JPH05305830A - Driving force distribution controller of four-wheel drive vehicle - Google Patents

Driving force distribution controller of four-wheel drive vehicle

Info

Publication number
JPH05305830A
JPH05305830A JP25179592A JP25179592A JPH05305830A JP H05305830 A JPH05305830 A JP H05305830A JP 25179592 A JP25179592 A JP 25179592A JP 25179592 A JP25179592 A JP 25179592A JP H05305830 A JPH05305830 A JP H05305830A
Authority
JP
Japan
Prior art keywords
torque
control
transmission torque
wheel drive
transfer torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25179592A
Other languages
Japanese (ja)
Other versions
JP2936912B2 (en
Inventor
Yoshiyuki Eto
宜幸 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Publication of JPH05305830A publication Critical patent/JPH05305830A/en
Application granted granted Critical
Publication of JP2936912B2 publication Critical patent/JP2936912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To promote an improvement in fuel consumption after securing the extent of fundamental performance by judging whether 4WD control is necessary or not, and when it is unnecessary, selecting a control transfer torque, and when it is necessary, selecting the maximum value between the control transfer torque and an environment corresponding transfer torque, and performing a job for clutch clamping force control. CONSTITUTION:This controller is provided with a control transfer torque calculating means (c) calcualting a control transfer torque for getting an optimum tuning characteristic on the basis of information by a front-rear-wheel speed detecting means (b) as a transfer torque to be trandsferred via a torque distributing clutch (a). In addition, torque conformed to a specified traveling ambience is calcualted by an ambience corresponding transfer torque calculating means (d). Then the controller is also provided with a 4WD requiredness judging means (e) which judges whether 4WD control is necessary or not, and when it is judged as disuse, a control transfer torque alone is selected, but when it is judged to be necessary, a transfer torque selecting means (f) selects the maximum value between the control transfer torque and the ambience corresponding transfer torque, and a clutch clamping force control means (g) controls the clamping force of a clutch (a).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、前後輪の一方へは直結
駆動で他方へはトルク配分用クラッチを介して駆動力が
伝達される四輪駆動車の駆動力配分制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive force distribution control device for a four-wheel drive vehicle in which direct drive is applied to one of the front and rear wheels and drive force is transmitted to the other through a torque distributing clutch.

【0002】[0002]

【従来の技術】従来、この種の四輪駆動車の駆動力配分
制御装置としては、例えば、特開平2−270640号
公報に記載のものが知られている。
2. Description of the Related Art Conventionally, as a driving force distribution control device for a four-wheel drive vehicle of this type, for example, one disclosed in Japanese Patent Application Laid-Open No. 2-270640 is known.

【0003】上記従来出典には、後輪駆動ベースで前輪
側への伝達トルクがクラッチの締結力制御により与えら
れる四輪駆動車において、前輪側伝達トルクとして、前
後輪回転速度差に比例した制御伝達トルクT1 ,発進時
にスロットル開度に比例した発進トルクT2 ,車速に比
例した初期トルクT3 をそれぞれ演算し、その最大値を
前輪側伝達トルクとして出力する制御技術が示されてい
る。
According to the above-mentioned conventional source, in a four-wheel drive vehicle in which the transmission torque to the front wheel side is given by the rear wheel drive base by the clutch engagement force control, the front wheel side transmission torque is controlled in proportion to the front and rear wheel rotation speed difference. There is disclosed a control technique for calculating a transmission torque T 1 , a starting torque T 2 proportional to a throttle opening at the time of starting, and an initial torque T 3 proportional to a vehicle speed, and outputting the maximum value as a front wheel side transmission torque.

【0004】ここで、発進トルクT2 は、低摩擦係数路
での発進時に後輪がスピンせず十分なトラクションを得
るためのトルクである。また、初期トルクT3 は、低温
時(例えば−25℃)でも油圧の応答遅れ影響を受けず
に制御伝達トルクT1 を前輪側に伝達するためのトルク
で、トルク配分用クラッチをごく弱いトルクで接続する
ことで多板クラッチの隙間を埋めるための空走時間を削
減している。
Here, the starting torque T 2 is a torque for obtaining sufficient traction without causing the rear wheels to spin when starting on a low friction coefficient road. Further, initial torque T 3 is a torque for transmitting the control transmission torque T 1 on the front wheel side without receiving the response delay effect of the hydraulic even at a low temperature (e.g. -25 ° C.), very weak torque clutch torque distribution By connecting with, the idle time for filling the gap of the multi-plate clutch is reduced.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の四輪駆動車の駆動力配分制御装置にあっては、低摩
擦係数路での発進性や低温下での油圧応答性が得られて
好ましいものの、高摩擦係数路や常温下等の一般走行環
境下においても、本来は必要としない発進トルクT2
初期トルクT3 を常時与えている為、4輪駆動車特有の
燃費が悪化するという問題があった。
However, the above-mentioned conventional drive force distribution control device for a four-wheel drive vehicle is preferable because the starting performance on a low friction coefficient road and the hydraulic response at a low temperature can be obtained. However, even in a general driving environment such as a high friction coefficient road or normal temperature, the starting torque T 2 and the initial torque T 3 which are not originally required are constantly applied, so that the fuel consumption peculiar to a four-wheel drive vehicle deteriorates. There was a problem.

【0006】本発明は、上記のような問題に着目してな
されたもので、前後輪の一方へは直結駆動で他方へはト
ルク配分用クラッチを介して駆動力が伝達される四輪駆
動車の駆動力配分制御装置において、適切な4輪駆動制
御の基本性能を確保した上で燃費の向上を図ることを課
題とする。
The present invention has been made in view of the above problems, and is a four-wheel drive vehicle in which the driving force is directly transmitted to one of the front and rear wheels and the driving force is transmitted to the other through a torque distribution clutch. It is an object of the present invention to improve fuel efficiency while ensuring proper basic performance of four-wheel drive control.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
本発明の四輪駆動車の駆動力配分制御装置では、車両の
走行環境が適切な4輪駆動制御を必要とするか否かを判
別し、不必要時には制御伝達トルクを選択し、必要時に
は、制御伝達トルクと環境対応伝達トルクのうち最大値
を選択してクラッチ締結力制御を行なう手段とした。
In order to solve the above problems, the drive force distribution control device for a four-wheel drive vehicle according to the present invention determines whether or not the traveling environment of the vehicle requires proper four-wheel drive control. The control transmission torque is selected when it is unnecessary, and the maximum value is selected from the control transmission torque and the environment-friendly transmission torque when the control torque is required to perform clutch engagement force control.

