JPH05303943A - Inline type electron gun for color picture tube - Google Patents

Inline type electron gun for color picture tube

Info

Publication number
JPH05303943A
JPH05303943A JP8678092A JP8678092A JPH05303943A JP H05303943 A JPH05303943 A JP H05303943A JP 8678092 A JP8678092 A JP 8678092A JP 8678092 A JP8678092 A JP 8678092A JP H05303943 A JPH05303943 A JP H05303943A
Authority
JP
Japan
Prior art keywords
electrode
electron beam
electron
focusing electrode
central
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8678092A
Other languages
Japanese (ja)
Inventor
Hiroaki Doke
裕明 道家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8678092A priority Critical patent/JPH05303943A/en
Publication of JPH05303943A publication Critical patent/JPH05303943A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To prevent deflection of static convergence due to fluctuation of a focus voltage, achieve high resolution, and provide a more favorable image quality in an inline type electron gun for a color picture tube employing self- convergence system. CONSTITUTION:An inner electrode 30 provided with diagonally cut cylindrical protruding edges 302R, 302B which are coaxial with center axes of both outer side electron beam passage holes 141R, 141B at an end surface of an acceleration electrode 13 of a focusing electrode 14, and which is of a cylindrical form of which forward end part is of a diagonally cut form to be higher as it becomes closer to a center of a tube axis is provided inside the focusing electrode 14. Because refraction action of an inclination potential formed by effects of the cylindrical protruding edges 302R, 302B offsets refraction action of both outer side electron beams 17R, 17B at a main electron lens, deflection of static convergence by fluctuation of a focus voltage can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はインライン型カラー受像
管用電子銃に関し、特に優れたコンバージェンス特性を
有するインライン型カラー受像管用電子銃に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-line color picture tube electron gun, and more particularly to an in-line color picture tube electron gun having excellent convergence characteristics.

【0002】[0002]

【従来の技術】カラー受像管の解像度を上げるために
は、3本の電子ビームのスポットを画面全域に亘って1
点に集中させることが必要である。従来、3本の電子ビ
ーム放出部を水平方向の同一平面内に並べて配置されて
いるインライン型電子銃を備えた一般的なカラー受像管
では、水平偏向磁界分布をピンクッション状に、そし
て、垂直偏向磁界分布をバレル状に歪ませた偏向磁界を
組み合せることにより画面上の任意の点で3本の電子ビ
ームを集中させることができる、いわゆる、セルフコン
バージェンス方式を採用しているが、通常、インライン
型電子銃においては、スタティックコンバージェンスを
補正するために両外側電子ビームを画面中央に集中させ
る方法が種々考案されて取り入れられている。
2. Description of the Related Art In order to increase the resolution of a color picture tube, three electron beam spots are formed over the entire screen.
It is necessary to focus on the points. Conventionally, in a general color picture tube provided with an in-line type electron gun in which three electron beam emitting portions are arranged side by side in the same plane in the horizontal direction, the horizontal deflection magnetic field distribution is pincushion-shaped and the vertical deflection magnetic field distribution is vertical. A so-called self-convergence method is adopted in which three electron beams can be concentrated at any point on the screen by combining deflection magnetic fields in which the deflection magnetic field distribution is distorted in a barrel shape. In the in-line type electron gun, various methods of concentrating both outer electron beams at the center of the screen have been devised and incorporated in order to correct static convergence.

【0003】図5は従来のバイ・ポテンシャルフォーカ
スタイプのインライン型電子銃の一例の断面図である。
FIG. 5 is a sectional view of an example of a conventional bi-potential focus type in-line electron gun.

