JPH05304098A - Quantum dot crystal growth device and manufacture of semiconductor device - Google Patents

Quantum dot crystal growth device and manufacture of semiconductor device

Info

Publication number
JPH05304098A
JPH05304098A JP10965292A JP10965292A JPH05304098A JP H05304098 A JPH05304098 A JP H05304098A JP 10965292 A JP10965292 A JP 10965292A JP 10965292 A JP10965292 A JP 10965292A JP H05304098 A JPH05304098 A JP H05304098A
Authority
JP
Japan
Prior art keywords
crystal
quantum dot
crystal growth
substrate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10965292A
Other languages
Japanese (ja)
Other versions
JP3471372B2 (en
Inventor
Nobuyuki Otsuka
信之 大塚
Yasushi Matsui
康 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10965292A priority Critical patent/JP3471372B2/en
Publication of JPH05304098A publication Critical patent/JPH05304098A/en
Application granted granted Critical
Publication of JP3471372B2 publication Critical patent/JP3471372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To realize an ultraflat crystal surface and to enable a crystal growth nucleus to grow uniformly as a quantum dot by a method wherein material gas is supplied at ten times the conventional flow rate. CONSTITUTION:A semiconductor crystal substrate 1 is held by a graphite susceptor 2, a lid 3 of the same crystal with the crystal substrate 1 is made to cover the susceptor 2 confronting the semiconductor crystal substrate 1, and the lid 3 is covered with a graphite presser 4. A material gas introducing guide pipe 7 is inserted into an opening 5 formed of the susceptor 2 and the presser 4. Material gas is fed at a flow rate of 50L/min, whereby a crystal growth speed at a kink becomes 5 times or so as high as crystal nucleus generation speed, and consequently an ultraflat crystal surface can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体デバイスの特性を
飛躍的に向上する量子ドット構造を製造する量子ドット
結晶成長装置と半導体装置の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quantum dot crystal growth apparatus for manufacturing a quantum dot structure for dramatically improving the characteristics of a semiconductor device and a method for manufacturing the semiconductor device.

【0002】[0002]

【従来の技術】量子ドットがキャリアを3次元的に閉じ
込めるのに対して、キャリアを1次元的に閉じ込める量
子井戸構造を作製する量子井戸結晶成長装置の従来例と
して、MOVPE結晶成長装置を図3に示す。これは、
リアクタ31と半導体単結晶基板(GaAs,InP
等)32をのせた黒鉛サセプタ33、および黒鉛サセプ
タを加熱するRFコイル34、反応管内に原料ガスを流
すガスライン35よりなる[江崎他:超格子ヘテロ構造
デバイス、工業調査会(1988)253]。
2. Description of the Related Art While quantum dots confine carriers three-dimensionally, as a conventional example of a quantum well crystal growth device for producing a quantum well structure in which carriers are confined one-dimensionally, a MOVPE crystal growth device is shown in FIG. Shown in. this is,
Reactor 31 and semiconductor single crystal substrate (GaAs, InP
Etc.) 32, a graphite susceptor 33, an RF coil 34 for heating the graphite susceptor, and a gas line 35 for flowing a raw material gas into the reaction tube [Esaki et al .: Superlattice heterostructure device, Industrial Research Committee (1988) 253]. ..

【0003】図3の従来のMOVPE結晶成長装置にお
いて、リアクタ31内に半導体単結晶基板32を設置
し、黒鉛サセプタ33により加熱を行うリアクタ31内
に原料ガスを流すことで結晶成長を行うものである。
In the conventional MOVPE crystal growth apparatus of FIG. 3, a semiconductor single crystal substrate 32 is installed in a reactor 31, and crystal growth is performed by flowing a source gas into the reactor 31 heated by a graphite susceptor 33. is there.

