JPH05306808A - Catalyic combustion device - Google Patents

Catalyic combustion device

Info

Publication number
JPH05306808A
JPH05306808A JP2121074A JP12107490A JPH05306808A JP H05306808 A JPH05306808 A JP H05306808A JP 2121074 A JP2121074 A JP 2121074A JP 12107490 A JP12107490 A JP 12107490A JP H05306808 A JPH05306808 A JP H05306808A
Authority
JP
Japan
Prior art keywords
catalytic
catalyst
catalyst body
carrying
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2121074A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Shiraiwa
義之 白岩
Tomoki Eguchi
知己 江口
Osao Okamura
長生 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2121074A priority Critical patent/JPH05306808A/en
Publication of JPH05306808A publication Critical patent/JPH05306808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Gas Burners (AREA)

Abstract

PURPOSE:To keep activity of catalytic assemblies for a long period of time and prolong their lives by using a first catalytic assembly carrying a catalytic composed mainly of an oxide of noble metal and a second catalytic assembly carrying a catalytic composed mainly of an oxide of transition metal. CONSTITUTION:A cylindrical flow passage 1 has, in part thereof, a catalytic assembly 31 having a honeycomb structure and carrying a catalyst composed mainly of an oxide of noble such as palladium, which is disposed on the upstream side of the interior of said flow passage, and a catalytic assembly 32 having a honeycomb structure and carrying a catalyst composed mainly of an oxide of transition metal such as manganese, which is disposed on the downstream side of the interior of the flow passage, each catalytic assembly being provided at two places separately along a direction 5 in which inflammable gas flows. Further, a gap 8 is provided between these catalytic assemblies, and a porous solid layer 71 made of a heat-resistant material is provided in the gap 8. Accordingly, the catalytic assembles 31, 32 can be usually used at temperatures suitable to their respective capabilities, and a mixed gas can be burned even when it is preheated at a relatively low temperature. Since the catalytic assembly 31 composed mainly of an oxide of noble metal is disposed om the upstream side and permits the mixed gas having a relatively low temperature to pass there through, its life can be prolonged.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はパラジウム等の貴金属酸化物を主体 とする触媒を担持した第1の触媒体と、マンガン 等の遷移金属酸化物を主体とする触媒を担持した 第2の触媒体を使用し、可燃性ガスの予熱温度が 低くても未燃分を少なくできる触媒燃焼装置に関 する。DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial field of application) The present invention relates to a first catalyst body carrying a catalyst mainly composed of a noble metal oxide such as palladium, and a transition metal oxide such as manganese. The present invention relates to a catalytic combustion apparatus that uses a second catalyst body carrying a catalyst mainly composed of, and can reduce the unburned content even if the preheating temperature of the combustible gas is low.

(従来の技術) 従来この種の酸化触媒燃焼装置として以下に 述べる第1〜第4の例がある。この第1の例は、 第4図に示すごとく触媒体を一体構成としたもの がある。すなわち、断面が円筒状に形成された流 路1の内壁面の一部に、断熱材2が設けられ、流 路1の内部に耐熱材をハニカム構造とした触媒体 3が設けられている。触媒体入口端4には、矢印 5の方向に触媒燃焼が可能な温度に予熱した可燃 性ガスが流入されるようになっている。 (Prior Art) Conventionally, there are the following first to fourth examples of this type of oxidation catalyst combustion apparatus. In this first example, as shown in FIG. 4, the catalyst body is integrally formed. That is, the heat insulating material 2 is provided on a part of the inner wall surface of the flow path 1 having a cylindrical cross section, and the catalyst body 3 having a honeycomb structure of the heat resistant material is provided inside the flow path 1. Combustible gas that has been preheated to a temperature at which catalytic combustion is possible flows into the catalyst inlet 4 in the direction of arrow 5.

この可燃性ガスが格子の間隙を通過する間に、 触媒体に接触し触媒燃焼が行なわれ、触媒燃焼温 度に上昇して出口端6より流出され、この流出ガ スは加熱などの用途に用いられる。 While this combustible gas passes through the gaps of the lattice, it contacts the catalytic body to carry out catalytic combustion, rises to the catalytic combustion temperature and flows out from the outlet end 6, and this outflowing gas is used for heating and other purposes. Used.

