JPH0530660A - Voltage stability monitor/controller - Google Patents

Voltage stability monitor/controller

Info

Publication number
JPH0530660A
JPH0530660A JP3177062A JP17706291A JPH0530660A JP H0530660 A JPH0530660 A JP H0530660A JP 3177062 A JP3177062 A JP 3177062A JP 17706291 A JP17706291 A JP 17706291A JP H0530660 A JPH0530660 A JP H0530660A
Authority
JP
Japan
Prior art keywords
voltage stability
voltage
load
state variable
index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3177062A
Other languages
Japanese (ja)
Other versions
JP2716887B2 (en
Inventor
Tsuyoshi Sakugi
堅 柵木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3177062A priority Critical patent/JP2716887B2/en
Publication of JPH0530660A publication Critical patent/JPH0530660A/en
Application granted granted Critical
Publication of JP2716887B2 publication Critical patent/JP2716887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To improve a voltage stability by load transfer or the adjustment of a generator output by a method wherein a means which calculates a voltage stability index, a means which calculates a sensitivity factor and a means which obtains a load switching rate or a load switching rate and a generation adjustment rate by a linear programming method are provided. CONSTITUTION:A state variable initiallization means 21 receives measured values of the states of a power system 1, such as the measured values of active powers of loads and generators, reactive powers and generator voltages, which are inputted from transmitters 2 and 3 and calculates power flow and determines the state variable values in an initial state. Then a voltage stability index initiallization means 22 calculates a voltage stability index from the state variable values determined by the state variable initiallization means 21. A voltage sensitivity factor calculating means 23 obtains a Jacobian matrix by using the state variable values determined by the state variable initiallization means 21 or a stability index calculating means 27 to calculate a voltage sensitivity factor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電力系統の電圧安定度を
監視または監視制御する電圧安定度監視制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage stability monitoring control device for monitoring or controlling the voltage stability of a power system.

【0002】[0002]

【従来の技術】従来の技術では、電圧無効電力調整機器
(以後調相機器と称する)によって電圧と無効電力潮流
を制御することにより電力系統の電圧安定度を高めてい
た。
2. Description of the Related Art In the prior art, voltage stability of a power system is enhanced by controlling voltage and reactive power flow by a voltage reactive power regulator (hereinafter referred to as a phase regulator).

【0003】しかし、調相機器の電圧・無効電力調整能
力を越えた予期せぬ急激な需要増加があると、調相機器
の能力を完全に使いきったとしても電圧安定度が低くな
る恐れがある。
However, if there is an unexpected and sudden increase in demand that exceeds the voltage / reactive power adjustment capability of the phase modulating device, there is a risk that the voltage stability will decrease even if the capacity of the phase modulating device is completely used up. is there.

【0004】[0004]

【発明が解決しようとする課題】本発明は、調相機器を
用いることなく電力系統の電圧安定度を高めるものであ
って下位系統の変電所における負荷移行あるいは発電機
出力の調整(発電調整)により電圧安定度を高めるよう
にした電圧安定度監視を提供することを目的とするもの
である。
SUMMARY OF THE INVENTION The present invention is intended to enhance voltage stability of a power system without using a phase modifying device, and to adjust load transfer or generator output (power generation adjustment) in a substation of a lower system. It is an object of the present invention to provide voltage stability monitoring designed to enhance voltage stability.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために、電圧安定度指標を計算する手段、電圧安
定度指標に対する感度係数を計算する手段、線形計画法
により電圧安定度が制約条件下で最大となるように負荷
切替量または、負荷切替量および発電調整量を求める手
段とにより構成したものである。
In order to achieve the above object, the present invention provides a means for calculating a voltage stability index, a means for calculating a sensitivity coefficient for the voltage stability index, and a linear programming method for determining the voltage stability. It is configured by means for obtaining the load switching amount or the load switching amount and the power generation adjustment amount so that the load switching amount becomes maximum under the constraint condition.

【0006】一般に、電力系統は下位系統を放射状(あ
るいはツリ―状とも言う)の構成として運用される。上
位系統の変電所の負荷の大きさは下位系統の系統構成に
より定まり、幾つかの上位系統変電所間では、下位系統
の系統構成の変更により、すなわち放射状の形状を変え
ることにより、ある変電所から他の変電所に負荷移行を
すること(以下これを負荷切替とも称す)ができる。
In general, the power system is operated with the lower system having a radial (or tree-like) configuration. The magnitude of the load of the upper system substation is determined by the system configuration of the lower system, and between some upper system substations, a certain substation is created by changing the system configuration of the lower system, that is, by changing the radial shape. Load transfer to another substation (hereinafter also referred to as load switching).

【0007】図4を用いて負荷切替について説明する。
図4において、遮断器1、2、3、5、および6は閉じ
ており、遮断器4は開いているとすると、A変電所には
C変電所とD変電所が接続されているので、A変電所の
負荷は1000MW+500MW=1500MWであ
り、B変電所にはE変電所のみが接続されているので、
B変電所の負荷は750MWである。
The load switching will be described with reference to FIG.
In FIG. 4, assuming that the circuit breakers 1, 2, 3, 5, and 6 are closed and the circuit breaker 4 is open, the C substation and the D substation are connected to the A substation. The load of Substation A is 1000MW + 500MW = 1500MW, and only Substation E is connected to Substation B,
The load of Substation B is 750 MW.