【0008】即ち、図1のクレーム対応図に示すよう
に、前輪あるいは後輪の一方へのエンジン直結駆動系に
対し後輪あるいは前輪の他方への駆動系の途中に設けら
れるトルク配分用クラッチaと、前後輪回転速度差を検
出する前後輪回転速度差検出手段bと、前記トルク配分
用クラッチaを介して伝達される伝達トルクとして、前
後輪回転速度差情報に基づいて最適な旋回特性を得る制
御伝達トルクを算出する制御伝達トルク算出手段cと、
前記トルク配分用クラッチaを介して伝達される伝達ト
ルクとして、特定の走行環境に応じた環境対応伝達トル
クを制御伝達トルクとは別途に算出する少なくとも1つ
の環境対応伝達トルク算出手段dと、車両の走行環境が
適切な4輪駆動制御を必要とするか否かを判別する4輪
駆動必要性判別手段eと、前記4輪駆動必要性判別手段
eにより車両の走行環境が適切な4輪駆動制御を必要と
しないと判別された時、制御伝達トルクのみを選択し、
4輪駆動必要性判別手段eにより車両の走行環境が適切
な4輪駆動制御を必要とすると判別された時、制御伝達
トルクと環境対応伝達トルクのうち最大値を選択する伝
達トルク選択手段fと、前記伝達トルク選択手段fによ
り選択された伝達トルクが得られるように前記トルク配
分用クラッチaの締結力を制御するクラッチ締結力制御
手段gとを備えていることを特徴とする。
That is, as shown in the claim correspondence diagram of FIG. 1, a torque distribution clutch a is provided in the middle of the drive system to the other of the rear wheels or front wheels with respect to the drive system directly connected to the engine to one of the front wheels or rear wheels. An optimum turning characteristic based on the front-rear wheel rotation speed difference information as a transmission torque transmitted through the front-rear wheel rotation speed difference detection means b for detecting the front-rear wheel rotation speed difference and the torque distribution clutch a. Control transmission torque calculating means c for calculating the obtained control transmission torque,
At least one environment-friendly transmission torque calculating means d for calculating environment-friendly transmission torque corresponding to a specific traveling environment as the transmission torque transmitted through the torque distribution clutch a, separately from the control transmission torque, and a vehicle. 4 wheel drive necessity determination means e for determining whether or not the traveling environment of 4 requires appropriate 4 wheel drive control, and 4 wheel drive for which the vehicle traveling environment is appropriate by the 4 wheel drive necessity determination means e. When it is determined that control is not required, select only control transmission torque,
When the four-wheel drive necessity determining means e determines that the traveling environment of the vehicle requires an appropriate four-wheel drive control, a transfer torque selecting means f for selecting the maximum value of the control transfer torque and the environment-compatible transfer torque. And a clutch engagement force control means g for controlling the engagement force of the torque distribution clutch a so that the transmission torque selected by the transmission torque selection means f is obtained.

【0009】[0009]

【作用】4輪駆動必要性判別手段eにより車両の走行環
境が適切な4輪駆動制御を必要としないと判別された時
には、伝達トルク選択手段fにおいて、トルク配分用ク
ラッチaを介して伝達される伝達トルクとして、前後輪
回転速度差情報に基づいて最適な旋回特性を得る制御伝
達トルクが選択され、このトルクが得られるようにクラ
ッチ締結力制御手段gによりトルク配分用クラッチaの
締結力が制御される。
When the four-wheel drive necessity determining means e determines that the traveling environment of the vehicle does not require proper four-wheel drive control, the transmission torque selecting means f transmits the torque via the torque distribution clutch a. As the transmission torque to be transmitted, the control transmission torque that obtains the optimum turning characteristic is selected based on the front-rear wheel rotation speed difference information, and the clutch engagement force control means g changes the engagement force of the torque distribution clutch a so as to obtain this torque. Controlled.

【0010】従って、高摩擦係数路走行時等のように適
切な4輪駆動制御を必要としないと判別される走行時に
おいては、前後輪回転速度差の発生がない限りトルク配
分用クラッチaを解放した2輪駆動状態とされ、燃費の
向上が図られる。尚、この不必要時でも制御伝達トルク
による旋回性向上性能が最小限確保される。
Therefore, during traveling such as when traveling on a high friction coefficient road, where it is determined that proper four-wheel drive control is not required, the torque distribution clutch a is used unless the front-rear wheel rotational speed difference occurs. The released two-wheel drive state is achieved, and fuel efficiency is improved. Even when this is unnecessary, the turning performance improving performance by the control transmission torque is ensured to the minimum.

【0011】4輪駆動必要性判別手段eにより車両の走
行環境が適切な4輪駆動制御を必要とすると判別された
時には、伝達トルク選択手段gにおいて、トルク配分用
クラッチaを介して伝達される伝達トルクとして、前記
制御伝達トルクと特定の走行環境に応じた環境対応伝達
トルクのうち最大値が選択され、この選択されたトルク
が得られるようにクラッチ締結力制御手段gによりトル
ク配分用クラッチaの締結力が制御される。
When it is determined by the four-wheel drive necessity determining means e that the vehicle traveling environment requires proper four-wheel drive control, the transmission torque selecting means g transmits the torque via the torque distribution clutch a. As the transmission torque, the maximum value is selected from the control transmission torque and the environmentally compatible transmission torque according to the specific traveling environment, and the clutch engaging force control means g causes the torque distribution clutch a to obtain the selected torque. The fastening force of is controlled.

【0012】従って、低摩擦係数路走行時や限界走行時
等のように適切な4輪駆動制御を必要とすると判別され
る走行時においては、環境対応伝達トルクが生かされ、
低μトラクション性能等の適切な4輪駆動制御の基本性
能が確保される。
Therefore, during traveling such as traveling on a road having a low coefficient of friction or traveling at the limit, it is determined that the proper four-wheel drive control is required, and the environment-friendly transmission torque is utilized.
Appropriate basic performance of four-wheel drive control such as low μ traction performance is secured.

【0013】[0013]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】(第1実施例)構成を説明する。(First Embodiment) The configuration will be described.

【0015】図2は本発明第1実施例のトルクスプリッ
ト制御システム(駆動力配分制御装置に相当)が適用さ
れた四輪駆動車の駆動系を含む全体システム図である。
FIG. 2 is an overall system diagram including a drive system of a four-wheel drive vehicle to which the torque split control system (corresponding to a drive force distribution control device) of the first embodiment of the present invention is applied.

【0016】第1実施例のトルクスプリット制御システ
ムが適用された車両は、後輪ベースの四輪駆動車であっ
て、その駆動系には、エンジン1,トランスミッション
2,トランスファ入力軸3,リヤプロペラシャフト4,
リヤディファレンシャル5,後輪6,トランスファ出力
軸7,フロントプロペラシャフト8,フロントディファ
レンシャル9,前輪10を備えていて、後輪6へはトラ
ンスミッション2を経過してきたエンジントルクが直接
伝達され、前輪10へは前輪駆動系である前記トランス
ファ入出力軸3,7間に設けてある湿式多板摩擦クラッ
チ11(トルク配分用クラッチに相当)を内蔵したトラ
ンスファクラッチ装置12を介して伝達される。
The vehicle to which the torque split control system of the first embodiment is applied is a rear wheel-based four-wheel drive vehicle, and its drive system includes an engine 1, a transmission 2, a transfer input shaft 3, a rear propeller. Shaft 4,
The rear differential 5, the rear wheels 6, the transfer output shaft 7, the front propeller shaft 8, the front differential 9, and the front wheels 10 are provided, and the engine torque that has passed through the transmission 2 is directly transmitted to the rear wheels 6 and the front wheels 10. Is transmitted via a transfer clutch device 12 having a wet multi-plate friction clutch 11 (corresponding to a torque distribution clutch) provided between the transfer input / output shafts 3 and 7 which is a front wheel drive system.