また、従来の第2の例(特開昭58−200 916号公報)は、前記第1の例の課題を解決す ることを目的とし、マンガン系触媒体とパラジウ ム系触媒体を使用し、燃料ガスの上流側にマンガ ン系触媒体を配置し、この下流側にパラジウム系 触媒体を配置したものである。 The second conventional example (Japanese Patent Laid-Open No. 58-200916) uses a manganese-based catalyst body and a palladium-based catalyst body for the purpose of solving the problem of the first example. The manganese-based catalyst is placed upstream of the fuel gas and the palladium-based catalyst is placed downstream of the manganese-based catalyst.

さらに従来の第3の例(特開昭59−176 509号公報)は、高い空燃比においても安定燃 焼が可能なることを目的としもので、触媒体出口 端からある距離だけはなしたところにハニカム式 遮蔽板を設けたものである。 Furthermore, the third conventional example (Japanese Patent Laid-Open No. 59-176509) is intended to enable stable combustion even at a high air-fuel ratio, and is only a certain distance from the catalyst body outlet end. It is provided with a honeycomb type shield plate.

また、従来の第4の例(特開昭61−186 704号公報)は、低温着火性が優れ、高温高負 荷燃焼が可能になることを目的としたもので、上 流側触媒と下流側の触媒の間を通過する流速を変 えるようにしたものである。 The fourth example of the related art (Japanese Patent Laid-Open No. 61-186704) is intended to have excellent low-temperature ignitability and enable high-temperature, high-load combustion, and it is possible to use the upstream side catalyst and the downstream side. The flow velocity passing between the side catalysts is changed.

(発明が解決しようとする課題) 以上述べた従来の各例はいずれも次のような 問題点がある。すなわち、第1の例では、触媒体 が一体構成であるので、低カロリーから高カロリ ーまで幅広い領域において燃焼が困難である。第 2の例では、第1の問題点は改善できるが、マン ガンを主成分とする触媒体は予熱温度を高く例え ば550℃〜650℃にした可燃ガスを入れない と燃焼しないという問題点があり、かつこの場合 燃料ガスの未燃分が多く、さらにパラジウム系触 媒体は、触媒入口端における可燃性ガスの予熱温 度が約400℃〜450℃で触媒燃焼が可能であ るが、この触媒だけではメタンの未燃分が多く、 またパラジウム系触媒体は長期に亘って活性を保 つことができない。 (Problems to be Solved by the Invention) Each of the conventional examples described above has the following problems. That is, in the first example, since the catalyst body is integrally configured, it is difficult to burn in a wide range from low calorie to high calorie. In the second example, the first problem can be solved, but the problem is that the catalyst body containing manganese as a main component does not burn unless a combustible gas whose preheating temperature is high, for example, 550 ° C to 650 ° C is added. In this case, the unburned content of the fuel gas is large, and the palladium-based catalyst is capable of catalytic combustion when the preheating temperature of the combustible gas at the catalyst inlet end is about 400 ° C to 450 ° C. This catalyst alone has a large amount of unburned methane, and the palladium-based catalyst cannot maintain its activity for a long time.

第3の例では、ハニカム式遮蔽体は、蓄熱、 固体伝熱の作用がないため、燃料ガスの未燃分が 多くなる。 In the third example, since the honeycomb type shield does not have a function of heat storage or solid heat transfer, the unburned content of the fuel gas increases.

また、第4の例では、上流側の触媒は通常燃 焼時に温度を上げないように、かつ吹き消えるよ う面積を絞り流速を高めているので、触媒層を通 過するための流体の圧力損失が大きくなり高い圧 力で可燃性ガスを送り込まなければならない。 Also, in the fourth example, the upstream catalyst is designed so that the temperature does not rise during normal combustion, and the area where it blows off is narrowed to increase the flow velocity, so the pressure of the fluid passing through the catalyst layer is increased. The loss becomes large and combustible gas must be sent with high pressure.