【0008】いま、遮断器3を開に、かつ遮断器4を閉
に操作すれば、D変電所はA変電所の系統からB変電所
の系統に切り替えられ、D変電所の負荷はA変電所から
B変電所に移行される。すなわち、A変電所の負荷は1
000MWとなり、B変電所の負荷は750MW+50
0MW=1250MWとなる。
If the circuit breaker 3 is opened and the circuit breaker 4 is closed, the D substation is switched from the A substation system to the B substation system, and the D substation load is changed to the A substation. Moved to B substation. That is, the load at Substation A is 1.
000MW, B substation load is 750MW + 50
It becomes 0 MW = 1250 MW.

【0009】したがって、特定の変電所が重負荷のため
系統全体の電圧安定度が悪くなっている場合、下位系統
の系統構成を変更し、その重負荷の変電所から電圧安定
度が相対的に高い変電所に負荷を移行すること(即ち負
荷切替をすること)により、電力系統の電圧安定度を改
善することができる。
Therefore, when the voltage stability of the entire system is deteriorated due to the heavy load at a specific substation, the system configuration of the lower system is changed and the voltage stability is relatively changed from the heavy load substation. By shifting the load to a high substation (that is, switching the load), the voltage stability of the power system can be improved.

【0010】また、発電所と負荷の間の電気的距離が大
きいほど電圧安定度が悪くなることが知られている。従
って、電圧安定度が低い地域にできるだけ近い発電所で
より多く発電すれば電圧安定度が改善される。即ち、発
電機出力の調整(発電移行)によっても電圧安定度を改
善できる。
It is also known that the greater the electrical distance between the power plant and the load, the worse the voltage stability. Therefore, the voltage stability is improved by generating more power at a power plant as close as possible to an area with low voltage stability. That is, the voltage stability can be improved also by adjusting the generator output (transition to power generation).

【0011】[0011]

【作用】以下に、負荷切替による電圧安定度の改善の場
合について、その作用の説明をする。まず、電圧安定度
指標計算手段により安定度指標を計算する。次に、感度
係数を計算する手段により、負荷の値が変化した場合、
電圧安定度指標がどの程度変化するかを示す電圧安定度
係数を計算する。負荷切替量計算手段は、その感度係数
と電力系統の運用上の各種制約条件を用いて、線形計画
法により電圧安定度を高めるための負荷切替量を計算す
る。その負荷切替を実施した場合の電圧安定度指標を計
算し、先に計算した指標の値と比較する。その結果電圧
安定度指標の改善量が小であればそれ以上改善できない
ので処理を終了し、そうでなければ再び上記処理を繰り
返す。
The operation of the case of improving the voltage stability by switching the load will be described below. First, the voltage stability index calculating means calculates the stability index. Next, if the load value changes by means of calculating the sensitivity coefficient,
A voltage stability coefficient indicating how much the voltage stability index changes is calculated. The load switching amount calculation means calculates the load switching amount for increasing the voltage stability by the linear programming method, using the sensitivity coefficient and various constraints on the operation of the power system. The voltage stability index when the load switching is performed is calculated and compared with the previously calculated index value. As a result, if the amount of improvement in the voltage stability index is small, it cannot be improved any more, and the process is terminated. If not, the above process is repeated again.

【0012】[0012]

【実施例】以下図面を参照して本発明の実施例を説明す
る。図1は本発明による電圧安定度監視制御装置の一実
施例のブロック図である。図1において、1は電力系
統、2と3は伝送装置(遠方監視制御装置)、4は電子
計算機、5はマンマシン・インタ―フェ―ス装置であ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of an embodiment of a voltage stability monitoring control device according to the present invention. In FIG. 1, 1 is a power system, 2 and 3 are transmission devices (remote monitoring and control devices), 4 is an electronic computer, and 5 is a man-machine interface device.

【0013】図2に本発明による処理手段の流れ図を示
す。図2において、21は状態変数初期化手段、22は
電圧安定度指標初期化手段、23は電圧感度計算手段、
24は状態変数修正手段、25は電圧安定度感度係数計
算手段、26は負荷切替量計算手段、27は電圧安定度
指標計算手段、28は収束判定手段、29は負荷切替操
作手段である。
FIG. 2 shows a flow chart of the processing means according to the present invention. In FIG. 2, 21 is a state variable initialization means, 22 is a voltage stability index initialization means, 23 is a voltage sensitivity calculation means,
Reference numeral 24 is state variable correction means, 25 is voltage stability sensitivity coefficient calculation means, 26 is load switching amount calculation means, 27 is voltage stability index calculation means, 28 is convergence determination means, and 29 is load switching operation means.

【0014】図1において、電力系統1の状態の測定デ
―タが伝送装置2、3を介して電子計算機4に入力され
る。電子計算機4は、それらの測定デ―タを用いて、電
力系統の電圧安定度を改善するための負荷切替量、発電
調整量、調相機器の調整量を求め、これらの諸量を基
に、伝送装置2、3を介して電力系統の設備を遠方制御
することにより、電力系統の電圧安定度を制御する。ま
た、マンマシン・インタ―フェ―ス装置5に上記諸量や
電圧安定度係数等を表示する。
In FIG. 1, measurement data of the state of the power system 1 is input to the electronic computer 4 via the transmission devices 2 and 3. The electronic computer 4 uses these measurement data to obtain the load switching amount, the power generation adjustment amount, and the phase adjustment device adjustment amount for improving the voltage stability of the power system, and based on these amounts. , The voltage stability of the power system is controlled by remotely controlling the equipment of the power system via the transmission devices 2 and 3. Further, the man-machine interface device 5 displays the above-mentioned various quantities, the voltage stability coefficient, and the like.