【0004】量子ドットの結晶成長方法は第1の従来例
を図4に示す。従来のMOVPE法やMBE法でGaA
s基板40上に、AlGaAs層41を成長させ、Ga
As/AlGaAs超薄膜結晶とAlGaAsキャップ
層43を成長させる(図4a)。次に、エッチングによ
り量子箱44を形成し(図4b)、埋め込み層45を成
長(図4c)させる場合や、図5に示すようにGaAs
基板52に成長したAlGaAs層51のステップ50
(図5a)を利用して、組成の異なる2種類のガスを交
互に供給することでGaAs量子箱53(図5b)を作
製し、埋め込み層55を成長(図5c)する場合などが
ある[江崎他:超格子ヘテロ構造デバイス、工業調査会
(1988)464]。
FIG. 4 shows a first conventional example of a crystal growth method for quantum dots. GaA by conventional MOVPE method or MBE method
An AlGaAs layer 41 is grown on the s substrate 40, and Ga is
An As / AlGaAs ultrathin film crystal and an AlGaAs cap layer 43 are grown (FIG. 4a). Next, when the quantum box 44 is formed by etching (FIG. 4b) and the buried layer 45 is grown (FIG. 4c), or as shown in FIG.
Step 50 of AlGaAs layer 51 grown on substrate 52
There is a case where the GaAs quantum box 53 (FIG. 5b) is produced by alternately supplying two kinds of gases having different compositions by using (FIG. 5a), and the buried layer 55 is grown (FIG. 5c). Esaki et al .: Superlattice heterostructure device, Industrial Research Committee (1988) 464].

【0005】[0005]

【発明が解決しようとする課題】しかし、上記のような
構成のMOVPE装置では薄膜量子井戸構造は成長でき
てもリアクタ管の断面積が大きく原料ガスの流速を大き
くできないために完全平坦結晶を得ることはできない。
その結果、均一に結晶成長核を発生できず、量子ドット
構造の成長は不可能である。それを詳しく説明する。図
3の拡大図を図6(a)に示す。図6(a)のように基
板への結晶成長は、リアクタの温度を高くし、反応ガス
をリアクタ31内に流すのであるが、このガスの流速が
小さければ図6(b)のようにステップだけでなく、結
晶のテラス61にも結晶成長する。そこでガスの流速を
大きくすると図6(c)に示すように結晶は平坦に成長
する。
However, in the MOVPE device having the above-mentioned structure, although the thin film quantum well structure can be grown, the cross-sectional area of the reactor tube is large and the flow velocity of the source gas cannot be increased, so that a perfectly flat crystal is obtained. It is not possible.
As a result, the crystal growth nuclei cannot be generated uniformly, and the growth of the quantum dot structure is impossible. I will explain it in detail. An enlarged view of FIG. 3 is shown in FIG. In the crystal growth on the substrate as shown in FIG. 6A, the temperature of the reactor is raised and the reaction gas is allowed to flow into the reactor 31, but if the flow velocity of this gas is low, the step shown in FIG. Not only that, the crystal grows on the crystal terrace 61. Therefore, when the gas flow rate is increased, the crystal grows flat as shown in FIG.

【0006】つまり、従来のMOVPE結晶成長装置は
リアクタの断面積が大きく反応ガスの流速を大きくでき
ず、図6(c)に示すような平坦結晶を得ることができ
ないのである。したがって、平坦な結晶面に量子ドット
を成長させることもできないという難点があった。
That is, in the conventional MOVPE crystal growth apparatus, the reactor has a large cross-sectional area and the flow velocity of the reaction gas cannot be increased, so that a flat crystal as shown in FIG. 6C cannot be obtained. Therefore, there is a drawback that it is not possible to grow quantum dots on a flat crystal surface.

【0007】本発明は上記問題点に鑑み、結晶全面に均
一に結晶成長核を発生させ量子ドットを形成する量子ド
ット結晶成長装置を提供するものである。
In view of the above problems, the present invention provides a quantum dot crystal growth apparatus for uniformly generating crystal growth nuclei on the entire surface of a crystal to form quantum dots.

【0008】さらに、上記のような量子ドット結晶成長
方法では第1にエッチング加工技術に量子ドットの形状
が依存する。現在、0.1μm程度の加工が限界であ
り、実際に量子ドットとして必要な10nm角程度の加
工は不可能である。とともに加工によるダメージで良好
な再成長界面が形成できず良好なデバイス特性を示すこ
とができない。また、結晶のステップを利用して量子ド
ット構造を成長する方法では結晶のステップを結晶表面
を斜めに研磨した後結晶を成長することである程度均一
な間隔のステップを得ることはできるが、結晶の初期状
態で規則正しいステップを形成する必要があると共に、
結晶の成長時間が僅かでもずれると量子ドットを形成し
ない。結晶成長を続けていく過程で量子ドット構造の均
一性および結晶性が低下する問題があった。
Further, in the quantum dot crystal growth method as described above, firstly, the shape of the quantum dots depends on the etching processing technique. At present, processing of about 0.1 μm is the limit, and processing of about 10 nm square actually required as a quantum dot is impossible. At the same time, a good regrowth interface cannot be formed due to damage due to processing, and good device characteristics cannot be exhibited. Further, in the method of growing a quantum dot structure by utilizing a crystal step, it is possible to obtain steps with uniform intervals to some extent by growing the crystal after polishing the crystal step obliquely. It is necessary to form regular steps in the initial state,
Quantum dots are not formed if the growth time of the crystal is slightly deviated. There was a problem that the uniformity and crystallinity of the quantum dot structure deteriorated in the process of continuing the crystal growth.