【0017】そして、駆動性能と操舵性能の両立を図り
ながら前後輪の駆動力配分を最適に制御するトルクスプ
リット制御システムは、湿式多板摩擦クラッチ11を内
蔵した前記トランスファクラッチ装置12(例えば、先
願の特願昭63−325379号の明細書及び図面を参
照)と、クラッチ締結力となる制御油圧Pcを発生する制
御油圧発生装置20と、制御油圧発生装置20に設けら
れたソレノイドバルブ28へ各種入力センサ30からの
情報に基づいて所定のディザー電流i*を出力するトル
クスプリットコントローラ40とを備えている。
A torque split control system for optimally controlling the distribution of the driving forces of the front and rear wheels while achieving both the driving performance and the steering performance is a transfer clutch device 12 (for example, a front end) having a wet multi-plate friction clutch 11 built therein. (See the specification and drawings of Japanese Patent Application No. 63-325379), the control oil pressure generator 20 that generates the control oil pressure Pc that is the clutch engagement force, and the solenoid valve 28 provided in the control oil pressure generator 20. A torque split controller 40 that outputs a predetermined dither current i * based on information from various input sensors 30.

【0018】前記油圧制御装置20は、リリーフスイッ
チ21により駆動または停止するモータ22と、該モー
タ22により作動してリザーバタンク23から吸い上げ
る油圧ポンプ24と、該油圧ポンプ24からのポンプ吐
出圧(一次圧)をチェックバルブ25を介して蓄えるア
キュムレータ26と、該アキュムレータ26からのライ
ン圧(二次圧)をトルクスプリット制御部40からのソ
レノイド駆動のディザー電流i*により所定の制御油圧
Pcに調整するソレノイドバルブ28とを備え、制御油圧
Pcの作動油は制御油圧パイプ29を経過してクラッチポ
ートに供給される。
The hydraulic control device 20 includes a motor 22 which is driven or stopped by a relief switch 21, a hydraulic pump 24 which is actuated by the motor 22 to suck up from a reservoir tank 23, and a pump discharge pressure (primary pressure) from the hydraulic pump 24. Accumulator 26 for accumulating the pressure) via the check valve 25, and the line pressure (secondary pressure) from the accumulator 26 is controlled to a predetermined control hydraulic pressure by the solenoid driven dither current i * from the torque split control unit 40.
With a solenoid valve 28 for adjusting to Pc, control hydraulic pressure
The hydraulic oil of Pc passes through the control hydraulic pipe 29 and is supplied to the clutch port.

【0019】前記各種入力センサ30としては、図3の
システム電子制御系のブロック図に示すように、左前輪
回転センサ30a,右前輪回転センサ30b,左後輪回
転センサ30c,右後輪回転センサ30d,横加速度セ
ンサ30e,前後加速度センサ30f,スロットル開度
センサ30gを有する。
As the various input sensors 30, as shown in the block diagram of the system electronic control system of FIG. 3, the left front wheel rotation sensor 30a, the right front wheel rotation sensor 30b, the left rear wheel rotation sensor 30c, the right rear wheel rotation sensor. 30d, a lateral acceleration sensor 30e, a longitudinal acceleration sensor 30f, and a throttle opening sensor 30g.

【0020】前記トルクスプリット制御部40は、図3
のシステム電子制御系のブロック図に示すように、左前
輪速演算回路40a,右前輪速演算回路40b,左後輪
速演算回路40c,右後輪速演算回路40d,前輪速演
算回路40e,後輪速演算回路40f,回転速度差演算
回路40g,ゲイン演算回路40h,制御伝達トルク演
算回路40i,発進トルク演算回路40j,初期トルク
演算回路40k,4WD必要性判別回路40m,伝達ト
ルク選択回路40n,T−i変換回路40p,ディザー
電流出力回路40qを有する。
The torque split control unit 40 is shown in FIG.
As shown in the block diagram of the system electronic control system, the left front wheel speed calculation circuit 40a, right front wheel speed calculation circuit 40b, left rear wheel speed calculation circuit 40c, right rear wheel speed calculation circuit 40d, front wheel speed calculation circuit 40e, rear Wheel speed calculation circuit 40f, rotation speed difference calculation circuit 40g, gain calculation circuit 40h, control transmission torque calculation circuit 40i, starting torque calculation circuit 40j, initial torque calculation circuit 40k, 4WD necessity determination circuit 40m, transmission torque selection circuit 40n, It has a Ti conversion circuit 40p and a dither current output circuit 40q.

【0021】尚、図中、A/DはA/D 変換器、D/Aは
D/A 変換器である。
In the figure, A / D is an A / D converter and D / A is
It is a D / A converter.

【0022】作用を説明する。The operation will be described.

【0023】(イ)前後輪駆動力配分制御処理作動 図4は10msecの制御周期によりトルクスプリットコント
ローラ40で行なわれる前後輪駆動力配分制御処理作動
の流れを示すフローチャートで、以下、各ステップにつ
いて順に説明する。
(A) Front and rear wheel drive force distribution control processing operation FIG. 4 is a flowchart showing the flow of front and rear wheel drive force distribution control processing operation performed by the torque split controller 40 at a control cycle of 10 msec. explain.

【0024】ステップ80では、制御情報として、左前
輪速VWFL,右前輪速VWFR,左後輪速VWRL,右後輪速
VWRR,横加速度YG,前後加速度XG,スロットル開度θが
入力される。
In step 80, the left front wheel speed V WFL , the right front wheel speed V WFR , the left rear wheel speed V WRL , and the right rear wheel speed are used as control information.
V WRR , lateral acceleration Y G , longitudinal acceleration X G , and throttle opening θ are input.

【0025】ステップ81では、上記左前輪速VWFLと右
前輪速VWFRとの平均値により前輪速VWF が演算され、上
記左後輪速VWRLと右後輪速VWRRとの平均値により後輪速
VWRが演算される。
In step 81, the front wheel speed V WF is calculated from the average value of the left front wheel speed V WFL and the right front wheel speed V WFR, and the average value of the left rear wheel speed V WRL and the right rear wheel speed V WRR is calculated. By rear wheel speed
V WR is calculated.

【0026】ステップ82では、前輪速VWF と後輪速V
WR から前後輪回転速度差検出値ΔVW(=VWR −VWF
但し、ΔVW≧0)が演算される(前後輪回転速度差検出
手段に相当)。
In step 82, the front wheel speed V WF and the rear wheel speed V WF
Front-rear wheel rotation speed difference detection value from WR ΔV W (= V WR −V WF ;
However, ΔV W ≧ 0) is calculated (corresponding to front and rear wheel rotation speed difference detection means).