【0015】次に図2および図3を用いて、電子計算機
4での処理手段を説明する。まず、電力系統の電圧安定
度の改善方法の物理的原理に関して説明する。ここで用
いる電圧安定度の指標Sを総需要P−電圧V曲線の勾
配、すなわち総需要の変化に対する電圧感度dVi /d
Pの和、 S=ΣdVi /dP … (1) とする。
Next, processing means in the electronic computer 4 will be described with reference to FIGS. 2 and 3. First, the physical principle of the method for improving the voltage stability of the power system will be described. The voltage stability index S used here is the slope of the total demand P-voltage V curve, that is, the voltage sensitivity dV i / d with respect to changes in the total demand.
The sum of P, S = ΣdV i / dP (1)

【0016】P−1/S曲線およびP−Vi 曲線の例を
図3に示す。尚、電圧安定度指標Sと総需要Pとの関係
を図示すると、静的電圧安定限界点ではSの値が無限大
になるため、図3ではSの代りにクラフを描きやすい逆
数(1/S)とした。図3に示されているように、電圧
安定度指標の逆数1/Sの値は現在状態であるA点を出
発点として総需要Pの増加につれ矢印の方向に変化す
る。言い替えれば、その値は総需要Pの増加につれ単調
に増加し、静的電圧安定限界点である曲線の先端では零
となる。であるから、電圧安定度指標Sの値は総需要P
の増加につれ単調に減少し、静的電圧安定限界点すなわ
ち曲線の先端では負の無限大となる。即ち、指標Sの値
は電圧安定度が高いほど大きく(負数で絶対値が小さ
く)、安定度が低いほど小さく(負数で絶対値が大き
く)なっている。
[0016] An example of a P-1 / S curve and P-V i curves in FIG. In addition, when the relationship between the voltage stability index S and the total demand P is illustrated, the value of S becomes infinite at the static voltage stability limit point. Therefore, in FIG. S). As shown in FIG. 3, the value of the reciprocal 1 / S of the voltage stability index changes in the direction of the arrow as the total demand P increases from the current point A as a starting point. In other words, the value monotonically increases as the total demand P increases, and becomes zero at the tip of the curve which is the static voltage stability limit point. Therefore, the value of the voltage stability index S is the total demand P
It decreases monotonically with an increase in the voltage and becomes negative infinity at the static voltage stability limit point, that is, at the tip of the curve. That is, the value of the index S is larger as the voltage stability is higher (negative value has a smaller absolute value), and is smaller as the stability is lower (negative value has a larger absolute value).

【0017】このように、指標Sによって電力系統全体
の静的電圧安定度を評価できる。総需要に対する電圧感
度dV/dPは、潮流計算におけるヤコビヤン・マトリ
ックスから計算できる。また、負荷Lj の指標Sに対す
る感度係数、すなわち電圧安定度感度係数Aj =dS/
dLj は、現在状態の指標Sと負jをDj だけ変化させ
た状態での指標S′より、 として、求められる。
In this way, the static voltage stability of the entire power system can be evaluated by the index S. The voltage sensitivity dV / dP with respect to the total demand can be calculated from the Jacobian matrix in the power flow calculation. Further, the sensitivity coefficient of the load L j to the index S, that is, the voltage stability sensitivity coefficient A j = dS /
dL j is calculated from the index S in the current state and the index S ′ in the state in which the negative j is changed by D j . As required.

【0018】以上の考察より、系統運用に関する所定の
制約条件のもとで指標Sが最大になるように負荷切替を
行えば、電力系統の静的電圧安定度を改善できることが
分かる。すなわち、次の非線形の最適化問題を解けばよ
い。
From the above consideration, it is understood that the static voltage stability of the power system can be improved by performing the load switching so that the index S is maximized under the predetermined constraint condition regarding the system operation. That is, the following non-linear optimization problem may be solved.

【0019】 最大化 :S=f(L 1,L2 ,…,Lj ,…) … (3) 制約条件: Lmin j ≦Lj ≦Lmax j … (5) Vmin k ≦Vk ≦Vmax k … (6) ここで、 TL=需要 L=負荷:制御変数 V=ノ―ド電圧 Lmin =負荷の下限値 Vmin =電圧の下限値 Lmax =負荷の上限値 Vmax =電圧の上限値 j:負荷移行対象ノ―ド k:電圧の上下限制限対象ノ―ド である。Maximization: S = f (L 1 , L 2 , ..., L j , ...) (3) Constraints: Lmin j ≦ L j ≦ Lmax j ... (5) Vmin k ≦ V k ≦ Vmax k ... (6) where, TL = demand L = Load: control variable V = Roh - mode voltage Lmin = load lower limit Vmin = Lower limit value of voltage Lmax = upper limit value of load Vmax = upper limit value of voltage j: load transfer target node k: upper and lower limit voltage target node of voltage.

【0020】(4)式は需給バランスの条件を表してい
る。(5)式は負荷切替量の制限を表している。(6)
式は電圧の制限を表している。一般に非線形の最適化問
題を非線形のまま直接に解くのは困難であるので、次の
ように線形化する。すなわち、(2)〜(6)式を現在
状態Lo,j ,Vo,k からの微小変化に対して線形化する
と、
Equation (4) represents the condition of supply and demand balance. Expression (5) represents the limit of the load switching amount. (6)
The equation represents the voltage limit. In general, it is difficult to directly solve a non-linear optimization problem while remaining non-linear, so the following linearization is performed. That is, when the equations (2) to (6) are linearized with respect to a minute change from the current state L o, j , V o, k ,

【0021】 Lmin j −Lo,j ≦ΔLj ≦Lmax j −Lo,j … (9) Vmin k −Vo,k ≦ΔVk ≦Vmax k −Vo,k …(10) ここで、Bk,j =負荷Lj の変化に対する電圧Vkの変
化の感度係数。
[0021] Lmin j −Lo , j ≦ ΔL j ≦ Lmax j −Lo , j (9) Vmin k −V o, k ≦ ΔV k ≦ Vmax k −V o, k … (10) Where B k, j = sensitivity coefficient of change in voltage V k with respect to change in load L j .

【0022】となる。さらに、ΔLj の値が大きいと線
形化誤差が生じるので、一回の計算での負荷切替量を制
限する制約条件 −ΔLmax ≦ΔLj ≦ΔLmax …(12) を追加する。(7)〜(12)式に線形計画法を適用する
ことにより、静的電圧安定度を高めるための、負荷切替
量ΔLj を求めることができる。t回目の計算のノ―ド
負荷Lt,j =Lt-1,j +ΔLt,j に対して、再び潮流計
算と線形計画法の計算を行う。これを指標Sが増加しな
くなるまで繰り返す。以上の電圧安定度の改善に関する
物理的原理に従い、図2に示される処理手段と処理手続
きにより電圧安定度改善のための負荷切替量を求める。
以下に図2の処理手段の詳細を説明する。
It becomes Further, since a linearization error occurs when the value of ΔL j is large, a constraint condition −ΔLmax ≦ ΔL j ≦ ΔLmax (12) that limits the load switching amount in one calculation is added. By applying the linear programming method to the expressions (7) to (12), the load switching amount ΔL j for increasing the static voltage stability can be obtained. For the node load L t, j = L t-1, j + ΔL t, j of the t-th calculation, the power flow calculation and the linear programming calculation are performed again. This is repeated until the index S does not increase. According to the above-mentioned physical principle for improving the voltage stability, the load switching amount for improving the voltage stability is obtained by the processing means and processing procedure shown in FIG.
The details of the processing means shown in FIG. 2 will be described below.

【0023】まず、状態変数初期化手段21は伝送装置
2、3から入力された電力系統の状態の測定値、即ち負
荷と発電機の有効電力と無効電力および発電機電圧の測
定値等を入力として潮流計算を行い、初期状態における
状態変数(すなわちノ―ド電圧の大きさVと位相角δ)
の値を決定する。潮流計算の方法は公知の技術であるの
で省略する。また、計算の繰り返し回数tの値を1とす
る。尚、潮流計算の代わりに状態推定計算を用いても良
い。
First, the state variable initialization means 21 inputs the measured values of the state of the power system input from the transmission devices 2 and 3, that is, the measured values of the active power and reactive power of the load and the generator, and the generator voltage. The power flow is calculated as, and the state variables in the initial state (that is, the magnitude V of the node voltage and the phase angle δ)
Determine the value of. Since the method of calculating the power flow is a known technique, it will be omitted. Further, the value of the number of times t of calculation is repeated is set to 1. The state estimation calculation may be used instead of the power flow calculation.

【0024】次に、電圧安定度指標初期化手段22は、
状態変数初期化手段21が決定した状態変数の値より電
圧安定度指標Sを計算する。すなわち、以下の公知文献
に示されている方法によりdVi /dPを求め、指標S
o=ΣdVi /dPを計算する。 公知文献:「電力系統の電圧安定限界の直接解法」、電
気学会論文誌B, 110巻11号,P.895 〜P.902,(平成2-
11月号)
Next, the voltage stability index initialization means 22
The voltage stability index S is calculated from the value of the state variable determined by the state variable initialization means 21. That is, dV i / dP is obtained by the method shown in the following known document, and the index S
Calculate o = ΣdV i / dP. Publicly known literature: "Direct Solution of Voltage Stability Limit of Power System", The Institute of Electrical Engineers of Japan, Volume 110, No. 11, P.895 ~ P.902, (Heisei 2-
(November issue)

【0025】電圧感度係数計算手段23は、状態変数初
期化手段21または後述の安定度計算指標計算手段27
により決定された状態変数の値を用いてヤコビヤン・マ
トリックス[H]を求め、電圧感度係数Bk,j を計算す
る。即ち、 Bk,j =ΔVk /Fj …(13) […,ΔVk ,…,Δδk ,…]T =[H]-1[O,…,Fj ,O,…,O]
…(1
4) ここで、Tはマトリックス(またはベクトル)の転置を
示す。ヤコビヤン・マトリックスの求め方は潮流計算内
で行われるのと同じ方法であり、公知の技術であるので
説明を省略する。
The voltage sensitivity coefficient calculation means 23 is a state variable initialization means 21 or a stability calculation index calculation means 27 described later.
The Jacobian matrix [H] is obtained by using the value of the state variable determined by the above, and the voltage sensitivity coefficient B k, j is calculated. That is, B k, j = ΔV k / F j (13) [..., ΔV k , ..., Δδ k , ...] T = [H] -1 [O, ..., F j , O, ..., O] T
… (1
4) Here, T represents the transpose of the matrix (or vector). The method for obtaining the Jacobian matrix is the same as the method used in the power flow calculation and is a known technique, so description thereof will be omitted.