【0009】本発明は、上記問題点に鑑み、超平坦表面
上に均一に結晶成長核を発生させ量子ドット構造を作製
することができる半導体装置の製造方法を提供すること
を目的とする。
In view of the above problems, it is an object of the present invention to provide a method of manufacturing a semiconductor device capable of uniformly generating crystal growth nuclei on an ultra-flat surface to manufacture a quantum dot structure.

【0010】[0010]

【課題を解決するための手段】この目的を達成するため
に本発明の量子ドット結晶成長装置は、半導体単結晶基
板と、前記半導体基板を保持しかつ原料ガスの流路を形
成し加熱される反応管と、前記原料ガスを密閉するため
に前記反応管を包含する外管とで構成され、前記反応管
の流路の断面積を小さくして前記半導体基板上の原料ガ
ス流速を大きくする。
In order to achieve this object, a quantum dot crystal growth apparatus of the present invention is a semiconductor single crystal substrate and a semiconductor single crystal substrate, which holds the semiconductor substrate, forms a flow path for a source gas, and is heated. The reaction tube is composed of an outer tube including the reaction tube for sealing the source gas, and the cross-sectional area of the flow path of the reaction tube is reduced to increase the flow rate of the source gas on the semiconductor substrate.

【0011】さらに、上記問題点を解決するための半導
体装置の製造方法は、半導体結晶基板を結晶成長最適温
度より高い温度に保持し、原料ガスを供給してテラス上
に結晶を成長させる超平面結晶成長工程と、量子ドット
を形成する成分のガスを結晶成長最適温度より低い温度
に保持した超平面結晶上に短時間供給する量子ドット形
成工程と、結晶成長最適温度で量子ドット結晶と異なる
結晶を成長し前記量子ドットを埋め込む埋め込み結晶成
長工程とを含むものである。
Further, in a method of manufacturing a semiconductor device for solving the above problems, a semiconductor crystal substrate is kept at a temperature higher than an optimum crystal growth temperature and a source gas is supplied to grow a crystal on a terrace. Crystal growth process, a quantum dot formation process in which the gas of the quantum dot forming component is supplied for a short time on a hyperplane crystal maintained at a temperature lower than the optimum crystal growth temperature, and a crystal different from the quantum dot crystal at the optimum crystal growth temperature And a step of growing a buried crystal for burying the quantum dots.

【0012】[0012]

【作用】結晶基板を取り囲むようにサセプタを配し、結
晶成長基板と天板との間隔を1mm程度とする。ガス流
の流れに垂直な断面を10mm*1mmとし、全ガス流
量を40L(リットル)/min、成長圧力を17to
rrとすることで流速300m/secが獲られた。
The susceptor is arranged so as to surround the crystal substrate, and the distance between the crystal growth substrate and the top plate is set to about 1 mm. The cross section perpendicular to the flow of the gas flow was 10 mm * 1 mm, the total gas flow rate was 40 L (liter) / min, and the growth pressure was 17 to.
A flow velocity of 300 m / sec was obtained by setting rr.

【0013】また、成長圧力が低いことによる原料の利
用効率を増大するために天板を黒鉛製とし、ガスの分解
効率を向上した。一方、不純物の混入が問題となる場合
には天板の下に結晶基板と同様な単結晶基板を敷くこと
でサセプタからの汚染を防止することが可能となった。
Further, in order to increase the utilization efficiency of the raw material due to the low growth pressure, the top plate is made of graphite to improve the gas decomposition efficiency. On the other hand, when the mixing of impurities becomes a problem, it is possible to prevent contamination from the susceptor by placing a single crystal substrate similar to the crystal substrate under the top plate.

【0014】量子ドットを結晶成長する場合、超平坦面
を得る必要がある。この超平坦面を得るために、前記し
た量子ドット結晶成長装置により結晶表面を原子レベル
で平坦化する。これは、ガスの流速を高速化することに
より、キンクまたはステップの位置に対して結晶表面に
おける原子の捕獲率が低下して結晶核の発生が抑制さ
れ、ステップが次々に結晶基板周辺まで動くこと(図6
(c))で超平坦面を得ることができる。ただし、結晶
表面の原子のマイグレーション速度を大きくするために
成長温度は結晶成長の最適条件より100度程度高温と
する必要がある。また、結晶基板としては螺旋転位など
が無い無転位基板を使用する必要がある。
When crystal-growing quantum dots, it is necessary to obtain an ultra-flat surface. To obtain this ultra-flat surface, the crystal surface is flattened at the atomic level by the quantum dot crystal growth apparatus described above. This is because by increasing the flow velocity of the gas, the capture rate of atoms on the crystal surface decreases with respect to the position of the kink or step, the generation of crystal nuclei is suppressed, and the steps move to the periphery of the crystal substrate one after another. (Fig. 6
An ultra-flat surface can be obtained in (c)). However, in order to increase the migration rate of atoms on the crystal surface, the growth temperature needs to be higher than the optimum condition for crystal growth by about 100 degrees. Further, as the crystal substrate, it is necessary to use a dislocation-free substrate having no screw dislocation or the like.

【0015】次に、この平坦面上に均一に量子ドットを
作製する必要がある。量子ドットの原料原子のマイグレ
ーションを小さくし、かつ平坦面への核生成速度を、核
成長速度より大きくするために成長は結晶成長の最適条
件より、150度程度低温とする。ここで、量子井戸を
1原子層の膜厚成長するに対して1/5程度の時間成長
を行うことにより均一に量子ドットを作製できる。
Next, it is necessary to uniformly form quantum dots on this flat surface. In order to reduce migration of raw material atoms of the quantum dots and increase the nucleation rate on the flat surface to be higher than the nucleus growth rate, the growth is performed at a temperature of about 150 ° C. lower than the optimum condition for crystal growth. Here, quantum dots can be uniformly formed by growing the quantum well for about 1/5 of the thickness of one atomic layer.

【0016】さらに、続けて量子ドットを成長したのと
等しい成長温度で、量子ドットと組成の異なる結晶で量
子ドットよりもバンドギャップの大きい結晶を成長し、
量子ドットを結晶中につくり込むことができる。
Further, a crystal having a different band gap from that of the quantum dots is grown at a growth temperature equal to that of the quantum dots, which has a different composition.
Quantum dots can be built into crystals.

【0017】[0017]

【実施例】【Example】

(実施例1)図1に本発明の量子ドット結晶成長装置の
実施例を示す。
(Embodiment 1) FIG. 1 shows an embodiment of the quantum dot crystal growth apparatus of the present invention.

【0018】図1に示すとおり、InP半導体結晶基板
1を黒鉛製サセプタ2で保持し、半導体結晶基板1と同
じ結晶を蓋3とし、蓋3を基板1と向かい合わせるよう
にしてサセプタ2に蓋をし、さらに黒鉛製押え4で保持
して、結晶基板1を保護する。サセプタ2と押え4で形
成される開口部5には、原料ガス6流入用のガイド管7
が挿入される。原料ガス6の漏洩を防止するためサセプ
タ2とガイド管7などは外管8で外気とシールドれてい
る。開口部5は高さが1mm横幅が10mmとなってお
り、10mm×20mmの半導体結晶基板1が装填でき
る。
As shown in FIG. 1, the InP semiconductor crystal substrate 1 is held by a graphite susceptor 2, the same crystal as the semiconductor crystal substrate 1 is used as a lid 3, and the susceptor 2 is covered with the lid 3 facing the substrate 1. Then, the crystal substrate 1 is protected by holding the graphite substrate 4 with the graphite substrate 4. A guide pipe 7 for inflowing the raw material gas 6 is provided in an opening 5 formed by the susceptor 2 and the presser foot 4.
Is inserted. In order to prevent leakage of the raw material gas 6, the susceptor 2 and the guide pipe 7 are shielded from the outside air by an outer pipe 8. The opening 5 has a height of 1 mm and a width of 10 mm, and the semiconductor crystal substrate 1 of 10 mm × 20 mm can be loaded therein.

【0019】つぎに、この量子ドット結晶成長装置の構
造について動作を説明する。まず、高周波加熱で黒鉛製
サセプタ2を昇温する。そしてガスの流速を大きくし、
基板1表面が原子レベルできわめて平坦な結晶を成長さ
せるために、ガス流域面積を10mm2とした。流速が
大きくなることによる原料ガス6の収率の低下を抑制す
るためにサセプタ2内に基板1を設置して原料ガス6を
供給した。すなわち、ガス流域をサセプタ2で囲み、す
べてのガスが成長に寄与させるとともに、原料ガス6を
四方から加熱してガス熱分解効率を向上させさらに原料
ガス6の収率を向上させた。
Next, the operation of the structure of this quantum dot crystal growth apparatus will be described. First, the temperature of the graphite susceptor 2 is raised by high frequency heating. And increase the flow velocity of gas,
The gas basin area was set to 10 mm 2 in order to grow a crystal whose substrate 1 surface was extremely flat at the atomic level. The substrate 1 was installed in the susceptor 2 to supply the raw material gas 6 in order to suppress the decrease in the yield of the raw material gas 6 due to the increased flow velocity. That is, the gas flow region was surrounded by the susceptor 2, and all the gases contributed to the growth, and the raw material gas 6 was heated from four directions to improve the gas pyrolysis efficiency and further improve the yield of the raw material gas 6.

【0020】この装置では従来の結晶成長装置に比べて
原料ガスの通過する断面積がかなり小さくできる。ま
た、この装置ではガスの流路の断面積が小さいことによ
る成長圧力の上昇を防止するために、ガス流路はできる
だけ短いほうがよい。今回はガス混合部から結晶基板ま
で50cm程度とした。
In this apparatus, the cross-sectional area through which the raw material gas passes can be made considerably smaller than that in the conventional crystal growth apparatus. Further, in this apparatus, the gas flow path should be as short as possible in order to prevent the growth pressure from rising due to the small cross-sectional area of the gas flow path. This time, the distance from the gas mixing section to the crystal substrate was set to about 50 cm.

【0021】また、結晶上での成長圧力の急激な低下を
防止するために結晶成長部よりサセプタをガス下流部に
も延長して設けた。原料ガスの開口部からの漏れを防止
するためにガイド管はサセプタを覆っている。成長圧力
を制御するためにガス供給管に圧力センサを設置しバタ
フライバルブでポンプの吸引力を調整して減圧成長を行
う。サセプタ温度は1000度まで昇温可能である。
Further, in order to prevent a sudden decrease in the growth pressure on the crystal, a susceptor is provided extending from the crystal growth part to the gas downstream part. The guide tube covers the susceptor to prevent leakage of the source gas from the opening. A pressure sensor is installed in the gas supply pipe to control the growth pressure, and the butterfly valve is used to adjust the suction force of the pump to perform depressurized growth. The susceptor temperature can be raised up to 1000 degrees.

【0022】(実施例2)図2に本発明の半導体装置の
製造方法について説明する。ここでは半導体装置とし
て、量子ドットを用いた半導体レーザの製造方法につい
て示す。
(Embodiment 2) A method of manufacturing a semiconductor device according to the present invention will be described with reference to FIG. Here, as a semiconductor device, a method for manufacturing a semiconductor laser using quantum dots will be described.

【0023】図2に示したように、(001)InP基
板21を、実施例1で説明した量子ドット結晶成長装置
にセットし、PH3(40%)を200ccm添加した
水素ガス6を50L/min供給する(図2a)。成長
圧力は17torrとする。
As shown in FIG. 2, the (001) InP substrate 21 was set in the quantum dot crystal growth apparatus described in Example 1, and 50 L / min of hydrogen gas 6 containing 200 ccm of PH3 (40%) was added. Supply (Fig. 2a). The growth pressure is 17 torr.

【0024】サセプタ2を昇温し740度で10分間保
持した後、原料ガスとしてPH3を200ccmとTM
I(トリメチルインジウム 1%)を20ccm供給し
て5分間InP結晶22を約10nm成長する(図2
b)。
After the temperature of the susceptor 2 was raised and kept at 740 ° C. for 10 minutes, PH3 as a source gas was 200 ccm and TM.
I (trimethylindium 1%) was supplied at 20 ccm and the InP crystal 22 was grown for about 10 nm for 5 minutes (FIG. 2).
b).

【0025】ここで、ガスの流速を高速化することによ
り、図6(c)に示したように、キンクまたはステップ
の位置に対して結晶表面における原子の捕獲率が低下し
て結晶核の発生が抑制され、ステップが次々に結晶基板
周辺まで動くことで超平坦面が得られる。
Here, by increasing the flow velocity of the gas, as shown in FIG. 6C, the capture rate of atoms on the crystal surface decreases with respect to the position of the kink or step, and the generation of crystal nuclei occurs. Is suppressed and the steps move to the periphery of the crystal substrate one after another, so that an ultra-flat surface is obtained.

【0026】次に、TMIの供給のみ停止してサセプタ
温度を390度まで低下する。InGaAsP(λg=
1.4μm)量子ドットを作製する。この場合、TMI
を5.0ccm、TEG(1.8%)を2.2ccm、
PH3を20ccm、AsH3(10%)を3.0sc
cm添加した混合ガスを、0.5秒の間隔をおきながら
0.8秒間ずつ水素ガス中に添加する。全ガス流量は5
0L/minとする。すると、1辺が3nmのInGa
AsP量子ドット23がほぼ20nmピッチで形成され
る(図2c)。ここで、InP結晶22にInGaAs
P量子ドット23が成長するのは、平坦なInP結晶2
2上に、量子ドット23が核生成する最適条件を選んだ
からである。その最適条件は、150度程度の低温であ
り、その温度では、量子ドットの原料原子はマイグレー
ションが小さくし、かつ核生成速度を核成長速度より大
きいから、InP結晶22上に量子ドット23が形成で
きる。
Next, only the supply of TMI is stopped and the susceptor temperature is lowered to 390 degrees. InGaAsP (λg =
1.4 μm) Quantum dots are prepared. In this case, TMI
Is 5.0 ccm, TEG (1.8%) is 2.2 ccm,
PH3 20ccm, AsH3 (10%) 3.0sc
The mixed gas added in cm is added to the hydrogen gas for 0.8 seconds at intervals of 0.5 seconds. Total gas flow is 5
It is set to 0 L / min. Then, InGa with one side of 3 nm
AsP quantum dots 23 are formed with a pitch of approximately 20 nm (FIG. 2c). Here, the InP crystal 22 has InGaAs
The P quantum dots 23 grow on the flat InP crystal 2
This is because the optimum condition for nucleation of the quantum dots 23 is selected above 2. The optimum condition is a low temperature of about 150 ° C. At that temperature, the raw material atoms of the quantum dots have a small migration and the nucleation rate is higher than the nucleus growth rate, so that the quantum dots 23 are formed on the InP crystal 22. it can.

【0027】さらに、サセプタは390度に保持したま
ま原料ガスとしてPH3を200ccmとTMIを20
ccm添加して5分間InP結晶24を約10nm成長
し、量子ドットを埋め込む(図2d)。量子ドット作製
工程と量子ドット埋め込み工程を10回繰り返す。
Further, while keeping the susceptor at 390 ° C., PH3 of 200 ccm and TMI of 20 are used as source gases.
After adding ccm, the InP crystal 24 was grown to about 10 nm for 5 minutes and embedded with quantum dots (FIG. 2d). The quantum dot manufacturing process and the quantum dot embedding process are repeated 10 times.

【0028】最後に、サセプタ640度に昇温して原料
ガスとしてPH3を200ccmとTMIを200cc
m添加して成長圧力を100torrで5分間InP結
晶25を約100nm成長する(図2e)。PH3を2
00ccm添加しながらサセプタを冷却し成長を終了す
る。
Finally, the susceptor is heated to 640 ° C. and PH3 is 200 ccm and TMI is 200 cc as a source gas.
InP crystal 25 is grown to a thickness of about 100 nm at a growth pressure of 100 torr for 5 minutes (FIG. 2e). PH3 2
The growth is completed by cooling the susceptor while adding 00 ccm.

【0029】得られた結晶のフォトルミネッセンスを測
定した結果、エネグギーシフト量は120meV程度あ
り、量子ドット効果が確認された。
As a result of measuring the photoluminescence of the obtained crystal, the energy shift amount was about 120 meV, and the quantum dot effect was confirmed.

【0030】尚、結晶基板としサセプタ上に置いたもの
としたが蓋として利用した結晶であっても量子ドットが
形成されている。また、成長する結晶としてInP系と
したがGaAs系でもZnSe系でもよい。また、ガイ
ド管とサセプタのつなぎ口からのガスの漏洩を防止する
ためにガイド管はサセプタを覆う構造としてもよい。
Although the crystal substrate is placed on the susceptor, the quantum dots are formed even in the crystal used as the lid. Further, although the growing crystal is InP-based, it may be GaAs-based or ZnSe-based. In addition, the guide tube may have a structure that covers the susceptor in order to prevent the gas from leaking from the joint between the guide tube and the susceptor.

【0031】[0031]

【発明の効果】以上のように本発明の量子ドット結晶成
長装置は、原料ガスの流れる部分の断面積を小さくでき
るため、結晶に供給するガス流速を従来の10倍とする
ことができ、それによってキンクなどの無い極めて平坦
な結晶表面を作製することができる。続けて微量の量子
ドット成分ガスを供給することで半導体デバイスの特性
を飛躍的に向上する量子ドット結晶を成長できる。
As described above, since the quantum dot crystal growth apparatus of the present invention can reduce the cross-sectional area of the portion through which the source gas flows, the gas flow rate supplied to the crystal can be made 10 times higher than the conventional one. Thus, an extremely flat crystal surface without kinks can be produced. By continuously supplying a small amount of quantum dot component gas, it is possible to grow a quantum dot crystal that dramatically improves the characteristics of a semiconductor device.

【0032】さらに、量子ドット結晶成長装置を用いれ
ば、量子ドット結晶を成長することができ、半導体デバ
イスの特性を著しく向上できる。
Further, by using the quantum dot crystal growth apparatus, the quantum dot crystal can be grown and the characteristics of the semiconductor device can be remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における量子ドット結晶
成長装置の構造図
FIG. 1 is a structural diagram of a quantum dot crystal growth apparatus according to a first embodiment of the present invention.

【図2】本発明の第2の実施例における量子ドット構造
の製造工程を示す図
FIG. 2 is a diagram showing a manufacturing process of a quantum dot structure according to a second embodiment of the present invention.

【図3】MOVPE装置の構造を示す図FIG. 3 is a diagram showing the structure of a MOVPE device.

【図4】エッチングで量子ドット構造の製造工程を示す
製造工程断面図
FIG. 4 is a manufacturing process sectional view showing a manufacturing process of a quantum dot structure by etching.

【図5】結晶のステップを用いて量子ドット構造の製造
工程を示す製造工程断面図
FIG. 5 is a manufacturing process cross-sectional view showing a manufacturing process of a quantum dot structure using a crystal step.

【図6】原料ガスの流速により、基板のステップに結晶
成長する様子の違いを説明するための図
FIG. 6 is a diagram for explaining a difference in crystal growth in steps of a substrate depending on a flow rate of a source gas.

【符号の説明】[Explanation of symbols]

1 半導体結晶基板 2 サセプタ 3 蓋 4 押え 5 開口部 6 原料ガス 7 ガイド管 8 外管 21 InP基板 22 InP結晶 23 InGaAsP量子ドット 24 InP結晶 25 InP結晶 1 Semiconductor Crystal Substrate 2 Susceptor 3 Lid 4 Presser 5 Opening 6 Raw Material Gas 7 Guide Tube 8 Outer Tube 21 InP Substrate 22 InP Crystal 23 InGaAsP Quantum Dot 24 InP Crystal 25 InP Crystal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体単結晶基板と、前記半導体基板を保
持しかつ原料ガスの流路を形成し加熱される反応管と、
前記原料ガスを密閉するために前記反応管を包含する外
管とで構成され、前記反応管の流路の断面積を小さくし
て前記半導体基板上の原料ガス流速を大きくするするこ
とを特徴とする量子ドット結晶成長装置。
1. A semiconductor single crystal substrate, and a reaction tube which holds the semiconductor substrate, forms a flow path of a raw material gas, and is heated,
An outer tube including the reaction tube for sealing the raw material gas, and reducing the cross-sectional area of the flow path of the reaction tube to increase the flow rate of the raw material gas on the semiconductor substrate. Quantum dot crystal growth device.
【請求項2】半導体結晶基板を結晶成長最適温度より高
い温度に保持し、原料ガスを供給してテラス上に結晶を
成長させる超平面結晶成長工程と、量子ドットを形成す
る成分のガスを結晶成長最適温度より低い温度に保持し
た超平面結晶上に短時間供給する量子ドット形成工程
と、結晶成長最適温度で量子ドット結晶と異なる結晶を
成長し前記量子ドットを埋め込む埋め込み結晶成長工程
とを含むことを特徴とする半導体装置の製造方法。
2. A hyperplane crystal growth step of maintaining a semiconductor crystal substrate at a temperature higher than an optimum crystal growth temperature and supplying a source gas to grow crystals on a terrace, and a gas of a component forming a quantum dot is crystallized. Includes a quantum dot forming step of supplying for a short time on a hyperplane crystal maintained at a temperature lower than the optimum growth temperature, and a buried crystal growth step of growing a crystal different from the quantum dot crystal at the optimum crystal growth temperature and embedding the quantum dot A method of manufacturing a semiconductor device, comprising:
JP10965292A 1992-04-28 1992-04-28 Method of manufacturing semiconductor crystal Expired - Lifetime JP3471372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10965292A JP3471372B2 (en) 1992-04-28 1992-04-28 Method of manufacturing semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10965292A JP3471372B2 (en) 1992-04-28 1992-04-28 Method of manufacturing semiconductor crystal

Publications (2)

Publication Number Publication Date
JPH05304098A true JPH05304098A (en) 1993-11-16
JP3471372B2 JP3471372B2 (en) 2003-12-02

Family

ID=14515719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10965292A Expired - Lifetime JP3471372B2 (en) 1992-04-28 1992-04-28 Method of manufacturing semiconductor crystal

Country Status (1)

Country Link
JP (1) JP3471372B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288899A (en) * 2003-03-24 2004-10-14 Tokyo Electron Ltd Method for depositing film and substrate processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288899A (en) * 2003-03-24 2004-10-14 Tokyo Electron Ltd Method for depositing film and substrate processing apparatus

Also Published As

Publication number Publication date
JP3471372B2 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
Miyake et al. Effects of reactor pressure on epitaxial lateral overgrowth of GaN via low-pressure metalorganic vapor phase epitaxy
US5399522A (en) Method of growing compound semiconductor
JP3468866B2 (en) Semiconductor device using three-dimensional quantum confinement
JP2000044400A (en) Gallium nitride single crystal substrate and its production
EP0377281B1 (en) Method of growing epitaxial layers
JPS63240012A (en) Iii-v compound semiconductor and formation thereof
JP3879173B2 (en) Compound semiconductor vapor deposition method
Isshiki et al. Crystallographic selective growth of GaAs by atomic layer epitaxy
Dupuis et al. Selective-area and lateral epitaxial overgrowth of III-N materials by metalorganic chemical vapor deposition
KR20020065892A (en) Method of fabricating group-ⅲ nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
Fukui et al. Multiatomic step formation mechanism of metalorganic vapor phase epitaxial grown GaAs vicinal surfaces and its application to quantum well wires
JPH05304098A (en) Quantum dot crystal growth device and manufacture of semiconductor device
JPH07335988A (en) Compd. semiconductor device and production process thereof
Sun et al. InGaAsP multi-quantum wells at 1.5/spl mu/m wavelength grown on indium phosphide templates on silicon
FURUYA et al. GaInAsP/InP organometallic vapor phase epitaxy for research and fabrication of devices
US7393412B2 (en) Method for manufacturing compound semiconductor epitaxial substrate
EP0477374B1 (en) Process for growing semiconductor crystal
JP2687862B2 (en) Method of forming compound semiconductor thin film
JPS5984417A (en) Iii-v family mixed crystalline semiconductor device
JP2732622B2 (en) (III)-(V) Group Compound Semiconductor Vapor Phase Growth Method
JPH0888185A (en) Semiconductor crystal growth method
JP2504849B2 (en) Semiconductor quantum box structure and manufacturing method thereof
JPS6317293A (en) Method for forming thin film of compound semiconductor and device therefor
Han et al. Growth, Optical and Structural Characterization of InP Nanostructures with In0. 4Ga0. 6P Insertion Layer
JPH04333220A (en) Inp substrate, inp semiconductor device and manufacture of inp substrate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100912

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110912

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9