本発明は、従来方式にくらべて空気と可燃性 ガスの混合ガスは比較的低い温度に予熱しても燃 焼が可能であり、未燃分が非常に少ない状態でそ れぞれの触媒燃焼を有効に使うことができ、貴金 属酸化物を主体とする触媒体の活性を長期に渡っ て保持し寿命を延期する事が可能な触媒燃焼装置 を提供することを目的とする。 Compared with the conventional method, the present invention is capable of burning a mixed gas of air and combustible gas even if it is preheated to a relatively low temperature, and has a very low unburned content for each catalytic combustion. It is an object of the present invention to provide a catalytic combustion device that can effectively use the above, and can maintain the activity of the catalyst body mainly composed of a noble metal oxide for a long period of time and extend its life.

[発明の構成] 本発明は、前記目的を達成するため、第1の 発明は、外側を円筒形の壁で覆い、この内部に多 層の格子状ハニカム構造体を耐熱性材料で構成し、 前記構造体表面に酸化触媒を担持させた触媒体に、 酸化燃焼させる燃料と燃焼空気を共に供給して触 媒燃焼させる装置において、 貴金属酸化物を主体とする触媒を担持した第 1の触媒体と、遷移金属酸化物を主体とする触媒 を担持した第2の触媒体を使用し、 前記燃料および空気の流れの上流側に前記第 1の触媒体を設け、 この第1の触媒体の下流側に耐熱材料ででき た多孔性固体層を設け、 この多孔性固体層の下流側に前記第2の触媒 体を設けたことを特徴とするものである。また、 第2の発明は、第1の発明の第2の触媒体の下流 側出口最終段階において耐熱材料でできた多孔性 固体層を設けたことを特徴とするものである。 [Structure of the Invention] In order to achieve the above-mentioned object, the first invention is such that the outer side is covered with a cylindrical wall, and the multi-layered lattice-shaped honeycomb structure is made of a heat-resistant material inside the wall. A first catalyst body carrying a catalyst mainly composed of a noble metal oxide in a device for catalytic combustion by supplying both fuel for oxidative combustion and combustion air to a catalyst body carrying an oxidation catalyst on the surface of the structure. And a second catalyst body carrying a catalyst mainly composed of a transition metal oxide, the first catalyst body is provided on the upstream side of the flow of the fuel and air, and the second catalyst body is provided downstream of the first catalyst body. A porous solid layer made of a heat-resistant material is provided on the side, and the second catalyst body is provided on the downstream side of the porous solid layer. The second invention is characterized in that a porous solid layer made of a heat-resistant material is provided at the final stage of the downstream outlet of the second catalyst body of the first invention.

(作用) 本発明によれば、従来方式にくらべて空気と 可燃性ガスの混合ガスは比較的低い温度に予熱し ても燃焼が可能であり、未燃分が非常に少ない状 態でそれぞれの触媒燃焼を有効に使うことができ、 貴金属酸化物を主体とする触媒体の活性を長期に 渡って保持し寿命を延ばす事が可能となる。 (Operation) According to the present invention, compared to the conventional method, the mixed gas of air and combustible gas can be burned even when preheated to a relatively low temperature, and each of them can be burned in a state where the unburned content is very small. The catalytic combustion can be effectively used, and it becomes possible to maintain the activity of the catalytic body mainly composed of a noble metal oxide for a long period of time and extend the life thereof.

以上の作用は、本出願人が種々の酸化触媒に ついて種々の実験条件を変えて実験を行ない、そ の結果つぎの事がわかり、このことから前述の作 用が明らかになった。パラジウム系触媒体は、 触媒入口端における可燃性ガスの予熱温度が約 400℃〜450℃で触媒燃焼が可能であるが、 この触媒だけではメタンの未燃分が多い。 Regarding the above operation, the present applicant conducted experiments on various oxidation catalysts under various experimental conditions, and as a result, the following facts were found, and the above-mentioned operation was clarified from this. The palladium-based catalyst body is capable of catalytic combustion when the preheating temperature of the combustible gas at the catalyst inlet end is about 400 ° C to 450 ° C, but this catalyst alone has a large amount of unburned methane.