【0027】ステップ83では、前後輪回転速度差ΔVW
に対する制御伝達トルクT1 の制御ゲインKhが横加速度
YGの逆数に基づいて下記の式で演算される。
At step 83, the front and rear wheel rotation speed difference ΔV W
The control gain K h of the control transmission torque T 1 with respect to
It is calculated by the following formula based on the reciprocal of Y G.

【0028】Kh=αh /YG(但し、Kh≦βh ) 例えば、αh =1 でβh =10とした場合、図5(A)に
示す特性であらわされ、この制御ゲインKhは、あらゆる
路面摩擦係数において常にリニアなニュートラルステア
特性となる様に選ばれている。
K h = α h / Y G (where K h ≤β h ) For example, when α h = 1 and β h = 10, the characteristic shown in FIG. K h is selected so that it always has a linear neutral steer characteristic at all road friction coefficients.

【0029】ステップ84では、制御ゲインKhと前後輪
回転速度差ΔVWとによって制御伝達トルクT1 が演算さ
れる(制御伝達トルク算出手段に相当)。これをトルク
特性マップであらわすと図5(B)に示すようになる。
In step 84, the control transmission torque T 1 is calculated from the control gain K h and the front and rear wheel rotation speed difference ΔV W (corresponding to control transmission torque calculating means). This is shown in a torque characteristic map as shown in FIG. 5 (B).

【0030】ステップ85では、前輪速VWF と前後加速
度XGとの関数により求められた車体速VCARとスロットル
開度θにより発進トルクT2 が下記の式で演算される
(環境対応伝達トルク演算手段の1つに相当)。
In step 85, the starting torque T 2 is calculated by the following equation based on the vehicle speed V CAR and the throttle opening θ obtained by the function of the front wheel speed V WF and the longitudinal acceleration X G (environmentally friendly transfer torque). Equivalent to one of the computing means).

【0031】VCAR=f1 (VWF ,XG)で求められ、 T2 =f2 (VCAR,θ)で求められる。V CAR = f 1 (V WF , X G ) and T 2 = f 2 (V CAR , θ).

【0032】なお、 T2 =0 …VCAR>20km/h T2 =K'・θ+T0 …VCAR≦20km/h (K’,T0 は定数) 例えば、K’=0.5(kgm/deg ),T0 =4(kgm )
に設定した場合、これをトルク特性マップであらわすと
図6に示すようになる。
Note that T 2 = 0 ... V CAR > 20 km / h T 2 = K ′ · θ + T 0 ... V CAR ≦ 20 km / h (K ′, T 0 are constants) For example, K ′ = 0.5 (kgm / deg), T 0 = 4 (kgm)
When it is set to, the torque characteristic map is shown in FIG.

【0033】ここで、スロットル開度θが所定値以上の
時に発進トルクT2 がでるように、 T2 =0 …VCAR>20km/h T2 =K'・(θ−θ0 )+T0 …VCAR≦20km/h 例えば、θ0 =30deg としてもよい。
Here, T 2 = 0 ... V CAR > 20 km / h T 2 = K ′ · (θ−θ 0 ) + T 0 so that the starting torque T 2 is generated when the throttle opening θ is equal to or greater than a predetermined value. V CAR ≦ 20 km / h For example, θ 0 = 30 deg may be set.

【0034】ステップ86では、横加速度YGに応じて初
期トルクT3 が演算される(環境対応伝達トルク演算手
段の1つに相当)。
In step 86, the initial torque T 3 is calculated according to the lateral acceleration Y G (corresponding to one of environment-friendly transmission torque calculating means).

【0035】この初期トルクT3 は、横加速度が発生す
る旋回時にはクラッチプレート間の滑りを許容するよう
に、横加速度が大きくなるほどトルクレベルを低く設定
されるもので、例えば、直進時初期トルクT0'をT0'=
2(kgm) とし、YG0 =0.45(G),YG1 =0.6(G)とした場
合、これをトルク特性マップであらわすと図7に示すよ
うになる。
This initial torque T 3 is set such that the torque level becomes lower as the lateral acceleration increases so as to allow slippage between the clutch plates at the time of turning when lateral acceleration occurs. 0 'to T 0 ' =
When 2 (kgm), Y G0 = 0.45 (G), and Y G1 = 0.6 (G), it is shown in a torque characteristic map as shown in FIG. 7.

【0036】ステップ87では、走行距離L0 以内にT
1 >max (T2 ’,T0 ’)を1回以上経験したか否か
が判断される。
At step 87, within the traveling distance L 0 , T
It is determined whether 1 > max (T 2 ', T 0 ') has been experienced more than once.

【0037】ここで、車速と時間の積算で監視される走
行距離L0 としては、例えば、L0 =1000kmと設定され
る。
Here, the traveling distance L 0 monitored by integrating the vehicle speed and time is set to L 0 = 1000 km, for example.

【0038】また、判断に用いられる発進トルクT2
は、 T2 ’=0 …VCAR>20km T2 ’=T0 …VCAR≦20km で与えられる。
Further, the starting torque T 2 'used for the judgment
Is given by T 2 '= 0 ... V CAR > 20 km T 2 ' = T 0 ... V CAR ≤ 20 km.

【0039】さらに、判断に用いられる初期トルクT3
は、直進時初期トルクT0'で与えられる。
Further, the initial torque T 3 used for the judgment
Is given by the initial torque T 0 'during straight travel.

【0040】そして、ステップ87でYESと判断され
た時には、ステップ88へ進み、4WDフラグが4WD
フラグ=1と設定され、ステップ87でNOと判断され
た時には、ステップ89へ進み、4WDフラグが4WD
フラグ=0と設定される。以上のステップ87〜ステッ
プ89は、4輪駆動必要性判別手段に相当する。
Then, if YES at step 87, the routine proceeds to step 88, where the 4WD flag is set to 4WD.
When the flag is set to 1 and it is determined NO in step 87, the process proceeds to step 89 and the 4WD flag is set to 4WD.
Flag = 0 is set. The above steps 87 to 89 correspond to the four-wheel drive necessity determining means.

【0041】ステップ90では、ステップ89で4WD
フラグ=0と設定され時には、最終伝達トルクTとして
制御伝達トルクT1 が選択され、ステップ88で4WD
フラグ=1と設定された時には、最終伝達トルクTとし
て、制御伝達トルクT1 ,発進トルクT2 ,初期トルク
3 のうち最大値が選択される(伝達トルク選択手段に
相当)。
At step 90, 4WD at step 89
When the flag = 0 is set, the control transmission torque T 1 is selected as the final transmission torque T, and 4WD is set in step 88.
When the flag is set to 1 , the maximum value of the control transmission torque T 1 , the starting torque T 2 , and the initial torque T 3 is selected as the final transmission torque T (corresponding to the transmission torque selection means).

【0042】ステップ91及びステップ92では、前記
ステップ90で設定された最終伝達トルクTを得るべく
前記湿式多板摩擦クラッチ11の締結力が制御される
(クラッチ締結力制御手段に相当)。
In steps 91 and 92, the engagement force of the wet multi-plate friction clutch 11 is controlled (corresponding to clutch engagement force control means) to obtain the final transmission torque T set in step 90.

【0043】ステップ91では、前記ステップ90で設
定された最終伝達トルクTが、予め与えられたT−i 特
性テーブルによりソレノイド駆動電流iに変換される。
In step 91, the final transmission torque T set in step 90 is converted into the solenoid drive current i by the T-i characteristic table given in advance.

【0044】ステップ92では、ソレノイド駆動電流i
がディザー電流i*に変換され(例えば、i±0.1A 100
Hz)、そのディザー電流i*がソレノイドバルブ28へ
出力される。
At step 92, the solenoid drive current i
Is converted to dither current i * (for example, i ± 0.1 A 100
Hz), and the dither current i * is output to the solenoid valve 28.

【0045】(ロ)適切な4輪駆動制御を必要としない
走行時 高摩擦係数路での通常走行時等であって、4輪駆動必要
性判断ステップであるステップ87でNOと判断された
時には、ステップ80〜ステップ86→ステップ87→
ステップ89→ステップ90→ステップ91→ステップ
92へと進む流れとなり、ステップ90では、最終伝達
トルクTとして、制御伝達トルクT1 が選択され、この
制御伝達トルクT1 が得られるように湿式多板摩擦クラ
ッチ11の締結力が制御される。
(B) When traveling without requiring proper four-wheel drive control During normal traveling on a high friction coefficient road, etc., when NO is determined in step 87 which is a four-wheel drive necessity determining step. , Step 80 to Step 86 → Step 87 →
The flow proceeds in the order of step 89 → step 90 → step 91 → step 92. At step 90, the control transmission torque T 1 is selected as the final transmission torque T, and the wet multi-plate is obtained so as to obtain this control transmission torque T 1. The engagement force of the friction clutch 11 is controlled.

【0046】ここで、ステップ87では、走行距離L0
以内にT1 >max (T2 ’,T0 ’)を1回以上経験し
たか否かが判断されるが、この判断は長期的な路面学習
により路面摩擦係数を推定することを意味する。つま
り、低μ路走行時には、微妙なアクセルワークが要求さ
れ、例えば、わずかにアクセル踏み込み過ぎても駆動輪
スリップが発生してしまうことになり、前後輪回転速度
差に比例する制御伝達トルクT1 のレベルが高まり、必
然的にステップ87を満足することになる。尚、この路
面摩擦係数推定で低μ路を主体とする判断を示したが、
高μ路を主体とする判断、例えば、発進停止を50回繰
り返し、その間にT1 =Tmin が所定時間以上継続した
かどうか等により路面摩擦係数を推定するようにしても
良い。
Here, in step 87, the traveling distance L 0
It is judged within a time period whether T 1 > max (T 2 ', T 0 ') has been experienced more than once. This judgment means that the road surface friction coefficient is estimated by long-term road surface learning. That is, when the vehicle runs on a low μ road, delicate accelerator work is required. For example, even if the accelerator is slightly depressed, the drive wheel slip will occur, and the control transmission torque T 1 proportional to the front-rear wheel rotation speed difference will be generated. The level of will increase and will inevitably satisfy step 87. In addition, this road surface friction coefficient estimation showed a judgment mainly on low μ roads,
It may be possible to estimate the road surface friction coefficient by making a determination mainly on the high μ road, for example, starting and stopping 50 times repeatedly and whether T 1 = Tmin continues for a predetermined time or more during that time.

【0047】従って、高摩擦係数路走行時等のように適
切な4輪駆動制御を必要としないと判別される走行時に
おいては、前後輪回転速度差の発生がない限り湿式多板
摩擦クラッチ11を解放した2輪駆動状態とされ、常
時、初期トルクT2 が付与され続けたり、発進時に高い
発進トルクT2 が付与される場合に比べて燃費の向上が
図られる。尚、この不必要時でも制御伝達トルクT1
よる旋回性向上性能が最小限確保される。
Therefore, during traveling such as when traveling on a high friction coefficient road, where it is determined that proper four-wheel drive control is not required, unless there is a difference in front and rear wheel rotation speed, the wet multi-plate friction clutch 11 is used. Thus, the fuel economy is improved compared to the case where the initial torque T 2 is continuously applied or the high starting torque T 2 is applied at the time of starting. Even when this is unnecessary, the turning performance improving performance by the control transmission torque T 1 is ensured to the minimum.

【0048】(ハ)適切な4輪駆動制御を必要とする走
行時 低摩擦係数路走行時や高摩擦係数路での限界走行時等で
あって、4輪駆動必要性判断ステップであるステップ8
7でYESと判断された時には、ステップ80〜ステッ
プ86→ステップ87→ステップ88→ステップ90→
ステップ91→ステップ92へと進む流れとなり、ステ
ップ90では、最終伝達トルクTとして、制御伝達トル
クT1 ,発進トルクT2 ,初期トルクT3 のうち最大値
が選択され、この最終伝達トルクTが得られるように湿
式多板摩擦クラッチ11の締結力が制御される。
(C) When traveling that requires proper four-wheel drive control When traveling on a low friction coefficient road or on a limit traveling on a high friction coefficient road, the four-wheel drive necessity determining step is performed.
When YES is determined in step 7, step 80 to step 86 → step 87 → step 88 → step 90 →
The flow proceeds from step 91 to step 92, and in step 90, the maximum value of the control transmission torque T 1 , the starting torque T 2 , and the initial torque T 3 is selected as the final transmission torque T, and this final transmission torque T is selected. The fastening force of the wet multi-plate friction clutch 11 is controlled so as to be obtained.

【0049】従って、低摩擦係数路走行時や限界走行時
等のように適切な4輪駆動制御を必要とすると判別され
る走行時においては、下記に列挙するように、発進トル
クT2と初期トルクT3 による環境対応伝達トルクが生
かされ、低μトラクション性能等の適切な4輪駆動制御
の基本性能が確保される。
Therefore, when the vehicle is determined to require appropriate four-wheel drive control, such as when traveling on a low friction coefficient road or at the time of limit traveling, as described below, the starting torque T 2 and the initial torque are set. The environment-friendly transmission torque due to the torque T 3 is utilized to ensure proper basic performance of four-wheel drive control such as low μ traction performance.

【0050】1) 発進トルクT2 により低μ路発進時で
あっても発進トラクションが確保される。
1) The starting torque T 2 ensures starting traction even when the vehicle starts on a low μ road.

【0051】2) 初期トルクT3 により低温時の油圧応
答遅れが解消される。この結果、発進トルクT2 を付与
する発進加速時に応答良く高トルクを付与することで尻
振りが防止されるし、制御伝達トルクT1 による制御時
に応答良く制御伝達トルクT1が付与されることで、低
μ路旋回時や限界旋回時に狙った旋回性能が常に確保さ
れ、操安性が高まる。
2) The initial torque T 3 eliminates the hydraulic response delay at low temperatures. As a result, to butt swing is prevented by applying a good response high torque during starting acceleration of imparting starting torque T 2, the response may control the transmission torque T 1 is given when the control by the control transmission torque T 1 Therefore, the turning performance aimed at at the time of turning on a low μ road or at the time of the limit turning is always secured, and the maneuverability is enhanced.

