of a magnetic film of a magnetic head.

【0002】[0002]

【従来の技術】カー効果を利用して磁性体試料の磁区の
観察を行う装置には次のような装置がある。光源からの
光を直線偏光にした後、磁性体表面で3μm程度のスポ
ットになるように集光して照射する。反射光のカー効果
による偏光面の回転角は、入射光を磁性体試料の表面へ
投影した時の方向に対する磁性体の磁化ベクトルの平行
な方向の成分に比例して大きくなる。この反射光のうち
カー効果によって偏光面が回転した光だけが検光子を通
過するようにして、この通過した光を検知する。磁性体
試料を移動させながら1点1点の磁化の測定を行って、
個々の磁化の値をもとに磁区パターンの画像を組み立て
る。以後この方式をスキャニング法と呼ぶ。また、光源
からの光を一括して磁性体試料の全面に照射し、磁性体
試料の磁区パターンの画像を1度で得る方式があり、以
後この方式を一括照射法と呼ぶ。
2. Description of the Related Art There are the following devices for observing the magnetic domains of a magnetic material sample by utilizing the Kerr effect. After the light from the light source is linearly polarized, it is condensed and irradiated so as to form a spot of about 3 μm on the surface of the magnetic material. The rotation angle of the plane of polarization due to the Kerr effect of the reflected light increases in proportion to the component in the direction parallel to the magnetization vector of the magnetic material with respect to the direction when the incident light is projected onto the surface of the magnetic material sample. Of the reflected light, only the light whose polarization plane is rotated by the Kerr effect is passed through the analyzer, and the passed light is detected. While moving the magnetic sample, measure the magnetization of each point,
An image of the magnetic domain pattern is assembled based on the individual magnetization values. Hereinafter, this method is called a scanning method. Further, there is a method of collectively irradiating the entire surface of the magnetic material sample with light from a light source to obtain an image of the magnetic domain pattern of the magnetic material sample at one time, and this method is hereinafter referred to as a collective irradiation method.

【0003】従来のスキャニング法では磁性体試料の磁
区パターンの画像を得ることと微小領域の磁化の測定が
できるが、1点1点の磁化測定から磁区パターンの画像
を組み立てるために、画像を得るのに長時間を要する。
このため迅速な測定を行うことができない。
With the conventional scanning method, an image of a magnetic domain pattern of a magnetic material sample can be obtained and the magnetization of a minute region can be measured. However, an image is obtained in order to assemble an image of the magnetic domain pattern from the magnetization measurement of each point. It takes a long time.
Therefore, quick measurement cannot be performed.

【0004】従来の一括照射法では磁性体試料の全面に
光を照射する原理であるために微小領域での磁化の測定
を行うことができない。
In the conventional collective irradiation method, it is impossible to measure the magnetization in a minute region because of the principle of irradiating the entire surface of the magnetic material sample with light.

【0005】磁性体試料の磁区パターンの画像を得るこ
とや微小領域の磁化測定は両者とも磁性体を評価する上
で重要な情報である。また両者の結果の相関を取るため
には同一の光源、同一の偏光子、同一の検光子を用いた
測定を行うことが望ましく、同一の装置で最小限の変更
するだけで両者の測定が可能であり、かつ短時間で両者
の測定が行える装置が望まれていた。
Obtaining an image of the magnetic domain pattern of the magnetic material sample and measuring the magnetization of a minute area are both important information for evaluating the magnetic material. In order to correlate the results of both, it is desirable to perform measurements using the same light source, the same polarizer, and the same analyzer, and both measurements can be performed with the same device with minimal changes. Therefore, an apparatus that can measure both of them in a short time has been desired.

【0006】[0006]

【発明が解決しようとする課題】前述したようにカー効
果を利用した磁性体の磁区観察および微小領域の磁化測
定は、両者の結果の相関をとるために同一の光源、対物
レンズ、偏光子、検光子を用いて行うことが必要であ
る。また実験時間の短縮のためには測定そのものに要す
る時間を短時間にすることが必要であり、磁区観察の場
合ではこの点では一括照射法が優れている。これらのこ
とから、一括照射法で磁区観察が行うことができ、かつ
短時間の切り替え時間で微小領域の磁化測定を行うこと
ができることが必要である。よって、これらの機能を持
った装置構成である装置が要求される。
As described above, in observing the magnetic domain of the magnetic substance and measuring the magnetization of the minute region using the Kerr effect, the same light source, objective lens, polarizer, It is necessary to use an analyzer. Further, in order to shorten the experiment time, it is necessary to shorten the time required for the measurement itself, and in the case of magnetic domain observation, the collective irradiation method is superior in this respect. For these reasons, it is necessary that the magnetic domain observation can be performed by the collective irradiation method, and the magnetization measurement of a minute region can be performed in a short switching time. Therefore, a device having a device configuration having these functions is required.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明の装置では光源と対物レンズの間に設置された
光源からの光を集光するレンズを焦点距離の異なるもの
に機械的に交換し、かつこの設置位置を機械的に移動さ
せることにより、対物レンズに入射する光の径および立
体角を変化させ、結果として他の光学部品を変更するこ
となく磁性体試料表面での照射面積が直径数μm〜数1
00μmぐらいまで変化できるようにした。さらに画像
検知器と光強度検知器の間であり、かつ検光子を通過し
た光が通る位置に全反射ミラーを回転可能なように設置
した。
In order to achieve the above object, in the apparatus of the present invention, a lens for collecting light from a light source installed between a light source and an objective lens is mechanically changed to one having a different focal length. By exchanging and mechanically moving this installation position, the diameter and solid angle of the light incident on the objective lens are changed, and as a result, the irradiation area on the surface of the magnetic sample without changing other optical parts. Has a diameter of several μm to 1
We made it possible to change to about 00 μm. Further, a total reflection mirror is rotatably installed between the image detector and the light intensity detector and at a position where the light passing through the analyzer passes.

【0008】この全反射ミラー回転させることにより、
画像検知器の受光部か光強度検知器の受光部のいずれか
一方に検光子を通過した光を入射できるようにした。ま
た、ミラーの代わりにプリズムを用いることも考えられ
るが基本的に同様な手段である。このようにして磁性体
の磁区観察と微小領域の磁化測定を同一の光源、偏光
子、対物レンズ、検光子を用いて短い切り替え時間で行
うことができるようにした。
By rotating this total reflection mirror,
The light passing through the analyzer is allowed to enter either the light receiving portion of the image detector or the light receiving portion of the light intensity detector. Although it is conceivable to use a prism instead of the mirror, it is basically the same means. In this way, the observation of the magnetic domain of the magnetic substance and the measurement of the magnetization of the microscopic region can be performed using the same light source, polarizer, objective lens and analyzer in a short switching time.

【0009】[0009]

【作用】本発明では上記構成により、磁性体の磁区観察
と微小領域の磁化測定という2つの異なる測定を非常に
短い切り替え時間で行うことができる。光源からの光を
集光するレンズを焦点距離の異なるものに変更し、かつ
その取り付け位置を移動し、かつ画像検知器と光強度検
知器の間に設置してある全反射ミラーを回転するだけで
切り替えが可能となる。半導体レーザー光源、偏光子、
対物レンズ、検光子の位置を変化する必要がないため
に、光学部品の位置調整が光源からの光を集光するレン
ズに関する調整と画像検知器と光強度検知器の間に設置
してある全反射ミラーの角度調整だけで済むようになっ
たため非常に短時間での切り替えが可能となった。
In the present invention, with the above configuration, it is possible to perform two different measurements, that is, observation of magnetic domains of a magnetic material and measurement of magnetization of a minute area, in a very short switching time. Simply change the lens that collects the light from the light source to one with a different focal length, move the mounting position, and rotate the total reflection mirror installed between the image detector and the light intensity detector. You can switch with. Semiconductor laser light source, polarizer,
Since it is not necessary to change the positions of the objective lens and the analyzer, the position adjustment of the optical parts is done by adjusting the lens that collects the light from the light source and installing all the components between the image detector and the light intensity detector. Since it is only necessary to adjust the angle of the reflection mirror, it is possible to switch in a very short time.

【0010】[0010]

【実施例】以下、具体例について詳細に述べる。(図
1)は本発明の磁区観察および磁化測定装置の検知部の
拡大図である。(図1)について説明する。検知部は全
反射ミラー1、CCDカメラ2、光オシロスコープのヘ
ッド3、光オシロスコープ4によって構成されている。
検知部に入ってきた光を全反射ミラー1の方向を変える
ことによってCCDカメラ2の受光部に照射したり、光
オシロスコープのヘッド3の受光部に照射することがで
きる。磁区観察を行う場合にはCCDカメラ2に、磁化
測定を行う場合には光オシロスコープのヘッド3の受光
部に光が照射されるようにする。光オシロスコープのヘ
ッド3の受光部に照射された光は高速で光電変換処理さ
れ、電気信号となって光オシロスコープ4に送られる。
EXAMPLES Specific examples will be described in detail below. FIG. 1 is an enlarged view of a detection unit of the magnetic domain observation and magnetization measurement device of the present invention. (FIG. 1) will be described. The detection unit includes a total reflection mirror 1, a CCD camera 2, an optical oscilloscope head 3, and an optical oscilloscope 4.
By changing the direction of the total reflection mirror 1, it is possible to irradiate the light entering the detector to the light receiving portion of the CCD camera 2 or the light receiving portion of the head 3 of the optical oscilloscope. The CCD camera 2 is irradiated with light when observing the magnetic domains, and the light receiving portion of the head 3 of the optical oscilloscope is irradiated with light when the magnetization is measured. The light applied to the light receiving portion of the head 3 of the optical oscilloscope is subjected to photoelectric conversion processing at high speed and is sent to the optical oscilloscope 4 as an electric signal.

【0011】(図2)は本発明の磁区観察および磁化測
定装置である。(図2)について説明する。半導体レー
ザー光源5は光源駆動装置6によって駆動されて発光す
る。半導体レーザー光源5からの光はレンズ7によって
視野絞り8の位置に集光される。このときの光のスポッ
ト径は視野絞り8の大きさよりも小さく、光が視野絞り
8に接触することはない。視野絞り8の位置に集光され
た光は偏光子9を通過することによって直線偏光にな
り、対物レンズ10のエッジを通過して薄膜磁気ヘッド
11の磁性膜に照射される。
FIG. 2 shows a magnetic domain observation and magnetization measuring device according to the present invention. (FIG. 2) will be described. The semiconductor laser light source 5 is driven by the light source driving device 6 to emit light. The light from the semiconductor laser light source 5 is condensed by the lens 7 at the position of the field stop 8. The spot diameter of the light at this time is smaller than the size of the field stop 8, and the light does not contact the field stop 8. The light condensed at the position of the field stop 8 becomes linearly polarized light by passing through the polarizer 9, passes through the edge of the objective lens 10, and is applied to the magnetic film of the thin film magnetic head 11.

【0012】薄膜磁気ヘッド11はコイルにヘッド駆動
装置12から電流を印加することによって磁性膜が励磁
される。薄膜磁気ヘッド11の磁性膜からの反射光のう
ち、カー効果によって偏光面が回転した光だけが通過す
るように検光子13の位置をあらかじめ偏光子9に対し
てクロスニコルの位置関係にしておき、カー効果によっ
て偏光面が回転した光だけを通過させる。検光子13を
通過した光は、リレーレンズ14を通過して検知部15
によって検知される。検知部15においてCCDカメラ
2の受光部と光オシロスコープのヘッド3の受光部はど
ちらもリレーレンズ14の焦点の位置になるように設置
してある。
In the thin film magnetic head 11, the magnetic film is excited by applying a current to the coil from the head driving device 12. Of the reflected light from the magnetic film of the thin-film magnetic head 11, the position of the analyzer 13 is set in advance in a crossed Nicol positional relationship with respect to the polarizer 9 so that only the light whose polarization plane is rotated by the Kerr effect passes through. , Only the light whose polarization plane is rotated by the Kerr effect is transmitted. The light passing through the analyzer 13 passes through the relay lens 14 and the detecting portion 15
Detected by. In the detection unit 15, both the light receiving unit of the CCD camera 2 and the light receiving unit of the head 3 of the optical oscilloscope are installed so as to be at the focal point of the relay lens 14.

【0013】(図3)は(図2)のレンズ7付近の拡大
図である。(図3)においてレンズ7はレンズホルダー
16によって固定されている。レンズホルダー16はレ
ール17に沿って移動可能である。レール17は光18
の行路に対して平行に取り付けてある。
FIG. 3 is an enlarged view of the vicinity of the lens 7 shown in FIG. In FIG. 3, the lens 7 is fixed by the lens holder 16. The lens holder 16 is movable along the rail 17. Rail 17 light 18
It is mounted parallel to the path of.

【0014】(図2)においてレンズ7の取り付け位置
は、どの焦点距離のレンズの場合でも、焦点位置が常に
視野絞り8の位置と一致するようにする。レンズ7の取
り付け位置および焦点距離を変化することによって薄膜
磁気ヘッド11の磁性膜に照射する光のスポット径を直
径数μmから数百μmまで変化することができる。この
スポット径は半導体レーザー光源5のビーム径、レンズ
7の焦点距離、レンズ7と対物レンズ10の距離によっ
て決定される。半導体レーザー光源5のビーム径および
レンズ7と対物レンズ10の距離が一定の場合、レンズ
7の焦点距離が短ければ薄膜磁気ヘッド11の磁性膜で
のスポット径が大きくなり、焦点距離が長ければスポッ
ト径が小さくなる。
In FIG. 2, the mounting position of the lens 7 is such that the focal position always matches the position of the field stop 8 regardless of the focal length of the lens. By changing the mounting position of the lens 7 and the focal length, the spot diameter of the light with which the magnetic film of the thin film magnetic head 11 is irradiated can be changed from several μm to several hundred μm in diameter. This spot diameter is determined by the beam diameter of the semiconductor laser light source 5, the focal length of the lens 7, and the distance between the lens 7 and the objective lens 10. When the beam diameter of the semiconductor laser light source 5 and the distance between the lens 7 and the objective lens 10 are constant, if the focal length of the lens 7 is short, the spot diameter on the magnetic film of the thin film magnetic head 11 is large, and if the focal length is long, the spot is large. The diameter becomes smaller.

【0015】[0015]

【発明の効果】本発明の実施例の磁区観察および磁化測
定装置を用いることにより、磁区観察および磁化測定と
いう2種類の異なる測定を短い切り替え時間で、かつ短
い測定時間で行うことができるようになった。
By using the magnetic domain observation and magnetization measurement apparatus of the embodiment of the present invention, it is possible to perform two different types of measurement, magnetic domain observation and magnetization measurement, with a short switching time and a short measurement time. became.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における磁区観察および磁化測
定装置の検知部の拡大図
FIG. 1 is an enlarged view of a detection unit of a magnetic domain observation and magnetization measurement device according to an embodiment of the present invention.

【図2】本発明の実施例における磁区観察および磁化測
定装置の構成図
FIG. 2 is a configuration diagram of a magnetic domain observation and magnetization measurement device according to an embodiment of the present invention.

【図3】本発明の実施例におけるレンズ固定部分の拡大
FIG. 3 is an enlarged view of a lens fixing portion in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ミラー 2 CCDカメラ 3 光オシロスコープのヘッド 4 光オシロスコープ 5 半導体レーザー光源 6 光源駆動装置 7 レンズ 8 視野絞り 9 偏光子 10 対物レンズ 11 薄膜磁気ヘッド 12 ヘッド駆動装置 13 検光子 14 リレーレンズ 15 検知部 16 レンズホルダー 17 レール 18 光 1 Mirror 2 CCD Camera 3 Optical Oscilloscope Head 4 Optical Oscilloscope 5 Semiconductor Laser Light Source 6 Light Source Driving Device 7 Lens 8 Field Stop 9 Polarizer 10 Objective Lens 11 Thin Film Magnetic Head 12 Head Driving Device 13 Analyzer 14 Relay Lens 15 Detecting Unit 16 Lens holder 17 Rail 18 Light

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】磁性体の磁区パターンを偏光した光による
縦カー効果によって磁化の大きさおよび方向の差に対応
した光の濃淡として検知する顕微鏡装置であり、検知器
として画像検知器および光強度検知器を具備し、かつ画
像検知器と光強度検知器の間にミラーが設置してあり、
このミラーの角度を変化することによって検知する光を
画像検知器もしくは光強度検知器のいずれか一方に入射
することの可能な機能を有し、かつ前記顕微鏡装置の構
成部品であるレンズの設置位置を機械的に移動する機能
を有し、かつ前記レンズを焦点距離の異なるものに機械
的に交換可能であることを特徴とする磁区観察および磁
化測定装置。
1. A microscope apparatus for detecting a light and shade of light corresponding to a difference in magnitude and direction of magnetization by a longitudinal Kerr effect by polarized light of a magnetic domain pattern of a magnetic material, and an image detector and a light intensity as a detector. It has a detector, and a mirror is installed between the image detector and the light intensity detector,
The installation position of the lens, which has a function of allowing the light detected by changing the angle of the mirror to enter either the image detector or the light intensity detector, and which is a component of the microscope apparatus. A magnetic domain observation and magnetization measurement device having a function of mechanically moving the lens and mechanically exchanging the lens with a lens having a different focal length.
【請求項2】画像検知器と光強度検知器の間に設置して
あるプリズムの角度を変化することにより検知する光を
画像検知器もしくは光強度検知器のいずれか一方に入射
することの可能な機能を有することを特徴とする請求項
1記載の磁区観察および磁化測定装置。
2. The light to be detected can be made incident on either the image detector or the light intensity detector by changing the angle of a prism installed between the image detector and the light intensity detector. The magnetic domain observation and magnetization measurement device according to claim 1, which has various functions.
JP10947192A 1992-04-28 1992-04-28 Magnetic domain observation and magnetization measuring instrument Pending JPH05307719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10947192A JPH05307719A (en) 1992-04-28 1992-04-28 Magnetic domain observation and magnetization measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10947192A JPH05307719A (en) 1992-04-28 1992-04-28 Magnetic domain observation and magnetization measuring instrument

Publications (1)

Publication Number Publication Date
JPH05307719A true JPH05307719A (en) 1993-11-19

Family

ID=14511081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10947192A Pending JPH05307719A (en) 1992-04-28 1992-04-28 Magnetic domain observation and magnetization measuring instrument

Country Status (1)

Country Link
JP (1) JPH05307719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035685A1 (en) * 2006-09-19 2008-03-27 Olympus Medical Systems Corporation Polarization measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035685A1 (en) * 2006-09-19 2008-03-27 Olympus Medical Systems Corporation Polarization measuring device
JPWO2008035685A1 (en) * 2006-09-19 2010-01-28 オリンパスメディカルシステムズ株式会社 Polarimeter
JP5011302B2 (en) * 2006-09-19 2012-08-29 オリンパスメディカルシステムズ株式会社 Polarimeter

Similar Documents

Publication Publication Date Title
US5159412A (en) Optical measurement device with enhanced sensitivity
US20080013076A1 (en) Surface Inspection Method and Surface Inspection Apparatus
CN110702614B (en) Ellipsometer device and detection method thereof
US11852592B2 (en) Time domain multiplexed defect scanner
JP3934051B2 (en) Measurement of surface defects
JPS6352032A (en) Device for lighting transparent material element in order to test mismatching and occlusion of surface
JP2006300708A (en) Near field polarization measuring instrument
JPH05307719A (en) Magnetic domain observation and magnetization measuring instrument
JPH07128595A (en) Method and device for imaging minute line-width structure byusing optical microscope
US20020191179A1 (en) Measurement of surface defects
JPH05332934A (en) Spectroscope
JP3920218B2 (en) Surface inspection device
JPH05203431A (en) Surface shape measuring instrument
JP3605010B2 (en) Surface texture measuring instrument
JP2000035363A (en) Detecting apparatus for optical characteristic
JPH06308211A (en) Magnetization measuring device
JPH06281432A (en) Fine angle adjusting device
JP2605042B2 (en) Magnetic defect inspection device
JPH0436642A (en) Raman spectrophotometer
CN114577729A (en) Second harmonic characterization optical system and detection device based on second harmonic characterization
JPH02138887A (en) Observing apparatus
CN112204377A (en) Theta-theta sample positioning stage employing sample mapping using reflectometer, spectrophotometer, or ellipsometer systems
JPH085319A (en) Alignment apparatus
JPH06176328A (en) Measurement instrument using magneto-optical effect
JPH0674866A (en) Infrared ray mtf measuring device