パラジウム系酸化触媒はマンガン系酸化触 媒と隣合せに設置すると高温であるマンガン系触 媒からの熱が輻射や伝熱でパラジウム系触媒に伝 わり高温になり、その活性寿命が短かくなる。そ こで両触媒の間に多孔性固体を設置することによ りこれを防止できる。 When the palladium-based oxidation catalyst is installed next to the manganese-based oxidation catalyst, the heat from the manganese-based catalyst, which is at a high temperature, is transferred to the palladium-based catalyst by radiation and heat transfer, and the palladium-based catalyst reaches a high temperature, which shortens its active life. This can be prevented by placing a porous solid between both catalysts.

マンガン系触媒体は触媒入口端における可 燃性ガスの予熱温度は約550℃〜650℃に上 げれば触媒燃焼が進行し燃焼率は高く未燃分を環 境規制値以下に下げることができる。 For manganese-based catalysts, if the preheating temperature of the flammable gas at the catalyst inlet end is raised to about 550 to 650 ° C, catalytic combustion proceeds and the combustion rate is high and the unburned content can be lowered below the environmental regulation value. it can.

触媒体の出口端に耐熱性セラミックでつく った多孔性固体の層を設ける事によって、さらに 燃焼率の良い未燃焼分の少ない触媒燃焼ができる。 By providing a porous solid layer made of heat-resistant ceramic at the outlet end of the catalyst body, it is possible to perform catalytic combustion with a higher burning rate and less unburned material.

そして、従来から問題になっている高温耐熱 性燃焼触媒の高い着火温度を解決する手段として、 パラジウムなどの貴金属酸化物系とマンガン などの遷移金属酸化物系の2系統の酸化触媒を同 時に組合わせて用いる事によって予熱温度は低く ても高い燃焼率を得る触媒燃焼装置を得る事がで きる事がわかった。すなわち、燃料ガスの流れの 上流側に貴金属酸化物を主体とする低温着火性の 触媒体をおき、この下流に遷移金属酸化物を主体 とする高温耐熱触媒体を設ける事によって目的が 達成される。 Then, as a means for solving the high ignition temperature of the high temperature heat resistant combustion catalyst, which has been a problem in the past, two systems of oxidation catalysts of noble metal oxides such as palladium and transition metal oxides such as manganese are simultaneously assembled. It was found that by using them together, it is possible to obtain a catalytic combustor with a high preheating temperature even with a low preheating temperature. That is, the object is achieved by placing a low temperature ignitable catalyst body mainly containing a noble metal oxide on the upstream side of the fuel gas flow and a high temperature heat resistant catalyst body mainly containing a transition metal oxide downstream thereof. ..

また触媒体出口端に多孔性固体を設ける事に よって燃焼率を高め、未燃焼分を少なくする事が できる。 Further, by providing a porous solid at the outlet end of the catalyst body, the burning rate can be increased and the unburned content can be reduced.

(実施例) 以下、本発明の実施例について図面を参照し て説明する。第1図はその一実施例を示す断面図 である。断面が円筒形状に形成された流路1の一 部において、その内面に断熱材2を設け、この内 部にハニカム構造の上流側触媒体31,下流側触 媒体32を、可燃性ガスの流れ方向5に沿って2 個所に設けるとともに、上流側触媒体31と下流 側触媒体32の間に間隙(触媒体境界)8を設け、 その間隙8に中間多孔性固体71を設ける。また、 触媒体32の下流側(出口側)には多孔性固体 72を設ける。 (Example) Hereinafter, the Example of this invention is described with reference to drawings. FIG. 1 is a sectional view showing an embodiment thereof. A heat insulating material 2 is provided on an inner surface of a part of the flow path 1 having a cylindrical cross section, and an upstream catalyst body 31 and a downstream catalyst medium 32 having a honeycomb structure are provided inside the heat insulation material 2 and a flow of a combustible gas. In addition to being provided at two locations along the direction 5, a gap (catalyst boundary) 8 is provided between the upstream side catalyst body 31 and the downstream side catalyst body 32, and the intermediate porous solid 71 is provided in the gap 8. Further, a porous solid 72 is provided on the downstream side (outlet side) of the catalyst body 32.

多孔性固体71および72としては、アルミ ナなどの耐熱性セラミックス材料を用い、空隙率 が大きく、80%〜95%程度で、多孔性固体の 固体と空間がほぼ均一に構成され、固体の大きさ は等価網目に換算すると、13〜20メッシュ程 度となっている。 As the porous solids 71 and 72, a heat-resistant ceramic material such as aluminum is used, and the porosity is large, and the solid and the space of the porous solid are configured to be substantially uniform at a porosity of about 80% to 95%. When converted to the equivalent mesh, the mesh size is about 13 to 20 mesh.

触媒体31および32の構造は、第2図の斜 視図に示すごとく、多数の格子空間91を有する ハニカム構造体ユニット9を多段積構成としたハ ニカム構造体の外周のまわりに円筒状の外壁11 によってかこまれたものをアルミナからなるセラ ミックスなどの耐熱性材料によって構成されてい る。 The structure of the catalyst bodies 31 and 32 is, as shown in the perspective view of FIG. 2, a cylindrical shape around the outer periphery of a honeycomb structure having a honeycomb structure unit 9 having a large number of lattice spaces 91 in a multi-stage stack structure. The material surrounded by the outer wall 11 is made of a heat resistant material such as ceramics made of alumina.

ハニカム構造体ユニット9は、この1段の流 れの方向の長さlは、外径Dにくらべて十分小さ く約10分の1程度の値で、これを多段に積重ねて 触媒体31および32を構成している。 In the honeycomb structure unit 9, the length l in the flow direction of this one step is a value that is sufficiently smaller than the outer diameter D and is about one-tenth, and the catalyst body 31 and the catalyst body 31 32 are configured.

このような構造の触媒体31は、パラジウム 等の貴金属酸化物を主体(主成分)とする触媒が 担持されている。また側触媒体32は、マンガン 等の遷移金属酸化物を主体(主成分)とする触媒 が担持されている。 The catalyst body 31 having such a structure carries a catalyst mainly composed of a noble metal oxide such as palladium. The side catalyst body 32 carries a catalyst mainly composed of a transition metal oxide such as manganese.

触媒体31,32は、長さlのハニカム構造 ユニット9を複数個積重ねて燃料ガスの流れる方 向の長さが第1図に示すごとく長さLとなるよう にしてある。 The catalyst bodies 31 and 32 are formed by stacking a plurality of honeycomb structure units 9 each having a length l so that the length in the fuel gas flowing direction becomes the length L as shown in FIG.

以上述べた実施例では、可燃性ガスの予熱温 度は低い温度で燃焼が可能であり、上流側触媒体 31では燃焼温度はそれ程高くしないように触媒 量を決め、かつ触媒体31と触媒体32の間に多 孔性固体71を設けて下流側輻射の影響を防止し てあるので、触媒体31の活性寿命が長くなる。 In the above-described embodiment, the combustible gas can be burned at a low preheating temperature, the upstream catalyst body 31 determines the catalyst amount so that the combustion temperature is not so high, and the catalyst body 31 and the catalyst body 31 Since the porous solid 71 is provided between 32 to prevent the influence of the radiation on the downstream side, the active life of the catalyst body 31 is extended.

第1図の各層の温度分布曲線12は第3図に 示すようになる。この図から明らかなように、可 燃性ガス温度を420℃に予熱して流入し、上流 側触媒体31の入口端4では約500℃、触媒体 31の出口では触媒体31内で燃焼が行なわれた 分だけ温度が上昇し700℃になって出て行く。 The temperature distribution curve 12 of each layer in FIG. 1 is as shown in FIG. As is clear from this figure, the combustible gas temperature is preheated to 420 ° C. and flows in, and combustion is performed at about 500 ° C. at the inlet end 4 of the upstream side catalytic body 31 and inside the catalytic body 31 at the outlet of the catalytic body 31. The temperature rises up to 700 ℃ as much as it is done, and it goes out.

次の多孔性固体71の入口と出口の間では大 きな下流側からの輻射が、この多孔性固体71に 及んで温度差がみられ入口700℃、出口820 ℃となる。下流触媒体32の内部で未燃分が触媒 燃焼し、触媒体32の入口で820℃、出口端6 で1020℃に上昇し、出口多孔性固体72内で さらに1060℃に上昇して流出する。 Radiation from the large downstream side between the inlet and the outlet of the next porous solid 71 reaches the inlet 700 ° C. and the outlet 820 ° C. due to the temperature difference across the porous solid 71. The unburned component is catalytically burned inside the downstream catalyst body 32, and rises to 820 ° C. at the inlet of the catalyst body 32, to 1020 ° C. at the outlet end 6, and further rises to 1060 ° C. in the outlet porous solid 72 and flows out. ..

この温度分布曲線12は可燃性ガスと空気の 混合割合がある量の場合の一例であるが、入口端 4から出口端6までの温度の段階ができるのはど のような量の場合でも同じである。 This temperature distribution curve 12 is an example of the case where the mixing ratio of the combustible gas and air is a certain amount, but the temperature distribution from the inlet end 4 to the outlet end 6 is the same regardless of the amount. Is.

実施例のように、触媒体31,32の中間に 多孔性固体71を設けないで、触媒体31と触媒 体32を接続して設置した場合には、第3図のよ うな温度の分布はできず、触媒体3の入口では第 3図にくらべると遥かに大きい温度上昇がみられ、 触媒体3の出口で約1000℃になる。この従来 の方式に比べると、本発明は上流側触媒体31は 比較的低い温度を保つことができるので、パラジ ウム系触媒は長期に渡って活性を保つことができ る。また、下流側触媒体32は所定の燃焼温度を 保持することができるので、燃焼率も完全燃焼に 近く未燃分はほとんど残らない。 When the catalyst body 31 and the catalyst body 32 are connected and installed without providing the porous solid 71 between the catalyst bodies 31 and 32 as in the embodiment, the temperature distribution as shown in FIG. This is not possible, and the temperature rise at the inlet of the catalyst body 3 is much larger than that in FIG. 3, and the temperature rises to about 1000 ° C. at the outlet of the catalyst body 3. Compared with this conventional method, in the present invention, the upstream catalyst body 31 can maintain a relatively low temperature, and thus the palladium catalyst can maintain the activity for a long period of time. Further, since the downstream side catalyst body 32 can maintain a predetermined combustion temperature, the combustion rate is close to complete combustion and almost no unburned part remains.

さらに、触媒体32の下流側に設けた多孔性 固体72によって触媒体32の燃焼が促進され未 燃分が更に減少する。 Further, the combustion of the catalyst body 32 is promoted by the porous solid 72 provided on the downstream side of the catalyst body 32, and the unburned content is further reduced.

〔発明の効果〕 以上述べた本発明によれば、次のような効果 が得られる。(1)貴金属酸化物を主体とする触 媒体と遷移金属酸化物を主体とする触媒体は、そ れぞれの性能に適した温度で通常使用する事が可 能であるため、従来方式にくらべて空気と可燃性 ガスの混合ガスは比較的低い温度に予熱しても燃 焼が可能であり、未燃分が非常に少ない状態でそ れぞれの触媒燃焼を有効に使うことができる。 [Effects of the Invention] According to the present invention described above, the following effects can be obtained. (1) Since the catalyst medium mainly composed of noble metal oxide and the catalyst body mainly composed of transition metal oxide can be usually used at temperatures suitable for their respective performances, the conventional method can be used. Compared with a mixture gas of air and combustible gas, it can be burned even if it is preheated to a relatively low temperature, and each catalytic combustion can be effectively used with a very small amount of unburned gas. ..

(2)燃料ガスの流れる方向の上流側に配設され ている貴金属酸化物を主体とする触媒体は、比較 的低い温度を保持するように調整することができ るので、触媒の活性を長期に渡って保持し寿命を 延期する事が可能となる。(2) The catalyst body composed mainly of a noble metal oxide, which is arranged on the upstream side in the fuel gas flow direction, can be adjusted so as to maintain a comparatively low temperature, so that the catalyst activity can be maintained for a long period of time. It is possible to extend the service life by holding it for a long time.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の触媒燃焼装置の一実施例を 示す断面図、第2図は第1図の触媒体の構成例を 示す斜視図、第3図は第1図の実施例の流れの方 向の温度分布の一例を示す図、第4図は従来の触 媒燃焼装置の一例を示す断面図である。 1…流路、2…断熱材、31…パラジウム系 触媒体、32…マンガン系触媒体、5…可燃ガス の流れ、71…中間多孔性固体、72…出口多孔 性固体、9…ハニカム構造体ユニット、91…格 子空間。 1 is a sectional view showing an embodiment of the catalytic combustion apparatus of the present invention, FIG. 2 is a perspective view showing an example of the constitution of the catalyst body of FIG. 1, and FIG. 3 is a flow chart of the embodiment of FIG. FIG. 4 is a diagram showing an example of a temperature distribution in the direction, and FIG. 4 is a sectional view showing an example of a conventional catalyst combustion device. DESCRIPTION OF SYMBOLS 1 ... Flow path, 2 ... Heat insulating material, 31 ... Palladium type catalyst body, 32 ... Manganese type catalyst body, 5 ... Combustible gas flow, 71 ... Intermediate porous solid, 72 ... Exit porous solid, 9 ... Honeycomb structure Unit, 91 ... Keiko space.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 外側を円筒形の壁で覆い、この内部に多
層 の格子状ハニカム構造体を耐熱性材料で構成し、 前記構造体表面に酸化触媒を担持させた触媒体に、 酸化燃焼させる燃料と燃焼空気を共に供給して触 媒燃焼させる装置において、 貴金属酸化物を主体とする触媒を担持した第 1の触媒体と、遷移金属酸化物を主体とする触媒 を担持した第2の触媒体を使用し、 前記燃料および空気の流れの上流側に前記第 1の触媒体を設け、 この第1の触媒体の下流側に耐熱材料ででき た多孔性固体層を設け、 この多孔性固体層の下流側に前記第2の触媒 体を設けたことを特徴とする触媒燃焼装置。
1. An outer surface is covered with a cylindrical wall, and a multilayer lattice honeycomb structure is made of a heat-resistant material inside the wall, and the catalyst body having an oxidation catalyst supported on the surface of the structure is oxidized and burned. In an apparatus for supplying both fuel and combustion air for catalytic combustion, a first catalytic body carrying a catalyst mainly composed of a noble metal oxide and a second catalytic body carrying a catalyst mainly composed of a transition metal oxide. A medium is used, the first catalyst body is provided on the upstream side of the flow of fuel and air, and a porous solid layer made of a heat-resistant material is provided on the downstream side of the first catalyst body. A catalytic combustion device, wherein the second catalyst body is provided on the downstream side of the layer.
【請求項2】 外側を円筒形の壁で覆い、この内部に多
層 の格子状ハニカム構造体を耐熱性材料で構成し、 前記構造体表面に酸化触媒を担持させた触媒体に、 酸化燃焼させる燃料と燃焼空気を共に供給して触 媒燃焼させる装置において、 貴金属酸化物を主体とする触媒を担持した第 1の触媒体と、遷移金属酸化物を主体とする触媒 を担持した第2の触媒体を使用し、 前記燃料および空気の流れの上流側に前記第 1の触媒体を設け、 この第1の触媒体の下流側に耐熱材料ででき た多孔性固体層を設け、 この多孔性固体層の下流側に前記第2の触媒 体を設け、 この第2の触媒体の下流側出口最終段階にお いて耐熱材料でできた多孔性固体層を設けたこと を特徴とする触媒燃焼装置。
2. An outer surface is covered with a cylindrical wall, and a multilayer lattice honeycomb structure is made of a heat-resistant material inside the wall, and a catalyst body having an oxidation catalyst supported on the surface of the structure is oxidatively burned. In an apparatus for supplying both fuel and combustion air for catalytic combustion, a first catalytic body carrying a catalyst mainly composed of a noble metal oxide and a second catalytic body carrying a catalyst mainly composed of a transition metal oxide. A medium is used, the first catalyst body is provided on the upstream side of the flow of fuel and air, and a porous solid layer made of a heat-resistant material is provided on the downstream side of the first catalyst body. A catalytic combustion apparatus, wherein the second catalyst body is provided on the downstream side of the layer, and a porous solid layer made of a heat-resistant material is provided at the final stage of the downstream side outlet of the second catalyst body.
JP2121074A 1990-05-10 1990-05-10 Catalyic combustion device Pending JPH05306808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2121074A JPH05306808A (en) 1990-05-10 1990-05-10 Catalyic combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2121074A JPH05306808A (en) 1990-05-10 1990-05-10 Catalyic combustion device

Publications (1)

Publication Number Publication Date
JPH05306808A true JPH05306808A (en) 1993-11-19

Family

ID=14802203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2121074A Pending JPH05306808A (en) 1990-05-10 1990-05-10 Catalyic combustion device

Country Status (1)

Country Link
JP (1) JPH05306808A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100374508B1 (en) * 2000-08-02 2003-03-04 한국에너지기술연구원 Catalytic combustion burner for suppling restoration gas
US6669469B2 (en) * 2001-02-21 2003-12-30 Matsushita Electric Industrial Co., Ltd. Catalyst combustion device and method of producing frame body portion thereof
JP2006068625A (en) * 2004-09-01 2006-03-16 Casio Comput Co Ltd Reaction apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100374508B1 (en) * 2000-08-02 2003-03-04 한국에너지기술연구원 Catalytic combustion burner for suppling restoration gas
US6669469B2 (en) * 2001-02-21 2003-12-30 Matsushita Electric Industrial Co., Ltd. Catalyst combustion device and method of producing frame body portion thereof
JP2006068625A (en) * 2004-09-01 2006-03-16 Casio Comput Co Ltd Reaction apparatus
JP4715134B2 (en) * 2004-09-01 2011-07-06 カシオ計算機株式会社 Reactor

Similar Documents

Publication Publication Date Title
US5342591A (en) Catalytic method
EP0962697B1 (en) Combustion control method
RU2151307C1 (en) Catalytic structure (versions) and method of fuel mixture combustion (versions)
US6174159B1 (en) Method and apparatus for a catalytic firebox reactor
US5425632A (en) Process for burning combustible mixtures
GB1577256A (en) Combustion method and apparatus
US5577906A (en) Catalyst for combustion
US5800787A (en) Electrically heatable honeycomb body
US6015285A (en) Catalytic combustion process
JPH04273914A (en) Contact combustion
JPH09500198A (en) Improved substrate morphology for catalytic combustion systems
US5229080A (en) Resistance adjusting type heater and catalytic converter
JPH09196307A (en) Contact combustion system by multistage fuel injection
CA2096951A1 (en) Multistage process for combusting fuel mixtures
JPS6014938A (en) Combustion catalyst for gas turbine
JPH05306808A (en) Catalyic combustion device
RU2286308C2 (en) Radial type device for production of the synthesis gas
US20020015931A1 (en) Conduit positioner
US7691338B2 (en) Two stage catalytic combustor
JPH0261407A (en) Catalyst combustion
JPH10501052A (en) Improved process and catalyst structure with optional downstream frame holder and employing integral heat exchange
US8307653B2 (en) Combined catalysts for the combustion of fuel in gas turbines
JP2501666B2 (en) Fuel cell anode exhaust gas combustion device
JPS61289220A (en) Catalyst combustion device
JPH06226099A (en) Composite catalyst body for high-temperature combustion