【0004】図5に示すように、インライン型電子銃
は、水平方向に一直線上に並べて配置された3つの陰極
11R,11G,11B、制御電極12、加速電極1
3、集束電極14、最終加速電極15が電子ビームの進
行方向に順次所定間隔を有するように配設されている。
各電極は3つの電子ビームのおのおのに対応する電子ビ
ーム通過孔を有しており、制御電極12には電子ビーム
通過孔121R,121G,121B、加速電極13に
は電子ビーム通過孔131R,131G,131B、集
束電極14の加速電極13側端面には電子ビーム通過孔
141R,141G,141B、集束電極14の最終加
速電極15側端面には電子ビーム通過孔143R,14
3G,143B、最終加速電極15の集束電極14側端
面には電子ビーム通過孔151R,151G,151B
が穿設されている。
As shown in FIG. 5, the in-line type electron gun has three cathodes 11R, 11G and 11B, a control electrode 12 and an accelerating electrode 1 which are arranged side by side in a horizontal direction.
3, the focusing electrode 14 and the final accelerating electrode 15 are arranged so as to have a predetermined interval in the traveling direction of the electron beam.
Each electrode has an electron beam passage hole corresponding to each of the three electron beams. The control electrode 12 has electron beam passage holes 121R, 121G, 121B, and the acceleration electrode 13 has electron beam passage holes 131R, 131G. 131B, electron beam passage holes 141R, 141G, 141B on the end surface of the focusing electrode 14 on the acceleration electrode 13 side, and electron beam passage holes 143R, 14 on the end surface of the focusing electrode 14 on the final acceleration electrode 15 side.
3G, 143B, electron beam passage holes 151R, 151G, 151B on the end surface of the final accelerating electrode 15 on the focusing electrode 14 side.
Has been drilled.

【0005】中央電子ビームが通過する最終加速電極1
5の中央電子ビーム通過孔151Gの中心軸Z15G は、
中央電子ビーム通過孔121G,131G,141G,
143Gに共通な中心軸Z14G と同軸であり、両中心軸
14G ,Z15G は実質的にカラー受像管の管軸と一致し
ている。両外側電子ビームが通過する最終加速電極15
の両外側電子ビーム通過孔151R,151Bの中心軸
15R ,Z15B は、両外側電子ビーム通過孔121R,
131R,141R,143R及び121B,131
B,141B,143Bおのおのに共通な中心軸
14R ,Z14B に対して管軸外側方向に偏心量dだけ偏
心している。
Final accelerating electrode 1 through which the central electron beam passes
The central axis Z 15G of the central electron beam passage hole 151G of FIG.
Central electron beam passage holes 121G, 131G, 141G,
It is coaxial with the central axis Z 14G common to 143G, and both central axes Z 14G and Z 15G substantially coincide with the tube axis of the color picture tube. Final accelerating electrode 15 through which both outer electron beams pass
The central axes Z 15R and Z 15B of both outer electron beam passage holes 151R and 151B are
131R, 141R, 143R and 121B, 131
The central axes Z 14R and Z 14B common to B, 141B and 143B are eccentric by an eccentric amount d toward the outer side of the tube axis.

【0006】図6は、図5に示したバイ・ポテンシャル
フォーカスタイプのインライン型電子銃に所定の動作電
圧を印加した状態の主要部の等電位分布を表わした水平
方向断面図である。
FIG. 6 is a horizontal cross-sectional view showing the equipotential distribution of the main part of the bi-potential focus type in-line electron gun shown in FIG. 5 when a predetermined operating voltage is applied.

【0007】一般に、陰極11R,11G,11Bには
90〜120v,制御電極12にはOv,加速電極13
には400〜600v,集束電極14には6〜7kvの
フォーカス電圧が、最終加速電極15には約25kvの
陽極電圧がそれぞれ外部から印加される。電子ビームを
集束する主電子レンズは、集束電極14と最終加速電極
15の相対向して配置される電子ビーム通過孔143R
・151R,143G・151G,143B・151B
間に形成される。
Generally, the cathodes 11R, 11G and 11B are 90 to 120 v, the control electrode 12 is Ov, and the acceleration electrode 13 is.
Is applied from the outside with a focus voltage of 6 to 7 kv to the focusing electrode 14 and an anode voltage of about 25 kv to the final accelerating electrode 15. The main electron lens for focusing the electron beam is an electron beam passage hole 143R arranged so that the focusing electrode 14 and the final accelerating electrode 15 face each other.
-151R, 143G, 151G, 143B, 151B
Formed in between.

【0008】中央電子ビーム17Gを集束する主電子レ
ンズは中心軸Z14G ,Z15G に軸対称な等電位線20
1,211から形成される軸対称レンズのため、中央電
子ビーム17Gは中心軸Z14G ,Z15G 上を直進する。
一方、両外側電子ビーム17R,17Bを集束する主電
子レンズは中心軸Z14R ,Z14B に軸対称な等電位線2
02と中心軸Z14R ,Z14B に対して管軸外側方向に偏
心量dだけ偏心させた中心軸Z15R ,Z15B に軸対称な
等電位線212から形成される非軸対称レンズのため、
中心軸Z14R ,Z14B 上を直進していた両外側電子ビー
ム17R,17Bは等電位線212の中心軸Z15R ,Z
15B から管軸方向よりの部分を通過することになり、同
方向への集中力を受ける。
The main electron lens which focuses the central electron beam 17G is an equipotential line 20 which is axisymmetric about the central axes Z 14G and Z 15G.
The central electron beam 17G travels straight on the central axes Z 14G and Z 15G due to the axially symmetric lens formed by 1 and 21 1.
On the other hand, the main electron lens that focuses both outer electron beams 17R and 17B is an equipotential line 2 which is axisymmetric about the central axes Z 14R and Z 14B.
02 and the central axes Z 14R and Z 14B are non-axisymmetrical lenses formed from equipotential lines 212 that are eccentric to the central axes Z 15R and Z 15B that are eccentric in the tube axial outer direction by an eccentric amount d.
The outer electron beams 17R and 17B traveling straight on the central axes Z 14R and Z 14B are the central axes Z 15R and Z of the equipotential line 212.
It will pass through the part from 15B in the direction of the pipe axis, and will receive a concentration force in the same direction.

【0009】従って、3本の電子ビーム17R,17
G,17Bは図示しないスクリーン上の中心点において
集中することになり、いわゆるスタティックコンバージ
ェンス補正を成している。
Therefore, the three electron beams 17R, 17
G and 17B are concentrated at the center point on the screen (not shown), and so-called static convergence correction is performed.

【0010】[0010]

【発明が解決しようとする課題】図6で前述した様なイ
ンライン型電子銃を備えたカラー受像管は、画面全域で
最も解像度が良くなるようにフォーカス電圧が設定され
た後コンバージェンスの最終調整が行なわれるが、フォ
ーカス電圧の設定ばらつきによって、以下に示す様な問
題点が発生する。
In the color picture tube having the in-line type electron gun as described above with reference to FIG. 6, the final adjustment of the convergence is performed after the focus voltage is set so that the resolution is best in the entire screen. However, the following problems occur due to variations in focus voltage settings.

【0011】集束電極14に印加されるフォーカス電圧
F が(VF +ΔVF )と高くなると、集束電極14と
最終加速電極15間の電位差が小さくなり主電子レンズ
の強度は弱くなるため両外側電子ビームを管軸方向に屈
折させる力が弱くなり、両外側電子ビームの集中が減少
する。一方、集束電極14に印加されるフォーカス電圧
F が(VF −ΔVF )と低くなると、集束電極14と
最終加速電極15間の電位差が大きくなり主電子レンズ
の強度は強くなるため両外側電子ビームを管軸方向に屈
折させる力が大きくなり、両外側電子ビームの集中が増
加する。
When the focus voltage V F applied to the focusing electrode 14 becomes as high as (V F + ΔV F ), the potential difference between the focusing electrode 14 and the final accelerating electrode 15 becomes small and the strength of the main electron lens becomes weak, so that the strength of the main electron lens becomes weak. The force for refracting the electron beam in the tube axis direction is weakened, and the concentration of the electron beams on both outer sides is reduced. On the other hand, when the focus voltage V F applied to the focusing electrode 14 becomes as low as (V F −ΔV F ), the potential difference between the focusing electrode 14 and the final accelerating electrode 15 increases, and the strength of the main electron lens increases. The force for refracting the electron beam in the tube axis direction increases, and the concentration of the electron beams on both outer sides increases.

【0012】従って、フォーカス電圧の変動に対し、形
成される主電子レンズの強度が変化することにより両外
側電子ビームを屈折させる力が変化し、結果として、ス
タティックコンバージェンスがずれるという問題点が生
じる。
Therefore, the strength of the formed main electron lens changes with respect to the fluctuation of the focus voltage, so that the power for refracting the outer electron beams changes, resulting in a problem that the static convergence is deviated.

【0013】以上のことは、カラー受像管の解像度を劣
化させるとともに画像品質を極めて劣化させてしまうこ
とになる。
As described above, the resolution of the color picture tube is deteriorated and the image quality is extremely deteriorated.

【0014】本発明の目的は、解像度が高く、画像品質
の優れたインライン型カラー受像管用電子銃を提供する
ことにある。
An object of the present invention is to provide an electron gun for an in-line type color picture tube which has a high resolution and an excellent image quality.

【0015】[0015]

【課題を解決するための手段】本発明は、少なくとも管
軸方向にほぼ垂直に一直線上に配列された中央電子ビー
ムと両外側電子ビームを放出する陰極と、前記電子ビー
ムの進行方向に順次配列された制御電極と、加速電極
と、集束電極と、最終加速電極とを有し、前記最終加速
電極の前記集束電極側端面の両外側電子ビーム通過孔の
中心軸を前記集束電極の前記最終加速電極側端面の両外
側電子ビーム通過孔の中心軸に対して管軸外側方向に偏
心させたインライン型カラー受像管用電子銃に於いて、
前記集束電極の内部には中央電子ビーム通過孔と筒状突
状縁もしくは管軸外側方向に開口部を持った「コ」の字
型側壁を有する両外側電子ビーム通過孔を設けた内部電
極を備えており、前記筒状突状縁もしくは管軸外側方向
に開口部を持った「コ」の字型側壁は、前記集束電極の
前記加速電極側端面方向に対向する様に設けられ、か
つ、その先端部形状が管軸側中央よりになるに従い高さ
が高くなる様な斜切形状を成すことによって、フォーカ
ス電圧の変動によるスタティックコンバージェンスのず
れを少なくするための傾斜電位を形成することを特徴と
する。
SUMMARY OF THE INVENTION According to the present invention, a central electron beam and cathodes for emitting both outer electron beams, which are arranged in a straight line at least approximately perpendicular to the tube axis direction, are arranged in sequence in the traveling direction of the electron beam. A control electrode, an acceleration electrode, a focusing electrode, and a final acceleration electrode, and the final acceleration of the focusing electrode is made with the central axis of both outer electron beam passage holes of the end surface of the final acceleration electrode on the focusing electrode side. In an electron gun for an in-line type color picture tube, which is eccentric in the tube axis outer direction with respect to the central axis of both outer electron beam passage holes of the electrode side end surface,
Inside the focusing electrode, an inner electrode having a central electron beam passage hole and both outer electron beam passage holes having a cylindrical protruding edge or a U-shaped side wall having an opening in the tube axis outer direction is provided. The cylindrical protruding edge or the "U" -shaped side wall having an opening in the tube axis outer direction is provided so as to face the acceleration electrode side end surface direction of the focusing electrode, and By forming a slanted shape whose height increases as the shape of the tip becomes closer to the center of the tube axis, it is possible to form a gradient potential to reduce the deviation of the static convergence due to the fluctuation of the focus voltage. And

【0016】[0016]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0017】図1は本発明の第1の実施例の断面図、図
2は図1の集束電極の内部電極の斜視図である。
FIG. 1 is a sectional view of the first embodiment of the present invention, and FIG. 2 is a perspective view of the internal electrodes of the focusing electrode of FIG.

【0018】第1の実施例は、図1に示す様に、集束電
極14の内部には図2に示す様な内部電極30が備えら
れている。
In the first embodiment, as shown in FIG. 1, the focusing electrode 14 is provided with an internal electrode 30 as shown in FIG.

【0019】内部電極30は、集束電極14の加速電極
13側端面の電子ビーム通過孔141R,141G,1
41Bの中心軸Z14R ,Z14G ,Z14B と各々同軸と成
すように3つの円形の電子ビーム通過孔301R,30
1G,301Bが一つの共通な面に設けられ、かつ、両
外側電子ビーム通過孔301R,301Bには管軸側中
央よりになるに従い高さが高くなる様な斜切形状の筒状
突状縁302R,302Bを有する電極構体である。従
って、筒状突状縁302R,302Bを集束電極14の
加速電極13側端面に対向するように内部電極30を備
えつけることにより、両外側電子ビーム通過孔141
R,141Bから筒状突状縁302R,302Bまでの
距離は、管軸中央側では最小距離l1 ,管軸と反対側で
は最大距離l2 となる様に管軸から離れるに従って徐々
に長くなっている。
The internal electrodes 30 are electron beam passage holes 141R, 141G, 1 on the end surface of the focusing electrode 14 on the acceleration electrode 13 side.
Three circular electron beam passage holes 301R, 30 are formed so as to be coaxial with the central axes Z 14R , Z 14G , Z 14B of 41B.
1G and 301B are provided on one common surface, and both outer electron beam passage holes 301R and 301B have a slanted cylindrical protruding edge whose height increases toward the center of the tube axis. This is an electrode structure having 302R and 302B. Therefore, by providing the inner electrode 30 so that the cylindrical protruding edges 302R and 302B face the end surface of the focusing electrode 14 on the accelerating electrode 13 side, both outer electron beam passage holes 141 are formed.
The distance from R, 141B to the cylindrical protruding edges 302R, 302B gradually becomes longer as the distance from the tube axis is reduced so that the minimum distance l 1 is on the tube axis center side and the maximum distance l 2 is on the side opposite to the tube axis. ing.

【0020】図3は図1に示した第1の実施例に所定の
動作電圧を印加した状態の主要部の等電位分布を表わし
た水平方向断面図である。
FIG. 3 is a horizontal sectional view showing the equipotential distribution of the main part of the first embodiment shown in FIG. 1 when a predetermined operating voltage is applied.

【0021】図3に示す様に、集束電極14の加速電極
13側端面の中央電子ビーム通過孔141Gに形成され
る等電位線221は、中心軸Z14G に対して軸対称であ
るのに対し、両外側電子ビーム通過孔141R,141
Bに形成される等電位線222は、両外側電子ビーム通
過孔141R,141Bから筒状突状縁302R,30
2Bまでの距離が短い管軸側中央よりの部分において、
加速電極13からの低電位の侵入を抑える働きが強いた
め、中心軸Z14R ,Z14B に非軸対称な斜めに傾斜した
形状を成す。
As shown in FIG. 3, the equipotential line 221 formed in the central electron beam passage hole 141G on the end face of the focusing electrode 14 on the acceleration electrode 13 side is axisymmetric with respect to the central axis Z 14G . , Both outer electron beam passage holes 141R, 141
The equipotential line 222 formed in B is formed from the outer side electron beam passage holes 141R and 141B to the cylindrical protruding edges 302R and 30R.
In the part from the center on the tube axis side where the distance to 2B is short,
Since it strongly suppresses the entry of the low potential from the accelerating electrode 13, it has an obliquely non-axially symmetric shape with respect to the central axes Z 14R and Z 14B .

【0022】このため、中央電子ビーム17Gは中央電
子ビーム通過孔141Gにおいて直進するのに対し、両
外側電子ビーム17R,17Bは両外側電子ビーム通過
孔141R,141Bにおいて管軸方向への集中力を受
ける。このことは、筒状突状縁302R,302Bの影
響によって形成される傾斜電位が、両外側電子ビーム1
7R,17Bに対し屈折作用を有することを意味する。
Therefore, the central electron beam 17G travels straight in the central electron beam passage hole 141G, whereas the outer electron beams 17R and 17B have a concentrated force in the tube axis direction at both outer electron beam passage holes 141R and 141B. receive. This means that the tilt potential formed by the influence of the cylindrical projecting edges 302R and 302B is equal to that of the both outer electron beams 1.
It means that it has a refraction effect on 7R and 17B.

【0023】従って、集束電極14に印加されるフォー
カス電圧VF が(VF +ΔVF )と高くなると、主電子
レンズでは管軸方向への屈折作用が弱くなり両外側電子
ビーム17R,17Bの集中が減少するが、集束電極1
4の両外側電子ビーム通過孔141R,141Bでは加
速電極13に対する相対的な電位差が大きくなることに
より筒状突状縁302R,302Bの影響によって形成
される傾斜電位の屈折作用が強くなり両外側電子ビーム
17R,17Bの集中が増加する。一方、集束電極14
に印加されるフォーカス電圧VF が(VF −ΔVF )と
低くなると、主電子レンズでは管軸方向への屈折作用が
強くなり両外側電子ビーム17R,17Bの集中が増加
するが、集束電極14の両外側電子ビーム通過孔141
R,14Bでは加速電極13に対する相対的な電位差が
小さくなることにより筒状突状縁302R,302Bの
影響によって形成される傾斜電位の屈折作用が弱くなり
両外側電子ビーム17R,17Bの集中が減少する。
Therefore, when the focus voltage V F applied to the focusing electrode 14 becomes as high as (V F + ΔV F ), the refracting action in the tube axis direction is weakened in the main electron lens and the outer electron beams 17R and 17B are concentrated. But the focusing electrode 1
In both outer electron beam passage holes 141R and 141B of No. 4, the relative potential difference with respect to the accelerating electrode 13 becomes large, so that the refraction action of the inclined potential formed by the influence of the cylindrical protruding edges 302R and 302B becomes strong and the both outer electrons are The concentration of the beams 17R and 17B increases. On the other hand, the focusing electrode 14
When the focus voltage V F applied to the lens becomes as low as (V F −ΔV F ), the refraction in the tube axis direction becomes stronger in the main electron lens and the concentration of both outer electron beams 17R and 17B increases, but the focusing electrode 14, both outer electron beam passage holes 141
In R and 14B, the relative potential difference with respect to the accelerating electrode 13 becomes smaller, so that the refraction action of the inclined potential formed by the influence of the cylindrical protruding edges 302R and 302B becomes weaker, and the concentration of both outer electron beams 17R and 17B decreases. To do.

【0024】このため、フォーカス電圧の変動に対し、
主電子レンズ部と両外側電子ビーム通過孔141R,1
41Bにおける両外側電子ビームの屈折作用がお互いに
反対方向に打ち消し合うかたちで働くため、結局、スタ
ティックコンバージェンスのずれを極めて少なくするこ
とができる。
Therefore, with respect to the fluctuation of the focus voltage,
Main electron lens portion and both outer electron beam passage holes 141R, 1
Since the refraction effects of the outer electron beams on both sides in 41B work in such a manner that they cancel each other in the opposite directions, the deviation of the static convergence can be extremely reduced after all.

【0025】図4は本発明の第2の実施例の集束電極の
内部電極の斜視図である。
FIG. 4 is a perspective view of the internal electrodes of the focusing electrode according to the second embodiment of the present invention.

【0026】図2に示す第1の実施例の内部電極30で
は先端部形状が管軸側中央よりになるに従い高さが高く
なる様な斜切形状の筒状突状縁であったが、第2の実施
例の内部電極40は、管軸外側方向に開口部を持ち、か
つ、先端部形状が管軸側中央よりになるに従い高さが高
くなる様な斜切形状を成す「コ」の字型側壁303R,
303Bを有する電極構体の例であり、この様な構造で
あっても第1の実施例と同様の効果が得られることは言
うまでもない。
In the internal electrode 30 of the first embodiment shown in FIG. 2, the tip shape is a slanted tubular protruding edge whose height increases as it goes from the center of the tube axis side. The internal electrode 40 of the second embodiment has an opening in the outer side of the tube axis, and has a slanted shape in which the height increases as the tip shape becomes closer to the center of the tube axis. Side wall 303R,
It is an example of the electrode structure having 303B, and it goes without saying that the same effect as that of the first embodiment can be obtained even with such a structure.

【0027】尚、前出した実施例に於いては、バイ・ポ
テンシャルフォーカスタイプのインライン型電子銃につ
いて説明したが、本発明はこれに限定されるものではな
く、例えば、多段集束型フォーカスタイプのインライン
型電子銃に適用しても全く同様の効果が得られることは
言うまでもない。
In the above-mentioned embodiment, the bi-potential focus type in-line type electron gun has been described. However, the present invention is not limited to this. For example, a multi-stage focusing type focus gun is used. It goes without saying that the same effect can be obtained even when applied to an in-line type electron gun.

【0028】[0028]

【発明の効果】以上説明したように本発明は、集束電極
内部に、集束電極の加速電極側端面方向に対向し、か
つ、先端部形状が管軸側中央よりになるに従い高さが高
くなる様な斜切形状を成す筒状突状縁もしくは「コ」の
字型側壁を両外側電子ビーム通過孔に設けた内部電極を
備えることによって、それによって形成される傾斜電位
の屈折作用が主電子レンズにおける両外側電子ビームの
屈折作用と打ち消し合うことにより、フォーカス電圧の
変動によるスタティックコンバージェンスのずれを極め
て少なくすることができ、解像度が高く、より優れた画
像品質が得られる効果がある。
As described above, according to the present invention, the height becomes higher inside the focusing electrode as it faces the direction of the end surface of the focusing electrode on the side of the accelerating electrode and the shape of the tip becomes closer to the center of the tube axis. By providing an internal electrode with a cylindrical protruding edge or a U-shaped side wall forming a slanted shape in both outer electron beam passage holes, the refraction action of the tilt potential formed by the inner electrode is performed. By canceling out the refraction action of the electron beams on both sides in the lens, it is possible to extremely reduce the deviation of the static convergence due to the fluctuation of the focus voltage, and it is possible to obtain a high resolution and an excellent image quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の断面図である。FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】図1の集束電極の内部電極の斜視図である。2 is a perspective view of an internal electrode of the focusing electrode of FIG. 1. FIG.

【図3】図1に示した第1の実施例に所定の動作電圧を
印加した状態の主要部の等電位分布を表わした水平方向
断面図である。
3 is a horizontal cross-sectional view showing the equipotential distribution of the main part of the first embodiment shown in FIG. 1 with a predetermined operating voltage applied.

【図4】本発明の第2の実施例の集束電極の内部電極の
斜視図である。
FIG. 4 is a perspective view of internal electrodes of a focusing electrode according to a second embodiment of the present invention.

【図5】従来のバイ・ポテンシャルフォーカスタイプの
インライン型電子銃の一例の断面図である。
FIG. 5 is a sectional view of an example of a conventional bi-potential focus type in-line electron gun.

【図6】図5に示したバイ・ポテンシャルフォーカスタ
イプのインライン型電子銃に所定の動作電圧を印加した
状態の主要部の等電位分布を表わした水平方向断面図で
ある。
6 is a horizontal cross-sectional view showing the equipotential distribution of the main part of the bi-potential focus type in-line electron gun shown in FIG. 5 when a predetermined operating voltage is applied.

【符号の説明】[Explanation of symbols]

11R,11G,11B 陰極 12 制御電極 13 加速電極 14 集束電極 15 最終加速電極 17R,17G,17B 電子ビーム 30,40 内部電極 121R,121G,121B,131R,131G,
131B,141R,141G,141B,143R,
143G,143B,151R,151G,151B,
301R,302G,303B 電子ビーム通過孔 201,202,211,212,221,222
等電位線 302R,302B 筒状突状縁 303R,303B 「コ」の字型側壁 Z14R ,Z14G ,Z14B ,Z15R ,Z15G ,Z15B
電子ビーム通過孔中心軸 d 偏心量 l1 ,l2 筒状突状縁までの距離
11R, 11G, 11B cathode 12 control electrode 13 acceleration electrode 14 focusing electrode 15 final acceleration electrode 17R, 17G, 17B electron beam 30, 40 internal electrode 121R, 121G, 121B, 131R, 131G,
131B, 141R, 141G, 141B, 143R,
143G, 143B, 151R, 151G, 151B,
301R, 302G, 303B Electron beam passage holes 201, 202, 211, 212, 221, 222
Equipotential lines 302R, 302B Cylindrical protruding edges 303R, 303B U-shaped side walls Z 14R , Z 14G , Z 14B , Z 15R , Z 15G , Z 15B
Electron beam passage hole central axis d Eccentricity l 1 , l 2 Distance to cylindrical protruding edge

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも管軸方向にほぼ垂直に一直線
上に配列された中央電子ビームと両外側電子ビームを放
出する陰極と、前記電子ビームの進行方向に順次配列さ
れた制御電極と、加速電極と、集束電極と、最終加速電
極とを有し、該最終加速電極の前記集束電極側端面の両
側電子ビーム貫通孔の中心軸を前記集束電極の前記最終
加速電極側端面の両外側電子ビーム通過孔の中心軸に対
して管軸外側方向に偏心させたインライン型カラー受像
管用電子銃に於いて、前記集束電極の内部には中央電子
ビーム通過孔及び筒状突状縁を有する両外側電子ビーム
通過孔を設けた内部電極を備えており、前記筒状突状縁
は前記集束電極の前記加速電極側端面方向に対向する様
に設けられ、かつ、その先端部形状が管軸側中央よりに
なるに従い高さが高くなる様な斜切形状を成しているこ
とを特徴とするインライン型カラー受像管用電子銃。
1. A cathode for emitting a central electron beam and both outer electron beams, which are arranged in a straight line at least substantially perpendicular to the tube axis direction, a control electrode sequentially arranged in the traveling direction of the electron beam, and an acceleration electrode. A focusing electrode and a final accelerating electrode, and the central axes of the electron beam through holes on both sides of the focusing electrode side end surface of the final accelerating electrode pass through both outside electron beams of the focusing electrode side end surface of the final accelerating electrode. In an electron gun for an in-line type color picture tube which is eccentric with respect to the central axis of the hole, in the direction outside the tube axis, inside the focusing electrode, a central electron beam passage hole and both outer electron beams having a cylindrical protruding edge are provided. An inner electrode having a passage hole is provided, the cylindrical protruding edge is provided so as to face the direction of the end surface of the focusing electrode on the side of the acceleration electrode, and the shape of the tip end thereof is closer to the center of the tube axis. The higher the height An in-line color picture tube electron gun characterized by a slanted shape that makes it look like
【請求項2】 少なくとも管軸方向にほぼ垂直に一直線
上に配列された中央電子ビームと両外側電子ビームを放
出する陰極と、前記電子ビームの進行方向に順次配列さ
れた制御電極と、加速電極と、集束電極と、最終加速電
極とを有し、該最終加速電極の前記集束電極側端面の両
側電子ビーム貫通孔の中心軸を前記集束電極の前記最終
加速電極側端面の両外側電子ビーム通過孔の中心軸に対
して管軸外側方向に偏心させたインライン型カラー受像
管用電子銃に於いて、前記集束電極の内部には中央電子
ビーム通過孔及び管軸外側方向に開口部を持った「コ」
の字型側壁を有する両外側電子ビーム通過孔を設けた内
部電極を備えており、前記「コ」の字型側壁は前記集束
電極の前記加速電極側端面方向に対向する様に設けら
れ、かつ、その先端部形状が管軸側中央よりになるに従
い高さが高くなる様な斜切形状を成していることを特徴
とするインライン型カラー受像管用電子銃。
2. A cathode that emits a central electron beam and both outer electron beams, which are arranged in a straight line at least substantially perpendicular to the tube axis direction, a control electrode that is sequentially arranged in the traveling direction of the electron beam, and an acceleration electrode. A focusing electrode and a final accelerating electrode, and the central axes of the electron beam through holes on both sides of the focusing electrode side end surface of the final accelerating electrode pass through both outside electron beams of the focusing electrode side end surface of the final accelerating electrode. In an in-line type color picture tube electron gun that is eccentric to the central axis of the hole in the tube axis outer direction, a central electron beam passage hole and an opening in the tube axis outer direction are provided inside the focusing electrode. "
An inner electrode provided with both outer side electron beam passage holes having a U-shaped side wall, wherein the U-shaped side wall is provided so as to face the acceleration electrode side end face direction of the focusing electrode, and An electron gun for an in-line type color picture tube, characterized in that its tip portion has a beveled shape whose height increases as it goes from the center of the tube axis side.
JP8678092A 1992-04-08 1992-04-08 Inline type electron gun for color picture tube Withdrawn JPH05303943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8678092A JPH05303943A (en) 1992-04-08 1992-04-08 Inline type electron gun for color picture tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8678092A JPH05303943A (en) 1992-04-08 1992-04-08 Inline type electron gun for color picture tube

Publications (1)

Publication Number Publication Date
JPH05303943A true JPH05303943A (en) 1993-11-16

Family

ID=13896274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8678092A Withdrawn JPH05303943A (en) 1992-04-08 1992-04-08 Inline type electron gun for color picture tube

Country Status (1)

Country Link
JP (1) JPH05303943A (en)

Similar Documents

Publication Publication Date Title
EP0119276B1 (en) In-line type electron gun
EP0489432B1 (en) Electron gun for color cathode-ray tube
KR900008202B1 (en) Electron gun of color crt
JP2708493B2 (en) Color picture tube
US6456017B1 (en) Electron gun for cathode ray tube
KR900003904B1 (en) Electron gun
KR100216090B1 (en) Color crt
JPH05303943A (en) Inline type electron gun for color picture tube
JP3057730B2 (en) Electron gun for in-line type color picture tube
JPH067144U (en) Inline electron gun
JP2743400B2 (en) Electron gun for color picture tube
JP3057733B2 (en) Electron gun for in-line type color picture tube
JPH05251010A (en) Inline type electron gun for color picture tube
JPH0574367A (en) Electron gun for inline type color picture tube
JPH0410694B2 (en)
KR20030066406A (en) Color picture tube device obtainable high resolutions in all areas of screen and electron gun thereof
JPS6381737A (en) In-line type electron gun
JPH05211048A (en) Electron gun for inline type color picture tube
US6646370B2 (en) Cathode-ray tube apparatus
KR970005387Y1 (en) Electron gun for color picture tube
JPH10241598A (en) Inline type electron gun for color cathode-ray tube
KR910001570Y1 (en) Electron gun of inline type crt
KR950002263B1 (en) Electron gun for c-crt
JP2000357469A (en) Color cathode-ray tube device
JPH04324229A (en) Electron gun for in-line type color picture tube

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608