【0052】3) 初期トルクT3 により高速直進走行時
に安定性と走破性が高まる。
3) The initial torque T 3 enhances the stability and the running performance during high-speed straight running.

【0053】以上説明してきたように、第1実施例の四
輪駆動車の駆動力配分制御装置にあっては、下記に記載
する効果が得られる。
As described above, in the drive force distribution control device for the four-wheel drive vehicle of the first embodiment, the following effects can be obtained.

【0054】(1)車両の走行環境が適切な4輪駆動制
御を必要とするか否かを判別し、不必要時には制御伝達
トルクT1 を選択し、必要時には、制御伝達トルクT1
と発進トルクT2 と初期トルクT3 のうち最大値を選択
してクラッチ締結力制御を行なう装置とした為、適切な
4輪駆動制御の基本性能を確保した上で燃費の向上を図
ることができる。
[0054] (1) determines whether the running environment of the vehicle requires an appropriate four-wheel drive control, when not required to select a control transmission torque T 1, the time required, control the transmission torque T 1
Since a device for controlling the clutch engagement force by selecting the maximum value among the starting torque T 2 and the initial torque T 3 is provided, it is possible to improve fuel efficiency while ensuring the basic performance of appropriate four-wheel drive control. it can.

【0055】(2)環境対応伝達トルクとして、発進ト
ルクT2 と初期トルクT3 を制御伝達トルクT1 とは別
途に付与する装置とした為、車両の走行環境が適切な4
輪駆動制御を必要とすると判断された時、上記1),2),3)
の低μトラクション性能が発揮される。
(2) Since the starting torque T 2 and the initial torque T 3 are provided separately from the control transmission torque T 1 as the environment-friendly transmission torque, the vehicle traveling environment is appropriate.
When it is judged that wheel drive control is required, the above 1), 2), 3)
The low μ traction performance of is demonstrated.

【0056】(第2実施例)次に、第2実施例について
説明する。
(Second Embodiment) Next, a second embodiment will be described.

【0057】この第2実施例のハード構成は、第1実施
例と全く同様であるので説明を省略する。
The hardware structure of the second embodiment is exactly the same as that of the first embodiment, and therefore its explanation is omitted.

【0058】作用を説明する。The operation will be described.

【0059】図8は第2実施例のトルクスプリットコン
トローラ40で行なわれる前後輪駆動力配分制御処理作
動の流れを示すフローチャートである。
FIG. 8 is a flow chart showing the flow of the front and rear wheel drive force distribution control processing operation performed by the torque split controller 40 of the second embodiment.

【0060】図4に示す第1実施例のフローチャートと
異なるのは、4輪駆動必要性を判断するステップ93の
みである。このステップ93では、発進・停止を5回繰
り返す間に、T1 >max (T2 ’,T0 ’)を1回以上
経験したか否かが判断される。つまり、第1実施例のス
テップ87が長期的な路面学習により路面摩擦係数を推
定していたのに対し、ステップ93の判断は短期的な路
面学習により路面摩擦係数を推定している。これによっ
て、イグニッションをONにしてからOFFにするまで
の1回の走行中に路面摩擦係数が推定され、次の走行時
には改めて路面摩擦係数の推定が開始されることにな
る。尚、この路面摩擦係数推定で低μ路を主体とする判
断を示したが、高μ路を主体とする判断、例えば、イグ
ニッションのONからOFFまでの間にT1 =Tmin が
所定時間以上継続したかどうか等により路面摩擦係数を
推定するようにしても良い。
The only difference from the flowchart of the first embodiment shown in FIG. 4 is step 93 for determining the necessity of four-wheel drive. In this step 93, it is judged whether or not T 1 > max (T 2 ', T 0 ') has been experienced at least once while repeating start and stop 5 times. That is, while the step 87 of the first embodiment estimates the road surface friction coefficient by long-term road surface learning, the determination in step 93 estimates the road surface friction coefficient by short-term road surface learning. As a result, the road surface friction coefficient is estimated during one run from turning on the ignition to turning off the ignition, and estimation of the road surface friction coefficient is restarted at the next running. It should be noted that this road surface friction coefficient estimation showed a judgment that the low μ road is the main, but a judgment that the high μ road is the main, for example, T 1 = Tmin continues for a predetermined time or more during the period from ON to OFF of the ignition. The road surface friction coefficient may be estimated based on whether or not it is done.

【0061】以上説明したように、第2実施例の四輪駆
動車の駆動力配分制御装置にあっては、第1実施例の効
果に下記の効果が加えられる。
As described above, in the driving force distribution control device for the four-wheel drive vehicle of the second embodiment, the following effects are added to the effects of the first embodiment.

【0062】(3)4輪駆動必要性を判断するにあたっ
て、短期的な路面学習により路面摩擦係数を推定する装
置とした為、バッテリーバックアップ回路を有さないト
ルクスプリットコントローラ40に採用することができ
る。
(3) Since it is a device for estimating the road surface friction coefficient by short-term road surface learning when determining the necessity of four-wheel drive, it can be adopted in the torque split controller 40 having no battery backup circuit. ..

【0063】(第3実施例)次に、第3実施例について
説明する。
(Third Embodiment) Next, a third embodiment will be described.

【0064】この第3実施例のハード構成は、第1実施
例と全く同様であるので説明を省略する。
The hardware structure of the third embodiment is exactly the same as that of the first embodiment, and therefore its explanation is omitted.

【0065】作用を説明する。The operation will be described.

【0066】図9は第2実施例のトルクスプリットコン
トローラ40で行なわれる前後輪駆動力配分制御処理作
動の流れを示すフローチャートである。
FIG. 9 is a flow chart showing the flow of the front and rear wheel drive force distribution control processing operation performed by the torque split controller 40 of the second embodiment.

【0067】図4に示す第1実施例のフローチャートと
異なるのは、4輪駆動必要性を判断するにあたって、車
体速VCARに依存する最小限トルクTMIN を設定し(ステ
ップ94)、この最小限トルクTMIN を用いて4輪駆動
必要性を判断するようにしている(ステップ95,ステ
ップ96)。なお、4WDフラグの初期値は、4WDフ
ラグ=1である。
The difference from the flow chart of the first embodiment shown in FIG. 4 is that in determining the necessity of four-wheel drive, a minimum torque T MIN that depends on the vehicle speed V CAR is set (step 94). The limit torque T MIN is used to determine the necessity of four-wheel drive (steps 95 and 96). The initial value of the 4WD flag is 4WD flag = 1.

【0068】ステップ93では、最小限トルクTMIN
車体速VCARにより演算される。
At step 93, the minimum torque T MIN is calculated from the vehicle speed V CAR .

【0069】この最小限トルクTMIN は、ステップ93
の枠内に記載のように、 TMIN =4(VCAR≦20km/h) TMIN =8(VCAR>20km/h) としても良いし、図10に示すように、最小限トルクT
MIN を車体速VCARに比例した可変値により与えるように
しても良い。
This minimum torque T MIN is calculated in step 93.
T MIN = 4 (V CAR ≤20 km / h) T MIN = 8 (V CAR > 20 km / h), as shown in the frame of the above, and as shown in FIG.
MIN may be given as a variable value proportional to the vehicle speed V CAR .