【0026】状態変数修正手段24は、jノ―ドの負荷
をDj だけ変化させたときの状態変数の値を潮流計算に
より求め、求められた状態変数の値よりヤコビヤン・マ
トリックスを構築する。
The state variable correcting means 24 obtains the value of the state variable when the load of the j node is changed by D j by power flow calculation, and constructs a Jacobian matrix from the obtained value of the state variable.

【0027】電圧安定度感度係数計算手段25は、安定
度指標初期化手段22と同様な方法により、状態変数修
正手段24の結果即ちヤコビヤン・マトリックスを用い
て、負荷をDj だけ変化させたときの電圧安定度指標
S′を求め、次に電圧安定度感度係数 を計算する。
The voltage stability sensitivity coefficient calculation means 25 uses the result of the state variable correction means 24, that is, the Jacobian matrix, in the same manner as the stability index initialization means 22, when the load is changed by D j. Voltage stability index S ′ of the To calculate.

【0028】手段23、24および25を対象ノ―ドの
数だけ繰り返す。
The means 23, 24 and 25 are repeated for the number of target nodes.

【0029】負荷切替量計算手段26は、(7)〜(1
2)式に対して線形計画法を適用し、t回目の最適負荷
切替量ΔLt,j を求める。
The load switching amount calculation means 26 includes (7) to (1
Apply the linear programming method to the equation (2) to obtain the optimum load switching amount ΔL t, j at the t-th time.

【0030】安定度指標計算手段27は、負荷切替量計
算手段26により求められた負荷切替を実施後の負荷L
t,j =Lt-1,j +ΔLt,j に対して潮流計算を行い指標
tを計算する。
The stability index calculating means 27 is a load L after the load switching calculated by the load switching amount calculating means 26 is carried out.
The power flow is calculated for t, j = L t-1, j + ΔL t, j to calculate the index S t .

【0031】収束判定手段28は、収束判定を行う。す
なわち、予め適当に定められている小さな収束判定値ε
と最大繰り返し回数制限値tmax に対し、|St −S
t-1 |≦ε、またはt≧tmaxなら、収束または計算打
ち切り状態であるので負荷切替操作手段29に進む。否
なら、St →St-1 ,Lt →Lt-1 ,t+1→tとし、
手段23に戻り計算を繰り返す。
The convergence determination means 28 makes a convergence determination. That is, a small convergence judgment value ε that is appropriately determined in advance
And the maximum iteration count limit value t max | S t −S
If t−1 | ≦ ε or t ≧ t max, it means that the convergence or the calculation has been terminated, so that the process proceeds to the load switching operation means 29. If not, S t → S t-1 , L t → L t-1 , t + 1 → t,
Returning to the means 23, the calculation is repeated.

【0032】負荷切替操作手段29は、以上により決定
された負荷切替を行うための系統操作手順を作成し系統
操作を行う。操作手順の作成とその実行方法は公知の技
術であるので説明を省略する。
The load switching operation means 29 creates a system operation procedure for performing the load switching determined as described above, and operates the system. Since the method of creating the operation procedure and the method of executing the operation procedure are known techniques, the description thereof is omitted.

【0033】以上説明したように、実施例によれば調相
機器のような装置を使用しなくても負荷切替を行うこと
により電圧安定度を改善することができ、電圧不安定性
に起因する停電の恐れを未然に回避することができる。
As described above, according to the embodiment, the voltage stability can be improved by switching the load without using a device such as a phase adjusting device, and a power failure caused by the voltage instability can be achieved. The fear of can be avoided in advance.

【0034】(他の実施例1)上記説明の実施例は、負
荷切替による電圧の安定度の改善であるが、一般に負荷
と発電機出力の電気的性質の相違はその符号である。し
たがって、発電機出力の調整により電圧安定度を改善す
る場合は、上記処理における(7)〜(12)式を以下の
(15)〜(20)式とすればよく、上記実施例と同様な処
理により発電調整量を決定できる。すなわち、(15)〜
(20)式は
(Other Embodiment 1) In the embodiment described above, the stability of the voltage is improved by switching the load. Generally, the difference between the electrical characteristics of the load and the output of the generator is its sign. Therefore, in order to improve the voltage stability by adjusting the generator output, the formulas (7) to (12) in the above process may be changed to the following formulas (15) to (20), which is the same as the above embodiment. The amount of power generation adjustment can be determined by the processing. That is, (15) ~
Equation (20) is

【0035】 Gmin m −Go,m ≦ΔGm ≦Gmax m −Go,m …(17) −ΔGmax ≦ΔGm ≦ΔGmax …(18) Vmin k −Vo,k ≦ΔVk ≦Vmax k −Vo,k …(19) ここで、 G=発電機出力:制御変数 Gmin =発電機出力の下限値 Gmax =発電機出力の上限値 m:発電機出力調整対象ノ―ド である。[0035] Gmin m −G o, m ≦ ΔG m ≦ Gmax m −G o, m (17) −ΔG max ≦ ΔG m ≦ ΔG max… (18) Vmin k −V o, k ≦ ΔV k ≦ Vmax k −V o, k … (19) Here, G = generator output: control variable Gmin = lower limit value of generator output Gmax = upper limit value of generator output m: generator output adjustment target node.

【0036】となる。決定された発電機調整量ΔGは、
負荷周波数制御(AFC,またはLFC)により制御さ
れる。以上より、発電調整によっても負荷切替と同様な
効果が得られることが分かる。
It becomes The determined generator adjustment amount ΔG is
It is controlled by load frequency control (AFC or LFC). From the above, it is understood that the same effect as the load switching can be obtained by the power generation adjustment.

【0037】(他の実施例2)負荷切替と発電機出力調
整を同時に行えば、さらに電圧安定性改善の効果が大き
くなることは明かである。この場合は、下記の(21)〜
(29)式に対して最適化処理を行えばよい。
(Other Embodiment 2) It is apparent that the effect of improving the voltage stability is further enhanced by simultaneously performing the load switching and the generator output adjustment. In this case, (21) ~
It suffices to perform the optimization process on the equation (29).

【0038】 Lmin j −Lo,j ≦ΔLj ≦Lmax j −Lo,j …(24) −ΔLmax ≦ΔLj ≦ΔLmax …(25) Gmin m −Go,m ≦ΔGm ≦Gmax m −Go,m …(26) −ΔGmax ≦ΔGm ≦ΔGmax …(27) Vmin k −Vo,k ≦ΔVk ≦Vmax k −Vo,k …(28) [0038] Lmin j −Lo , j ≦ ΔL j ≦ Lmax j −Lo , j (24) −ΔL max ≦ ΔL j ≦ ΔL max (25) Gmin m −G o, m ≦ ΔG m ≦ Gmax m −G o, m ... (26) -ΔGmax ≦ ΔG m ≦ ΔGmax ... (27) Vmin k -V o, k ≦ ΔV k ≦ Vmax k -V o, k ... (28)

【0039】(他の実施例3)さらに調相機器(例え
ば、シャント・リアクトルやコンデンサ―)の調整も同
時に行えば、その効果は一層顕著となる。この場合には
次のように処理すればよい。考慮を必要とする条件式が
増えるだけであるので、下記の(30)〜(40)に対し
て上述の実施例と同様な処理を施すことにより、電圧安
定度の改善ができ、その効果は一層大きくなる。
(Other Embodiment 3) If the phase adjusting device (for example, shunt reactor or condenser) is also adjusted at the same time, the effect becomes more remarkable. In this case, the following processing may be performed. Since the number of conditional expressions that need to be considered only increases, the voltage stability can be improved by applying the same processing to the following examples (30) to (40), and the effect is It gets even bigger.

【0040】 Lmin j −Lo,j ≦ΔLj ≦Lmax j −Lo,j …(33) −ΔLmax ≦ΔLj ≦ΔLmax …(34) Gmin m −Go,m ≦ΔGm ≦Gmax m −Go,m …(35) −ΔGmax ≦ΔGm ≦ΔGmax …(36) Qmin n −Qo,n ≦ΔQn ≦Qmax n −Qo,n …(37) −ΔQmax ≦ΔQn ≦ΔQmax …(38) Vmin k −Vo,k ≦ΔVk ≦Vmax k −Vo,k …(39) ここで、 Q=調相設備容量:制御変数 Qmin =調相設備容量の下限値 Qmax =調相設備容量の上限値 n:調相機器が設置されているノ―ド である。[0040] Lmin j −L o, j ≦ ΔL j ≦ L max j −L o, j … (33) −ΔL max ≦ ΔL j ≦ ΔL max… (34) Gmin m −G o, m ≦ ΔG m ≦ Gmax m −G o, m … (35) −ΔG max ≦ ΔG m ≦ ΔG max… (36) Qmin n −Q o, n ≦ ΔQ n ≦ Qmax n −Q o, n … (37) −ΔQ max ≦ ΔQ n ≦ ΔQ max… (38) Vmin k −V o, k ≦ ΔV k ≦ V max k −V o, k (39) Here, Q = phase modifying equipment capacity: control variable Qmin = lower limit value of phase modifying equipment capacity Qmax = upper limit value of phase modifying equipment capacity n: node where the phase modifying equipment is installed.

【0041】(他の実施例4)求められた負荷切替量と
発電調整量に対し、負荷切替や発電調整を行わずに、オ
ペレ―タにマンマシン・インタ―フェ―ス装置を介して
提示すれば、オペレ―タはそれを参考として電力系統の
電圧安定度を改善するように調整指令をすることができ
る。
(Other Embodiment 4) The obtained load switching amount and power generation adjustment amount are presented to the operator via the man-machine interface device without performing load switching or power generation adjustment. Then, the operator can use this as a reference and issue an adjustment command to improve the voltage stability of the power system.

【0042】(他の実施例5)電圧安定度指標Sに対す
る種々の感度係数、 すなわち、電圧安定度感度係数A
j =dS/dLj ,Am =dS/dGm ,An =dS/
dQn は、電圧安定度の指標としても使える。この指標
は電力系統全体の安定度ではなく調整機器の調整によっ
てどの程度電力系統全体の電圧安定度が変化するかを示
している。電圧安定度が悪いノ―ドでは、その絶対値が
大きく、良いノ―ドでは小さいという性質がある。した
がって、この値をオペレ―タに提示すれば、オペレ―タ
は電圧安定度が悪い地域を知ることができ、電圧安定度
の地域性を考慮した適切な系統運用を行うことができ
る。
(Other Embodiment 5) Various sensitivity coefficients for the voltage stability index S, that is, the voltage stability sensitivity coefficient A
j = dS / dL j , A m = dS / dG m , A n = dS /
dQ n can also be used as an index of voltage stability. This index shows not the stability of the entire power system but the extent to which the voltage stability of the entire power system changes due to the adjustment of the adjusting device. A node with poor voltage stability has a large absolute value and a good node has a small absolute value. Therefore, by presenting this value to the operator, the operator can know the region where the voltage stability is poor, and can perform appropriate system operation in consideration of the regionality of the voltage stability.

【0043】(他の実施例6)上記の全ての実施例にお
いて、電圧安定度指標としてP−V曲線の勾配の和Sの
代わりにヤコビヤン・マトリックスの行列式の値やその
他を用いても、同様に電力系統の電圧安定度を改善でき
る。
(Other Embodiment 6) In all of the above embodiments, the determinant of the Jacobian matrix or other values may be used as the voltage stability index instead of the sum S of the slopes of the PV curve. Similarly, the voltage stability of the power system can be improved.

【0044】[0044]

【発明の効果】以上に説明したように、本発明によれば
負荷切替や発電調整の制御や系統運用によって電圧安定
度を改善することができる。さらに調相機器の性能を充
分生かしつつ、負荷切替や発電調整の制御や系統運用に
よって電圧安定度を改善することができる。特に、経済
活動が好況であるため需要の増加が予測より急速とな
り、送変電機器の増設が遅れたような場合には、本発明
により負荷切替や発電調整の制御や系統運用により電圧
安定度を改善することができるので、本発明の効果が顕
著となる。
As described above, according to the present invention, it is possible to improve the voltage stability by controlling load switching, power generation adjustment, and system operation. Furthermore, the voltage stability can be improved by controlling the load switching, the power generation adjustment, and the grid operation while making full use of the performance of the phase adjusting device. In particular, when economic activity is booming and demand increases more rapidly than expected and delays in the installation of power transmission and transformation equipment, the present invention improves voltage stability by controlling load switching, power generation adjustment, and grid operation. Since it can be improved, the effect of the present invention becomes remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による装置の構成例を示すブロック図FIG. 1 is a block diagram showing a configuration example of an apparatus according to the present invention.

【図2】本発明による処理手段を示すフロ―チャ―トFIG. 2 is a flow chart showing a processing means according to the present invention.

【図3】需要P−電圧V曲線と需要P−感度係数の逆数
1/S曲線を示す図
FIG. 3 is a diagram showing a demand P-voltage V curve and a reciprocal 1 / S curve of the demand P-sensitivity coefficient.

【図4】本発明による負荷切替(負荷移行)の一例を説
明するための図
FIG. 4 is a diagram for explaining an example of load switching (load transfer) according to the present invention.

【符号の説明】[Explanation of symbols]

4…電子計算機 5…マンマシ
ンインタフェース装置 21…状態変数初期化 22…安定度指
標初期値 23…安定度感度係数計算 24…状態変数
修正 25…電圧安定度感度係数計算 26…負荷切替
量計算 27…安定度指標計算
4 ... Computer 5 ... Man-machine interface device 21 ... State variable initialization 22 ... Stability index initial value 23 ... Stability sensitivity coefficient calculation 24 ... State variable correction 25 ... Voltage stability sensitivity coefficient calculation 26 ... Load switching amount calculation 27 … Calculation of stability index

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電力系統の電圧安定度を監視または監視
制御する電圧安定度監視制御装置において、電圧安定度
指標を良くするような負荷切替量または発電機出力調整
量の少なくともいずれか一方を求めることを特徴とする
電圧安定度監視制御装置。
1. A voltage stability monitoring control device for monitoring or monitoring control of voltage stability of a power system, wherein at least one of a load switching amount and a generator output adjustment amount for improving a voltage stability index is obtained. A voltage stability monitoring control device characterized by the above.
【請求項2】 電力系統に調相機器を接続したことを特
徴とする請求項1項に記載の電圧安定度監視制御装置。
2. The voltage stability monitoring control device according to claim 1, further comprising a phasing device connected to the power system.
【請求項3】 負荷切替,発電機出力調整,調相機器の
調整のいずれかを行うことを特徴とする請求項1項また
は2項に記載の電圧安定度監視制御装置。
3. The voltage stability monitoring control device according to claim 1 or 2, wherein any one of load switching, generator output adjustment, and phase adjusting device adjustment is performed.
【請求項4】 調整・制御・系統操作を行わずに、負荷
切替量、発電調整量、調相機器の調整量をマンマシン・
インタ―フェ―ス装置に出力することを特徴とする請求
項1項または2項に記載の電圧安定度監視制御装置。
4. The load change amount, the power generation adjustment amount, and the adjustment amount of the phase adjusting device are man-machined without performing adjustment, control, or system operation.
3. The voltage stability monitoring control device according to claim 1, wherein the voltage stability monitoring control device outputs the voltage stability to the interface device.
【請求項5】 電圧安定度指標に対する感度係数をオペ
レ―タに提示することを特徴とする請求項1項から4項
のいずれか1項に記載の電圧安定度監視制御装置。
5. The voltage stability monitoring control device according to claim 1, wherein a sensitivity coefficient for the voltage stability index is presented to the operator.
JP3177062A 1991-07-18 1991-07-18 Voltage stability monitoring and control device Expired - Fee Related JP2716887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3177062A JP2716887B2 (en) 1991-07-18 1991-07-18 Voltage stability monitoring and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3177062A JP2716887B2 (en) 1991-07-18 1991-07-18 Voltage stability monitoring and control device

Publications (2)

Publication Number Publication Date
JPH0530660A true JPH0530660A (en) 1993-02-05
JP2716887B2 JP2716887B2 (en) 1998-02-18

Family

ID=16024458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3177062A Expired - Fee Related JP2716887B2 (en) 1991-07-18 1991-07-18 Voltage stability monitoring and control device

Country Status (1)

Country Link
JP (1) JP2716887B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1011244A (en) * 1996-06-20 1998-01-16 Mitsubishi Electric Corp Avqc data saving processor
CN102354983A (en) * 2011-09-28 2012-02-15 东北电力大学 Method for determining weak nodes in voltage stability based on matrix perturbation theory
CN107181284A (en) * 2017-04-24 2017-09-19 中国电力科学研究院 The method of adjustment and device of a kind of out-of-limit electricity of circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255526A (en) * 1988-08-19 1990-02-23 Tokyo Electric Power Co Inc:The Power system monitoring control apparatus
JPH0255531A (en) * 1988-08-19 1990-02-23 Tokyo Electric Power Co Inc:The Power system monitoring control apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255526A (en) * 1988-08-19 1990-02-23 Tokyo Electric Power Co Inc:The Power system monitoring control apparatus
JPH0255531A (en) * 1988-08-19 1990-02-23 Tokyo Electric Power Co Inc:The Power system monitoring control apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1011244A (en) * 1996-06-20 1998-01-16 Mitsubishi Electric Corp Avqc data saving processor
CN102354983A (en) * 2011-09-28 2012-02-15 东北电力大学 Method for determining weak nodes in voltage stability based on matrix perturbation theory
CN107181284A (en) * 2017-04-24 2017-09-19 中国电力科学研究院 The method of adjustment and device of a kind of out-of-limit electricity of circuit
CN107181284B (en) * 2017-04-24 2021-04-16 中国电力科学研究院 Method and device for adjusting out-of-limit electric quantity of circuit

Also Published As

Publication number Publication date
JP2716887B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
CN108539798B (en) Secondary regulation strategy of energy storage system based on model predictive control
CN111541274A (en) Island microgrid control strategy based on virtual synchronous generator characteristics
CN103259268B (en) Microgrid reactive-voltage control device and control method thereof
WO2024021206A1 (en) Method and system for energy storage system control based on grid-forming converter, storage medium, and device
CN113572199B (en) Smooth switching method of network-forming type current converter based on model prediction algorithm
CN101667012A (en) Method for controlling reinforcement learning adaptive proportion integration differentiation-based distribution static synchronous compensator
Khalid et al. An improved decentralized finite-time approach for excitation control of multi-area power systems
CN108490791A (en) Temperature control load Cost Controlling Policy
Ghfarokhi et al. Analysis and simulation of the single-machine infinite-bus with power system stabilizer and parameters variation effects
JPH0530660A (en) Voltage stability monitor/controller
CN112350352A (en) Method for increasing energy storage reactive power regulation rate
Wong et al. An optimal secondary multi-bus voltage and reactive power sharing control based on non-iterative decoupled linearized power flow for islanded microgrids
CN107482687B (en) Distributed micro-source parallel operation decoupling and power distribution control method
CN104795836A (en) Single-phase grid-connected photovoltaic power generation detection system and nonlinear current control method thereof
CN112332686B (en) Method for constructing energy function of droop inverter with current limiter
US11368024B2 (en) Controllers for photovoltaic-enabled distribution grid
CN108574282A (en) A kind of flow control method based on the UPFC of nonlinear Control in micro-capacitance sensor
JP3316887B2 (en) Voltage stability monitoring device
CN103855716A (en) Intelligent FLC-PID mixed STATCOM control method
CN115986747B (en) Power distribution network node voltage real-time control method based on dimension-lifting affine
CN112327637B (en) Power spring feedback linearization control method based on robust disturbance observation
Morshed et al. A nonlinear control design to improve the dynamic stability of a multi-machine power system with DFIG-based wind turbines
Asghari et al. Delay-scheduled controllers for inter-area oscillations considering time delays
Rajkumar et al. Nonlinear self-tuning control of a flexible AC transmission system
CN115241898B (en) Droop control method and system of energy storage voltage type current converter

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees