JPH0530768B2 - - Google Patents

Info

Publication number
JPH0530768B2
JPH0530768B2 JP59264600A JP26460084A JPH0530768B2 JP H0530768 B2 JPH0530768 B2 JP H0530768B2 JP 59264600 A JP59264600 A JP 59264600A JP 26460084 A JP26460084 A JP 26460084A JP H0530768 B2 JPH0530768 B2 JP H0530768B2
Authority
JP
Japan
Prior art keywords
iron oxide
chlorine ions
ions
chlorine
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59264600A
Other languages
Japanese (ja)
Other versions
JPS61146719A (en
Inventor
Morihiro Hasegawa
Hiroto Matsumoto
Kazuo Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP26460084A priority Critical patent/JPS61146719A/en
Publication of JPS61146719A publication Critical patent/JPS61146719A/en
Publication of JPH0530768B2 publication Critical patent/JPH0530768B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は酸化鉄より塩素イオンを除去する新規
な方法であり、減圧下において酸化鉄を加熱して
酸化鉄粒子が焼結を起さずに、酸化鉄中の塩素イ
オンを効率的に低濃度まで除去する方法を提供す
るものである。 発明の背景 フエライト磁石用酸化鉄に含まれる不純物塩素
イオンはフエライト磁石にとつて有害である。不
純物塩素イオンはフエライト磁石の磁気特性に悪
影響を与える。またフエライト磁石製造工程での
加熱処理時に遊離し、周辺機器を腐食するという
弊害を引き起こす。従つて、不純物塩素イオンを
フエライト磁石用酸化鉄から極力取り除く必要が
ある。 しかしその処理に際して酸化鉄粒子が焼結を起
してはならない。酸化鉄粒子の粒度分布、形状等
の粉粒体特性は、フエライト磁石の磁気特性に密
接に関係し、焼結は酸化鉄粒子の粉粒体の特性を
劣化し、磁気特性に悪影響を与え、好ましくない
からである。 従来の技術ならびに問題点 フエライト磁石用の酸化鉄を鉄鋼業の普通鋼の
酸洗廃液(塩酸酸性塩化第一鉄溶液)より製造す
る方法においては、当該酸洗廃液を噴霧焙焼ある
いは流動焙焼後、さらに900〜1000℃で加熱処理
をほどこして塩素イオンの除去を行なつている。
しかしながら900〜1000℃の高温加熱処理を行つ
ても、この方法では酸化鉄中に塩素イオンはおよ
そ1000ppmも残留して、しかも脱塩素イオンと同
時に酸化鉄粒子の焼結が生じて好ましくない。さ
らには900〜1000℃での高温加熱ゆえ多量のエネ
ルギーを要し経済的でなく、フエライト磁石用酸
化鉄の製造法として適当とは言い難い。他に酸化
鉄中の塩素イオンの除去法として、水洗による方
法が考えられる。しかし水洗による塩素イオンの
除去法は、充分に塩素イオンを除去できないばか
りか、多量のイオン交換水または蒸留水等の精製
水を必要とし、かつ水洗後において過、乾燥を
行なわなくてはならず、効果的で経済的な方法と
はいい難い。酸化鉄粒子の焼結を起こさずに、塩
素イオンを効果的に低濃度まで除去することがで
きしかも経済的な方法の確立が強く望まれてい
る。 発明の構成 本発明によれば、塩素イオンを含有している酸
化鉄を、1×10-1〜1×10-3Torrの減圧下にお
いて300〜600℃に加熱することにより酸化鉄の焼
結を起さずに塩素イオンを除去する方法が提供さ
れる。 発明の具体的記載 以下本発明につき詳細な説明を行なう。 脱塩素イオンのための加熱温度は300〜600℃が
適当であり、600℃を越えると酸化鉄粒子の焼結
が、極めて起こり易く好ましくなく、また300℃
より低温では塩素イオンの除去効率が悪く、低濃
度にならない。塩素イオンの加熱除去時の雰囲気
圧は低ければ低いほど好ましいが、1×10-1〜1
×10-3Torrにすれば充分塩素イオンを効率的に
除去できる。第1図は加熱温度500℃雰囲気圧5
×10-3Torrでの酸化鉄中の塩素量と処理時間と
の関係を示した一例である。1時間で酸化鉄中の
塩素イオンを大幅に除くことができる。300〜600
℃加熱、雰囲気圧1×10-1〜1×10-3Torrでの
処理時間は1時間で充分であり、それ以上時間を
かけて処理しても酸化鉄中の塩素イオンの含有量
は低くならない。酸化鉄中に含有されている塩素
イオンは大別すると、酸化鉄粒子の表面に吸着さ
れているものと、粒子の内部に吸蔵されているも
のとに分けられる。大気圧下の加熱あるいは水洗
の従来法では、表面に吸着されている塩素イオン
しか除去できず吸蔵されている塩素イオンは除く
ことが不可能であつた。ところが本発明によれば
表面に吸着されている塩素イオンはもとより、内
部に吸蔵されている塩素イオンも同時に除去可能
である。 次に実施例を掲げるが本発明はこれに限定され
るものではない。 実施例 1 普通鋼の塩酸酸洗廃液(FeCl2350g/、
HCl50g/)を噴霧焙焼(650〜700℃)して得
られた酸化鉄(塩素イオン含有量2000ppmであ
る。以下未精製酸化鉄と称する。)1.5gを石英ボ
ートに入れ真空加熱炉中で5×10-3Torr減圧下
で1時間500℃で加熱処理した。この処理を施し
た酸化鉄中の塩素イオン量は100ppm以下であつ
た。 実施例 2 普通鋼の塩酸酸洗廃液(FeCl2350g/、
HCl50g/)100mlを50〜60℃加熱下空気酸化
し、濃塩酸100mlを加えた後、メチルイソブチル
ケトン200mlと接触させ、酸洗廃液中の鉄イオン
を鉄クロロ錯イオンとしてメチルイソブチルケト
ンに抽出後、蒸留水100mlと接触させ、鉄イオン
を蒸留水に逆抽出して精製FeCl3溶液を得る。精
製したFeCl3溶液を噴霧焙焼(650〜700℃)して
得られた酸化鉄1.5gを石英ボートに入れ、真空加
熱炉中で500℃加熱、5×10-3Torr減圧下で1時
間処理した。この処理をほどこした酸化鉄中の塩
素イオン量は100ppm以下であつた。 実施例 3 実施例2に記載した方法により得た精製FeCl3
溶液100mlをジ−2−エチルヘキシルリン酸エス
テルの30%ケロシン稀釈液500mlと接触させ、鉄
イオンを該有機溶媒に抽出後、130g/のシユ
ウ酸溶液100mlと接触させ鉄イオンをシユウ酸溶
液に逆抽出する。次に鉄イオンを含んだシユウ酸
溶液を噴霧焙焼(650〜700℃)して得られた酸化
鉄1.5gを石英ボートに入れ、真空加熱炉中で500
℃加熱、5×10-3Torr減圧下で1時間処理した。
この処理をほどこした酸化鉄中の塩素イオン量は
100ppm以下であつた。 比較例 1 未精製酸化鉄(塩素イオン2000ppm含有)1.5g
を石英ボートに入れ、加熱炉中大気圧下1000℃で
1時間加熱処理した。この処理をほどこした酸化
鉄中の塩素イオンは1000ppmであつた。 比較例 2 未精製酸化鉄(塩素イオン2000ppm含有)1.5g
を分液漏斗300mlにとり、イオン交換水150mlを加
え、1時間攪拌混合して酸化鉄を洗浄し、酸化鉄
を過後100℃で1時間乾燥した。この酸化鉄中
の塩素イオンは700ppmであつた。 本発明の実施例1,2,3及び比較例1,2よ
り製造された酸化鉄の不純物含有量を表1に示
す。実施例2,3による酸化鉄は塩素イオン量ば
かりでなくSiO2,Mn,Al,Caの含有量が極め
て少なく、フエライト用酸化鉄として適している
ことが明らかである。
Technical Field The present invention is a novel method for removing chlorine ions from iron oxide, in which iron oxide is heated under reduced pressure to efficiently remove chlorine ions from iron oxide without causing sintering of iron oxide particles. This method provides a method for removing it down to a low concentration. Background of the Invention Chlorine ions, an impurity contained in iron oxide for ferrite magnets, are harmful to ferrite magnets. Impurity chlorine ions adversely affect the magnetic properties of ferrite magnets. Furthermore, it is released during heat treatment in the ferrite magnet manufacturing process, causing the harmful effect of corroding peripheral equipment. Therefore, it is necessary to remove impurity chlorine ions from iron oxide for ferrite magnets as much as possible. However, the iron oxide particles must not undergo sintering during the treatment. Powder properties such as particle size distribution and shape of iron oxide particles are closely related to the magnetic properties of ferrite magnets, and sintering deteriorates the properties of iron oxide particles and adversely affects magnetic properties. This is because it is not desirable. Prior Art and Problems In a method for producing iron oxide for ferrite magnets from pickling waste liquid (hydrochloric acid acidic ferrous chloride solution) of ordinary steel in the steel industry, the pickling waste liquid is spray roasted or fluidized roasted. Afterwards, chlorine ions are removed by further heat treatment at 900-1000°C.
However, even if high-temperature heat treatment at 900 to 1000° C. is performed, approximately 1000 ppm of chlorine ions remain in the iron oxide in this method, and sintering of iron oxide particles occurs at the same time as dechlorination ions, which is undesirable. Furthermore, since high-temperature heating at 900 to 1000°C requires a large amount of energy, it is not economical and cannot be said to be suitable as a method for producing iron oxide for ferrite magnets. Another possible method for removing chlorine ions from iron oxide is washing with water. However, the method of removing chlorine ions by washing with water not only cannot remove chlorine ions sufficiently, but also requires a large amount of purified water such as ion-exchanged water or distilled water, and must be filtered and dried after washing with water. , it is difficult to say that it is an effective and economical method. There is a strong desire to establish an economical method that can effectively remove chlorine ions to a low concentration without causing sintering of iron oxide particles. Structure of the Invention According to the present invention, iron oxide containing chloride ions is sintered by heating it to 300 to 600°C under a reduced pressure of 1 × 10 -1 to 1 × 10 -3 Torr. A method is provided for removing chloride ions without causing. DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail below. The appropriate heating temperature for dechlorination ions is 300 to 600°C; if it exceeds 600°C, sintering of iron oxide particles will occur, which is undesirable;
At lower temperatures, the removal efficiency of chlorine ions is poor and the concentration cannot be reduced to low levels. The lower the atmospheric pressure during heat removal of chlorine ions, the better;
×10 -3 Torr can sufficiently remove chlorine ions efficiently. Figure 1 shows heating temperature: 500℃, atmospheric pressure: 5
This is an example showing the relationship between the amount of chlorine in iron oxide and treatment time at ×10 -3 Torr. Chlorine ions in iron oxide can be largely removed in one hour. 300-600
℃ heating at an atmospheric pressure of 1×10 -1 to 1×10 -3 Torr for a treatment time of 1 hour is sufficient, and even if the treatment takes longer than that, the content of chlorine ions in iron oxide remains low. It won't happen. The chlorine ions contained in iron oxide can be roughly divided into those that are adsorbed on the surface of iron oxide particles and those that are occluded inside the particles. Conventional methods of heating under atmospheric pressure or washing with water can only remove chlorine ions adsorbed on the surface, and it is impossible to remove occluded chlorine ions. However, according to the present invention, not only the chlorine ions adsorbed on the surface but also the chlorine ions occluded inside can be removed at the same time. Examples are given below, but the present invention is not limited thereto. Example 1 Hydrochloric acid pickling waste solution of common steel (FeCl 2 350g/,
1.5 g of iron oxide (chloride ion content: 2000 ppm, hereinafter referred to as unrefined iron oxide) obtained by spray roasting (650-700°C) HCl 50 g/) was placed in a quartz boat in a vacuum heating furnace. Heat treatment was performed at 500° C. for 1 hour under reduced pressure of 5×10 −3 Torr. The amount of chlorine ions in iron oxide subjected to this treatment was 100 ppm or less. Example 2 Hydrochloric acid pickling waste solution of common steel (FeCl 2 350g/,
HCl50g/) 100ml was oxidized in the air while heating at 50-60℃, 100ml of concentrated hydrochloric acid was added, and then brought into contact with 200ml of methyl isobutyl ketone.The iron ions in the pickling waste solution were extracted into methyl isobutyl ketone as iron chlorocomplex ions. , contact with 100 ml of distilled water, and back-extract the iron ions into distilled water to obtain purified FeCl3 solution. 1.5 g of iron oxide obtained by spray roasting (650 to 700°C) purified FeCl 3 solution was placed in a quartz boat, heated to 500°C in a vacuum heating furnace, and heated under reduced pressure of 5 × 10 -3 Torr for 1 hour. Processed. The amount of chlorine ions in iron oxide subjected to this treatment was less than 100 ppm. Example 3 Purified FeCl 3 obtained by the method described in Example 2
100 ml of the solution is brought into contact with 500 ml of a 30% kerosene diluted solution of di-2-ethylhexyl phosphate ester, iron ions are extracted into the organic solvent, and then brought into contact with 100 ml of a 130 g/oxalic acid solution to invert the iron ions into the oxalic acid solution. Extract. Next, 1.5g of iron oxide obtained by spray roasting (650-700℃) an oxalic acid solution containing iron ions was placed in a quartz boat, and heated to 500℃ in a vacuum heating furnace.
The mixture was heated at 0.degree. C. and treated under reduced pressure of 5.times.10.sup. -3 Torr for 1 hour.
The amount of chlorine ions in iron oxide after this treatment is
It was less than 100ppm. Comparative example 1 1.5g of unrefined iron oxide (containing 2000ppm of chlorine ions)
was placed in a quartz boat and heated in a heating furnace at 1000°C under atmospheric pressure for 1 hour. The chlorine ion content in iron oxide after this treatment was 1000 ppm. Comparative example 2 Unrefined iron oxide (contains 2000ppm chlorine ions) 1.5g
was placed in a 300 ml separatory funnel, 150 ml of ion-exchanged water was added, and the mixture was stirred and mixed for 1 hour to wash the iron oxide. After removing the iron oxide, it was dried at 100° C. for 1 hour. The chlorine ion content in this iron oxide was 700 ppm. Table 1 shows the impurity contents of the iron oxides produced in Examples 1, 2, and 3 of the present invention and Comparative Examples 1 and 2. It is clear that the iron oxides according to Examples 2 and 3 have extremely low contents of not only chlorine ions but also SiO 2 , Mn, Al, and Ca, and are suitable as iron oxides for ferrite.

【表】 本発明によれば従来法では得られなかつた高い
効率で塩素イオンの除去が可能であり、塩素イオ
ン含有量100ppm以下の低濃度塩素イオン含有酸
化鉄を経済的に製造することが可能である。本発
明により製造された酸化鉄は、従来法での酸化鉄
に比べてフエライト磁石用として商品価値が高
い。
[Table] According to the present invention, it is possible to remove chlorine ions with high efficiency that could not be achieved with conventional methods, and it is possible to economically produce iron oxide containing low concentrations of chlorine ions, with a chlorine ion content of 100 ppm or less. It is. The iron oxide produced by the present invention has a higher commercial value for use in ferrite magnets than iron oxide produced by conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸化鉄を500℃,5×10-3Torrで加熱
する場合の含有塩素イオンと時間の関係を示すグ
ラフである。
Figure 1 is a graph showing the relationship between the chlorine ion content and time when iron oxide is heated at 500°C and 5 x 10 -3 Torr.

Claims (1)

【特許請求の範囲】[Claims] 1 塩素イオンを含有している酸化鉄を、1×
10-1〜1×10-3Torrの減圧下において300〜600
℃に加熱することにより塩素イオンを除去する方
法。
1 Iron oxide containing chlorine ions was
300 to 600 under reduced pressure of 10 -1 to 1×10 -3 Torr
A method of removing chloride ions by heating to ℃.
JP26460084A 1984-12-17 1984-12-17 Method for removing chlorine ion from iron oxide Granted JPS61146719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26460084A JPS61146719A (en) 1984-12-17 1984-12-17 Method for removing chlorine ion from iron oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26460084A JPS61146719A (en) 1984-12-17 1984-12-17 Method for removing chlorine ion from iron oxide

Publications (2)

Publication Number Publication Date
JPS61146719A JPS61146719A (en) 1986-07-04
JPH0530768B2 true JPH0530768B2 (en) 1993-05-10

Family

ID=17405562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26460084A Granted JPS61146719A (en) 1984-12-17 1984-12-17 Method for removing chlorine ion from iron oxide

Country Status (1)

Country Link
JP (1) JPS61146719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6524549B1 (en) 1993-11-25 2003-02-25 Sumitomo Chemical Co., Ltd. Method for producing α-alumina powder

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401485A (en) * 1994-03-15 1995-03-28 Shell Oil Company Reduction of residual chloride in iron oxides
US5597547A (en) * 1995-04-13 1997-01-28 Shell Oil Company Reduction of residual chloride in iron oxides
AU2002304805A1 (en) * 2001-04-10 2002-10-28 Basf Aktiengesellschaft Iron oxides with a higher degree of refining

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54880A (en) * 1977-06-03 1979-01-06 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54880A (en) * 1977-06-03 1979-01-06 Fujitsu Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6524549B1 (en) 1993-11-25 2003-02-25 Sumitomo Chemical Co., Ltd. Method for producing α-alumina powder

Also Published As

Publication number Publication date
JPS61146719A (en) 1986-07-04

Similar Documents

Publication Publication Date Title
CN108455594A (en) A kind of method of purification of high-carbon graphite
CN1023548C (en) Method for producing ta powder used in capacitor
JPH0530768B2 (en)
AU2002300655B2 (en) Process for purifying sand
JPS63315519A (en) Method for recovering waste liquor from acid cleaning of steel
CN114751419A (en) Process for preparing high-purity quartz sand by acid leaching purification
CN103848460B (en) The rear silicon removing method of a kind of Steel Plant spent pickle liquor regeneration byproduct brown iron oxide
CN112080654B (en) Method for recovering acid and silicon from phosphorus rare earth chemical concentrate leachate
CN108408960B (en) Method for recycling and treating iron-containing pickling newspaper waste liquid
JPS63222019A (en) Removal of impurity in iron oxide powder
CN103880092B (en) Method for dephosphorizing ferric oxide powder of regenerated secondary product of pickling waste liquid of iron-steel plant
KR100213330B1 (en) Removal method of silica between pickling waste solution
CN1275906C (en) Method for producing ferric oxide for permanent magnet presintered material
KR0136191B1 (en) Refining method of iron oxide
CN113355511B (en) Method for selectively reducing vanadium and titanium content in vanadium-titanium magnetite concentrate through ammonium-ammonia oxidation leaching system
JPH0747396A (en) Retreatment of residue of treated fluorine in waste liquid
CN1156689A (en) High-efficiency method for removing impurities containing iron from quartz sand
CN112093934B (en) Heavy metal sewage treatment method
JPS62127485A (en) Method for recovering iron oxide from waste liquor produced by pickling of steel with hydrochloric acid
JPS6131056B2 (en)
KR100280262B1 (en) Manufacturing method of high purity ferric chloride solution
KR101683971B1 (en) Regeneration method of chemical mechanical polishing alumina slurry
JPH0233761B2 (en)
JPS6144812B2 (en)
CN116514127A (en) Method for purifying industrial silicon by high-temperature chlorination process