【0070】ステップ94では、一度、4WDフラグ=
0となった後、制御伝達トルクT1 がT1 ≧TMIN が成
立する時間間隔が250msec 以上連続する状態が、少なく
とも1回でも発生した場合、低μ路と判断し、ステップ
88へ進み、イグニッションOFFまで4輪駆動必要性
を示す4WDフラグ=1に設定される。
In step 94, once the 4WD flag =
If the state in which the control transmission torque T 1 satisfies T 1 ≧ T MIN for 250 msec or more continuously occurs at least once after 0, it is determined to be a low μ road, and the routine proceeds to step 88, The 4WD flag = 1 indicating that four-wheel drive is required until the ignition is turned off is set.

【0071】ステップ95では、イグニッションONで
セルフチェック終了後、完全停止〜20km/h以上の発進・
停止を2回経験する間に、T1 ≧TMIN が成立する時間
間隔が250msec 以上連続する状態が1回も発生しない場
合、高μ路と判断し、ステップ89へ進み、4輪駆動を
不要とする4WD=0に設定される。
At step 95, after the self-check is completed with the ignition turned on, the vehicle is completely stopped to start at 20 km / h or more.
If the condition that T 1 ≧ T MIN is satisfied for 250 msec or more does not occur once during two stops, it is judged to be a high μ road, and the process proceeds to step 89 and 4-wheel drive is unnecessary. 4WD = 0 is set.

【0072】以上説明したように、第3実施例の四輪駆
動車の駆動力配分制御装置にあっては、第1実施例の効
果に下記の効果が加えられる。
As described above, in the four-wheel drive vehicle drive force distribution control device of the third embodiment, the following effects are added to the effects of the first embodiment.

【0073】(4)車体速VCARに依存する最小限トルク
MIN (高速側で大)を設定し、この最小限トルクT
MIN を用いて4輪駆動必要性を判断するようにしている
ため、タイヤ径差があった場合、高μ路での高速走行時
に低μ路と誤判断されることが防止され、確実に路面摩
擦係数の判断ができる。
(4) The minimum torque T MIN (large on the high speed side) which depends on the vehicle speed V CAR is set, and this minimum torque T MIN is set.
Since the necessity of four-wheel drive is determined using MIN , if there is a tire diameter difference, it is prevented from being mistakenly judged to be a low μ road during high-speed driving on a high μ road, and the road surface is surely You can judge the friction coefficient.

【0074】つまり、第1実施例や第2実施例では、低
μ路と高μ路の判別に、車体速VCARに依存しないしきい
値を用いているため、例えば、タイヤ径差があった場合
(特に、VWR >VWF の場合に厳しい)、高μ路での高速
走行時にしきい値を超え、低μ路と誤判断されることが
ある。
That is, in the first and second embodiments, a threshold value that does not depend on the vehicle speed V CAR is used to distinguish between the low μ road and the high μ road. If it is (particularly when V WR > V WF is severe), the threshold value may be exceeded during high-speed driving on a high μ road, and it may be mistakenly judged to be a low μ road.

【0075】以上、実施例を図面に基づいて説明してき
たが、具体的な構成及び制御内容はこの実施例に限られ
るものではない。
Although the embodiment has been described above with reference to the drawings, the specific configuration and control contents are not limited to this embodiment.

【0076】例えば、実施例では、環境対応伝達トルク
として、発進トルクT2 と初期トルクT3 を適用した例
を示したが、ハンチング対策トルクやクラッチ保護トル
クやABS作動時トルクや限界トルクや前後加速度感応
トルクや減速トルクやフェイルセーフトルク等を含め、
これらの中から1つあるいは複数組み合せたものを環境
対応伝達トルクとしても良い。
For example, in the embodiment, an example in which the starting torque T 2 and the initial torque T 3 are applied as environment-friendly transmission torque is shown. However, hunting countermeasure torque, clutch protection torque, ABS operating torque, limit torque, front / rear torque Including acceleration sensitive torque, deceleration torque, fail safe torque, etc.
One or a combination of these may be used as the environment-friendly transmission torque.

【0077】[0077]

【発明の効果】以上説明してきたように、本発明にあっ
ては、前後輪の一方へは直結駆動で他方へはトルク配分
用クラッチを介して駆動力が伝達される四輪駆動車の駆
動力配分制御装置において、請求項1に記載したよう
に、車両の走行環境が適切な4輪駆動制御を必要とする
か否かを判別し、不必要時には制御伝達トルクを選択
し、必要時には、制御伝達トルクと環境対応伝達トルク
のうち最大値を選択してクラッチ締結力制御を行なう装
置とした為、適切な4輪駆動制御の基本性能を確保した
上で燃費の向上を図ることができるという効果が得られ
る。
As described above, according to the present invention, the drive of a four-wheel drive vehicle is such that one of the front and rear wheels is directly connected and the other is supplied with the driving force through a torque distribution clutch. In the force distribution control device, as described in claim 1, it is determined whether or not the traveling environment of the vehicle requires appropriate four-wheel drive control, the control transmission torque is selected when unnecessary, and when necessary, Since it is a device that controls the clutch engagement force by selecting the maximum value from the control transmission torque and the environment-friendly transmission torque, it is possible to improve fuel efficiency while ensuring proper basic performance of four-wheel drive control. The effect is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の四輪駆動車の駆動力配分制御装置を示
すクレーム対応図である。
FIG. 1 is a claim correspondence diagram showing a driving force distribution control device for a four-wheel drive vehicle according to the present invention.

【図2】第1実施例のトルクスプリット制御装置(駆動
力配分制御装置)を適応した四輪駆動車の駆動系及び制
御系を示す全体システム図である。
FIG. 2 is an overall system diagram showing a drive system and a control system of a four-wheel drive vehicle to which the torque split control device (driving force distribution control device) of the first embodiment is applied.

【図3】第1実施例のトルクスプリット制御装置に用い
られた電子制御系を示すブロック図である。
FIG. 3 is a block diagram showing an electronic control system used in the torque split control device of the first embodiment.

【図4】第1実施例のトルクスプリットコントローラで
行なわれる前後輪駆動力配分制御処理作動の流れを示す
フローチャートである。
FIG. 4 is a flowchart showing a flow of front and rear wheel driving force distribution control processing operations performed by the torque split controller of the first embodiment.

【図5】図5(A)は第1実施例のトルクスプリット制
御での制御伝達トルク特性の制御ゲイン特性図であり、
図5(B)は制御伝達トルク特性図である。
FIG. 5 (A) is a control gain characteristic diagram of a control transmission torque characteristic in the torque split control of the first embodiment,
FIG. 5B is a control transmission torque characteristic diagram.

【図6】第1実施例のトルクスプリット制御での発進ト
ルク特性である。
FIG. 6 is a starting torque characteristic in the torque split control of the first embodiment.

【図7】第1実施例のトルクスプリット制御での初期ト
ルク特性である。
FIG. 7 is an initial torque characteristic in the torque split control of the first embodiment.

【図8】第2実施例のトルクスプリットコントローラで
行なわれる前後輪駆動力配分制御処理作動の流れを示す
フローチャートである。
FIG. 8 is a flowchart showing a flow of front and rear wheel driving force distribution control processing operations performed by the torque split controller of the second embodiment.

【図9】第3実施例のトルクスプリットコントローラで
行なわれる前後輪駆動力配分制御処理作動の流れを示す
フローチャートである。
FIG. 9 is a flowchart showing a flow of front and rear wheel driving force distribution control processing operations performed by the torque split controller of the third embodiment.

【図10】第3実施例装置で路面μ路判断に用いられる
最小限トルク特性図である。
FIG. 10 is a minimum torque characteristic diagram used for determining a road surface μ road in the device of the third embodiment.

【符号の説明】[Explanation of symbols]

a トルク配分用クラッチ b 前後輪回転速度差検出手段 c 制御伝達トルク算出手段 d 環境対応伝達トルク算出手段 e 4輪駆動必要性判別手段 f 伝達トルク選択手段 g クラッチ締結力制御手段 a torque distribution clutch b front and rear wheel rotation speed difference detection means c control transmission torque calculation means d environment-friendly transmission torque calculation means e four-wheel drive necessity determination means f transmission torque selection means g clutch engagement force control means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 前輪あるいは後輪の一方へのエンジン直
結駆動系に対し後輪あるいは前輪の他方への駆動系の途
中に設けられるトルク配分用クラッチと、 前後輪回転速度差を検出する前後輪回転速度差検出手段
と、 前記トルク配分用クラッチを介して伝達される伝達トル
クとして、前後輪回転速度差情報に基づいて最適な旋回
特性を得る制御伝達トルクを算出する制御伝達トルク算
出手段と、 前記トルク配分用クラッチを介して伝達される伝達トル
クとして、特定の走行環境に応じた環境対応伝達トルク
を制御伝達トルクとは別途に算出する少なくとも1つの
環境対応伝達トルク算出手段と、 車両の走行環境が適切な4輪駆動制御を必要とするか否
かを判別する4輪駆動必要性判別手段と、 前記4輪駆動必要性判別手段により車両の走行環境が適
切な4輪駆動制御を必要としないと判別された時、制御
伝達トルクのみを選択し、4輪駆動必要性判別手段によ
り車両の走行環境が適切な4輪駆動制御を必要とすると
判別された時、制御伝達トルクと環境対応伝達トルクの
うち最大値を選択する伝達トルク選択手段と、 前記伝達トルク選択手段により選択された伝達トルクが
得られるように前記トルク配分用クラッチの締結力を制
御するクラッチ締結力制御手段と、 を備えていることを特徴とする四輪駆動車の駆動力配分
制御装置。
1. A torque distribution clutch provided in the middle of a drive system to the other of the rear wheels or front wheels for a drive system directly connected to the engine to one of the front wheels or the rear wheels, and front and rear wheels for detecting a difference in rotational speed between the front and rear wheels. Rotational speed difference detection means, and controllable transmission torque calculation means for calculating controllable transmission torque for obtaining optimum turning characteristics based on front and rear wheel rotational speed difference information, as transmission torque transmitted through the torque distribution clutch, At least one environment-friendly transmission torque calculating means for calculating, as the transmission torque transmitted through the torque distribution clutch, an environment-friendly transmission torque according to a specific traveling environment separately from the control transmission torque; A four-wheel drive necessity determining means for determining whether or not the environment requires appropriate four-wheel drive control, and a traveling ring of the vehicle by the four-wheel drive necessity determining means. Is determined not to require proper four-wheel drive control, only the control transmission torque is selected, and the four-wheel drive necessity determining means determines that the traveling environment of the vehicle requires appropriate four-wheel drive control. The transmission torque selecting means for selecting the maximum value of the control transmission torque and the environment-friendly transmission torque, and controlling the engagement force of the torque distribution clutch so that the transmission torque selected by the transmission torque selection means is obtained. A driving force distribution control device for a four-wheel drive vehicle, comprising:
JP25179592A 1991-12-27 1992-09-22 Driving force distribution control device for four-wheel drive vehicle Expired - Fee Related JP2936912B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP34620491 1991-12-27
JP3-346204 1991-12-27

Publications (2)

Publication Number Publication Date
JPH05305830A true JPH05305830A (en) 1993-11-19
JP2936912B2 JP2936912B2 (en) 1999-08-23

Family

ID=18381820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25179592A Expired - Fee Related JP2936912B2 (en) 1991-12-27 1992-09-22 Driving force distribution control device for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JP2936912B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145229A (en) * 1987-11-30 1989-06-07 Nissan Motor Co Ltd Driving power distribution-controller for four-wheel drive vehicle
JPH02270641A (en) * 1989-04-10 1990-11-05 Nissan Motor Co Ltd Drive force distribution controller for four-wheel drive vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145229A (en) * 1987-11-30 1989-06-07 Nissan Motor Co Ltd Driving power distribution-controller for four-wheel drive vehicle
JPH02270641A (en) * 1989-04-10 1990-11-05 Nissan Motor Co Ltd Drive force distribution controller for four-wheel drive vehicle

Also Published As

Publication number Publication date
JP2936912B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
JP2914040B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP2768134B2 (en) Driving force distribution control device for four-wheel drive vehicle
US20030036837A1 (en) Driving force controlling apparatus and method for four-wheel drive vehicle
US6575261B2 (en) Drive-force distribution controller
JPH0729557B2 (en) Drive force distribution controller for four-wheel drive vehicle
JPH0794207B2 (en) Drive force distribution controller for four-wheel drive vehicle
JP2001180318A (en) Driving force control system for four-wheel drive vehicle
JP6785317B2 (en) Torque distribution device control device
JPH05310054A (en) Driving force distribution control device for four-wheel drive car
JP4233794B2 (en) Driving force distribution control device for four-wheel drive vehicles
EP1415850A2 (en) Torque distribution control device for four-wheel drive vehicle
US6896083B2 (en) Four-wheel drive control system and method
JP2646820B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP2004338685A (en) LOW mu ROAD JUDGING APPARATUS AND DRIVING FORCE DISTRIBUTION CONTROL APPARATUS OF FOUR-WHEEL-DRIVE VEHICLE
JP2936913B2 (en) Driving force distribution control device for four-wheel drive vehicle
US6189642B1 (en) Vehicle drive torque distribution control system
US6865470B2 (en) Traction distribution control system for four-wheel drive vehicle
JP2596196B2 (en) Driving force control device for four-wheel drive vehicle
JP3582375B2 (en) 4 wheel drive vehicle
JP2936912B2 (en) Driving force distribution control device for four-wheel drive vehicle
JP2000335272A (en) Driving force transfer control unit for four-wheel drive vehicle
JP2019188923A (en) Control device of four-wheel drive vehicle
JP3355767B2 (en) Differential limit torque control device
JP3617098B2 (en) Driving force distribution control device for four-wheel drive vehicle
JPH0729560B2 (en) Drive force distribution controller for four-wheel drive vehicle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080611

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees