JPH05302965A - Scanning surface magnetic microscope - Google Patents

Scanning surface magnetic microscope

Info

Publication number
JPH05302965A
JPH05302965A JP10732992A JP10732992A JPH05302965A JP H05302965 A JPH05302965 A JP H05302965A JP 10732992 A JP10732992 A JP 10732992A JP 10732992 A JP10732992 A JP 10732992A JP H05302965 A JPH05302965 A JP H05302965A
Authority
JP
Japan
Prior art keywords
probe
sample
spin
magnetic
cantilever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10732992A
Other languages
Japanese (ja)
Inventor
Yukio Honda
幸雄 本多
Sumio Hosaka
純男 保坂
Atsushi Kikukawa
敦 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10732992A priority Critical patent/JPH05302965A/en
Priority to EP93100055A priority patent/EP0551814B1/en
Priority to DE69309318T priority patent/DE69309318T2/en
Priority to US08/001,250 priority patent/US5436448A/en
Publication of JPH05302965A publication Critical patent/JPH05302965A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To observe a magnetic-domain structure on the same face with high accuracy by a method wherein a ferromagnetic probe which has been spin-polarized is installed at the tip of a cantilever, the probe is scanned along the surface of a sample and magnetic information is obtained by a change in an electric current value between the probe and the sample. CONSTITUTION:A tunneling bias 11 is applied across a probe 1 and a sample 3; an electric current value at this time is detected by using a current detection circuit 12. Then the polarization rate of a spin 24 for an upper-part magnetic film is equal to that of a spin 25 for a lower-part magnetic film, an electric current 27 across the probe 1 and the sample 3 is definite even when the direction of a spin 26 for the sample 3 is changed alternately. When a coil 13 for excitation is installed around the probe 1 and the coil 13 is excited in terms of a direct current by means of a power supply 14 for excitation use, the difference in the polarization rate between the spins 24 and 25 is caused. When the probe 1 provided with the polarization rate caused. When the probe 1 provided with the polarization electric current 27 which is large as compared with a region in an opposite direction can be detected in a region provided with a spin in the same direction as that of the probe 1. The magnetic information on the sample 3 can be separated and measured on the basis of a change in an electric current between the probe 1 and the sample 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁性試料表面の形態及
び磁気情報を計測するのに好適な顕微鏡装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microscope apparatus suitable for measuring the morphology and magnetic information of the surface of a magnetic sample.

【0002】[0002]

【従来の技術】従来技術である走査型トンネル顕微鏡
は、探針と試料間に電圧を印加し、探針と試料との距離
を接近したときに得られるトンネル電流および電界放射
電流を利用して導体試料の表面形態を調べる装置であ
る。一方、原子間力顕微鏡は導体,絶縁体試料に探針を
接近したときに発生する原子間力を利用して表面状態を
調べる装置である。原子間力顕微鏡は、米国特許第8021
23号(特開昭62−130302号)にもとづいて実現されてお
り、その実現例はジャーナル.オブ.フィジックス誌,
1987年,第61巻,4723頁から4729頁に記
載されている。一方、磁気力顕微鏡は、探針として磁性
体を用い、この磁性探針と磁性試料の表面に漏洩した磁
界の間に発生する磁気力を利用して試料の磁化状態を調
べる装置である。従来、磁性探針と試料を接近して得ら
れる磁気力を利用した走査型磁気力顕微鏡における試料
の磁気的情報の取得方法については、ジャーナル オブ
バキューム サイエンス テクノロジー A6 (19
88年)第279頁から第282頁、あるいはアプライ
ド フィジックス レターズ 50巻(1987年)第
1455頁から第1457頁において論じられている。
2. Description of the Related Art A conventional scanning tunneling microscope uses a tunnel current and a field emission current obtained when a voltage is applied between a probe and a sample and the probe and the sample are brought close to each other. This is an apparatus for examining the surface morphology of a conductor sample. On the other hand, the atomic force microscope is a device for investigating the surface state by using the atomic force generated when the probe approaches the conductor or insulator sample. Atomic force microscopy is described in U.S. Patent No. 8021.
No. 23 (Japanese Patent Laid-Open No. 62-130302), and an example of its realization is Journal. of. Physics Magazine,
1987, 61, 4723-4729. On the other hand, the magnetic force microscope is a device that uses a magnetic substance as a probe and uses the magnetic force generated between the magnetic probe and the magnetic field leaked to the surface of the magnetic sample to examine the magnetization state of the sample. For the conventional method of acquiring magnetic information of a sample in a scanning magnetic force microscope using a magnetic force obtained by bringing a magnetic probe and a sample close to each other, see Journal of Vacuum Science Technology A6 (19).
1988) p. 279 to 282, or Applied Physics Letters, Vol. 50 (1987) p. 1455 to 1457.

【0003】これら原子間力顕微鏡や磁気力顕微鏡の動
作モードは、大別して2つの方式が有る。第1の方式
は、カンチレバー先端の探針を試料表面に原子間力の作
用する領域(表面から数十nm以下)で走査し、力の変
化の直流成分を検出して試料表面の形態や磁気力の分布
を計測する。第2の方式は、カンチレバーを共振周波数
近傍で加振し、探針に働く力によるカンチレバーの共振
周波数の変化を検出し、力の勾配を計測する。この場
合、探針は試料表面から数十nmから数百nm離れた領
域で微小振幅で試料面に対して垂直に振動させながら動
作する。
The operation modes of these atomic force microscopes and magnetic force microscopes are roughly classified into two types. In the first method, the tip of the cantilever is scanned on the surface of the sample in the region where atomic force acts (tens of nm or less from the surface), and the DC component of the change in force is detected to detect the morphology and magnetic field of the sample surface. Measure the force distribution. The second method vibrates the cantilever in the vicinity of the resonance frequency, detects the change in the resonance frequency of the cantilever due to the force acting on the probe, and measures the force gradient. In this case, the probe operates while vibrating vertically with respect to the sample surface with a small amplitude in a region tens to hundreds of nm away from the sample surface.

【0004】磁性試料と磁性探針の間のトンネル電流を
検出して試料表面の磁区構造を検出する手段について
は、ジャーナル.オブ.バキューム.サイエンス.テク
ノロジ誌,B9(2),1991年,519頁から52
4頁に論じられている。この場合、試料面に垂直方向に
スピン偏極した探針(例えば酸化クロム)を用い、探針
と試料の間に流れるトンネル電流が磁性試料表面のスピ
ンの向きと平行もしくは反平行によりトンネル電流が異
なることを利用する検出方式である。
For the means for detecting the tunnel current between the magnetic sample and the magnetic probe to detect the magnetic domain structure on the sample surface, see Journal. of. vacuum. Science. Technology Magazine, B9 (2), 1991, pages 519-52.
Discussed on page 4. In this case, a probe (for example, chromium oxide) that is spin-polarized in the direction perpendicular to the sample surface is used, and the tunnel current flowing between the probe and the sample is parallel or antiparallel to the spin direction on the magnetic sample surface. This is a detection method that utilizes different things.

【0005】上記した磁気情報検出方式には幾つかの欠
点が有る。磁気力顕微鏡において力の直流成分を検出す
る方式では、探針と試料間に作用する磁気力が小さいた
めに試料の表面構造との分離がしにくい欠点が有る。磁
気力の勾配を検出する方式は、高感度の検出が可能であ
る反面、試料表面から離れた領域で計測するので分解能
の向上が難しい。また前記トンネル電流を検出する方式
は、単結晶試料のように表面が平坦な試料の磁区構造を
計測するのに適した方式であるが、一般の磁性試料の磁
気情報を検出する場合には、表面構造と磁気情報が混在
して正確な情報が得にくい欠点を持っており、また検出
感度も低い。
The above-mentioned magnetic information detection system has some drawbacks. The method of detecting the DC component of the force in the magnetic force microscope has a drawback that it is difficult to separate it from the surface structure of the sample because the magnetic force acting between the probe and the sample is small. The method of detecting the gradient of the magnetic force enables high-sensitivity detection, but it is difficult to improve the resolution because it measures in a region away from the sample surface. Further, the method of detecting the tunnel current is a method suitable for measuring the magnetic domain structure of a sample having a flat surface such as a single crystal sample, but in the case of detecting magnetic information of a general magnetic sample, It has the drawback that accurate information cannot be obtained due to the mixture of surface structure and magnetic information, and the detection sensitivity is low.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術では、探
針に働く磁気力または磁力勾配を一定に保つように探針
の位置を制御することにより、試料表面の漏洩磁界の分
布を計測できる。しかし、磁気と形態の情報が混在して
計測されるため、真の磁気情報の予測が困難である。一
方、スピン偏極した探針と試料間のトンネル電流を検出
する方式では、前記トンネル電流を一定に保つように探
針の位置を制御して試料表面の磁区構造を計測できる
が、この場合も試料表面の凹凸等の形態が混在して検出
される問題があった。
In the above conventional technique, the distribution of the leakage magnetic field on the sample surface can be measured by controlling the position of the probe so that the magnetic force or magnetic force gradient acting on the probe is kept constant. However, since magnetic and morphological information are mixed and measured, it is difficult to predict true magnetic information. On the other hand, in the method of detecting the tunnel current between the spin-polarized probe and the sample, the magnetic domain structure on the sample surface can be measured by controlling the position of the probe so as to keep the tunnel current constant. There has been a problem that irregularities on the sample surface are mixed and detected.

【0007】本発明の目的は、試料表面形態を観察し、
同一面上の磁区構造を高精度に観察,測定できる原子間
力,トンネル電流を利用した走査表面磁気顕微鏡を提供
することにある。
The object of the present invention is to observe the surface morphology of a sample,
It is to provide a scanning surface magnetic microscope that uses atomic force and tunnel current, which enables highly accurate observation and measurement of magnetic domain structures on the same plane.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明においてはスピン偏極した強磁性探針をカン
チレバーの先端に設ける手段,該カンチレバーの直流的
な変位を検出する手段,探針と試料の間に流れる電流を
検出する手段,強磁性針の磁化の強さを選択された特定
の周波数で変化する手段,前記特定の周波数成分の試料
と探針間の電流を検出する手段,探針を試料表面に沿っ
て走査する手段を設け、カンチレバーの直流的な変位よ
り試料の構造を探針と試料間の電流値の変化より磁気情
報を同時に測定することにより解決した。
To achieve the above object, in the present invention, a means for providing a spin-polarized ferromagnetic probe at the tip of a cantilever, a means for detecting a direct current displacement of the cantilever, and a probe. Means for detecting a current flowing between the needle and the sample, means for changing the magnetization intensity of the ferromagnetic needle at a selected specific frequency, and means for detecting a current between the sample and the probe having the specific frequency component , A means for scanning the probe along the sample surface was provided, and the structure of the sample was simultaneously measured by the direct current displacement of the cantilever and the magnetic information was simultaneously measured by the change in the current value between the probe and the sample.

【0009】[0009]

【作用】カンチレバーの先端に設けた強磁性探針を斥力
の原子間力が作用する領域まで試料表面に接近すると、
前記原子間力によりカンチレバーが撓む。該カンチレバ
ーの撓みによる変位をレーザ光を利用した位置検出手段
等により計測する。該カンチレバーの直流的な変位を測
定し、探針に作用する力が一定になるように、すなわち
該直流的な変位が一定になるように、試料あるいは探針
のz軸(試料面に垂直の軸)の位置を制御することによ
り試料の表面構造を計測する。
[Function] When the ferromagnetic probe provided at the tip of the cantilever is brought close to the sample surface up to the region where the repulsive interatomic force acts,
The atomic force causes the cantilever to bend. The displacement due to the bending of the cantilever is measured by a position detecting means or the like using laser light. The direct current displacement of the cantilever is measured and the z-axis of the sample or the probe (perpendicular to the sample surface is measured so that the force acting on the probe becomes constant, that is, the direct current displacement becomes constant. The surface structure of the sample is measured by controlling the position of (axis).

【0010】これと同時に強磁性探針と試料表面の間に
流れるトンネル電流を計測する。該トンネル電流Iは、
強磁性探針のスピン偏極率Pにより変化する。すなわ
ち、試料と探針のスピン偏極の向きが平行の場合、I=
0(1+P)として、一方反平行の場合I=I0(1−
P)のトンネル電流として検出される。ここでI0はス
ピン偏極のない時の電流である。
At the same time, the tunnel current flowing between the ferromagnetic probe and the sample surface is measured. The tunnel current I is
It changes depending on the spin polarization ratio P of the ferromagnetic probe. That is, when the directions of spin polarization of the sample and the probe are parallel, I =
As I 0 (1 + P), in the case of antiparallel I = I 0 (1-
It is detected as a tunnel current of P). Here, I 0 is a current when there is no spin polarization.

【0011】該カンチレバーの直流的な変位を一定に保
つように試料あるいは探針のz軸(試料面に垂直の軸)
の位置を制御すると同時に、該トンネル電流を計測する
ことにより形態情報と試料表面の磁区構造を分離し、か
つ関連づけて計測できる。強磁性探針を試料表面に接近
すると試料表面漏洩磁界により探針の磁化が変化する場
合が有る。また該トンネル電流の変化は小さいのでS/
N比(信号とノイズの割合)小さい場合が有る。この場
合、強磁性探針の一部に励磁用コイルなどを設け、さら
に特定の周波数により探針を励磁し、該周波数成分の最
大値の電流を計測することにより解決できる。
The z axis of the sample or the probe (axis perpendicular to the sample surface) so as to keep the direct current displacement of the cantilever constant.
It is possible to separate the morphological information from the magnetic domain structure on the sample surface and measure them by associating them with each other by measuring the tunnel current at the same time as controlling the position. When the ferromagnetic probe approaches the sample surface, the magnetic field of the sample surface may change the magnetization of the probe. Since the change in the tunnel current is small, S /
The N ratio (ratio of signal and noise) may be small. In this case, the problem can be solved by providing an exciting coil or the like on a part of the ferromagnetic probe, exciting the probe at a specific frequency, and measuring the maximum current of the frequency component.

【0012】該強磁性探針は、単結晶からなる単磁区構
造が最も望ましいが、スパッタリング法や真空蒸着法な
どの物理的蒸着法で形成した薄膜を用いても良い。ま
た、探針のスピン偏極の向きは、試料面に垂直でもある
いは平行でもよく、試料によって任意に選択できる。ま
た探針、および試料の表面は導電性材料で構成すること
が必要である。カンチレバーの変位検出方式としては、
光てこ方式,光干渉方式,静電容量方式,光臨界角方
式,トンネル電流検出方式等を採用することにより実現
できる。
The ferromagnetic probe is most preferably a single domain structure made of a single crystal, but a thin film formed by a physical vapor deposition method such as a sputtering method or a vacuum vapor deposition method may be used. The direction of spin polarization of the probe may be perpendicular or parallel to the sample surface, and can be arbitrarily selected depending on the sample. Further, it is necessary that the probe and the surface of the sample are made of a conductive material. As the cantilever displacement detection method,
It can be realized by adopting the optical lever method, the optical interference method, the electrostatic capacity method, the optical critical angle method, the tunnel current detection method, and the like.

【0013】[0013]

【実施例】図1は、本発明の基本的な装置の構成を説明
する図である。先端に探針1を備えたカンチレバー2を
試料3の表面に斥力の原子間力が作用する領域まで接近
すると、探針1が受けた力によりカンチレバー2が撓
む。この撓みによるカンチレバー2の変位を光てこ方式
検出器により検出する機能を有する。光てこ方式検出器
は、レーザ源4,位置センサ5,位置検出回路6から構
成される。該位置検出回路6の出力信号をサーボ制御回
路7に入力し、XYZスキャナー9のZ軸圧電素子によ
り、カンチレバー2の変位が一定、すなわち探針1と試
料3の距離が一定になるように制御する。さらにXY走
査回路8により試料3をXY走査し、XY方向の探針位
置に対する該Z軸圧電素子の制御信号を表示装置に表示
することにより試料の表面構造(AFM像)を観察する
ことができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram for explaining the structure of a basic device of the present invention. When the cantilever 2 having the probe 1 at its tip approaches the surface of the sample 3 to a region where repulsive atomic force acts, the force received by the probe 1 causes the cantilever 2 to bend. The optical lever type detector has a function of detecting the displacement of the cantilever 2 due to this bending. The optical lever type detector includes a laser source 4, a position sensor 5, and a position detection circuit 6. The output signal of the position detection circuit 6 is input to the servo control circuit 7, and the Z-axis piezoelectric element of the XYZ scanner 9 controls the displacement of the cantilever 2 to be constant, that is, the distance between the probe 1 and the sample 3 to be constant. To do. Further, the sample 3 is XY scanned by the XY scanning circuit 8 and the control signal of the Z-axis piezoelectric element with respect to the probe position in the XY directions is displayed on the display device, so that the surface structure (AFM image) of the sample can be observed. ..

【0014】一方、探針1として特定の方向、例えば試
料面に垂直方向にスピン偏極した強磁性針を用い、探針
1と試料3の間に流れるトンネル電流を検出する。トン
ネル電流は探針1と試料3の間にトンネルバイアス11
を印加し、電流検出器12により検出する。XY方向の
探針位置に対する電流検出器12の出力信号を該Z軸圧
電素子の制御信号と同期して表示装置に表示することに
より、磁区構造などの磁気情報を試料の表面構造と分離
して検出できる。このことは探針1と試料3の間に流れ
るトンネル電流Iは、各々のスピンの向きやスピン偏極
率Pにより異なることに基づく。すなわち探針1と試料
3のスピンの向きが同じときには、I=I0(1+P)
で与えられる電流が、一方逆向きの場合にはI=I
0(1−P)が検出される。ここでI0 はP=0の時の
電流である。カンチレバー2の周囲に励磁用コイル13
とこれを励起する励起用電源を設けて、探針1先端のス
ピンの向きや偏極率を制御できる。
On the other hand, as the probe 1, a ferromagnetic needle spin-polarized in a specific direction, for example, a direction perpendicular to the sample surface is used to detect a tunnel current flowing between the probe 1 and the sample 3. The tunnel current is the tunnel bias 11 between the probe 1 and the sample 3.
Is applied and detected by the current detector 12. By displaying the output signal of the current detector 12 with respect to the probe position in the XY directions on the display device in synchronization with the control signal of the Z-axis piezoelectric element, magnetic information such as magnetic domain structure is separated from the surface structure of the sample. Can be detected. This is based on the fact that the tunnel current I flowing between the probe 1 and the sample 3 differs depending on the spin direction and spin polarization P. That is, when the spin directions of the probe 1 and the sample 3 are the same, I = I 0 (1 + P)
If the current given by is in the opposite direction, I = I
0 (1-P) is detected. Here, I 0 is the current when P = 0. Excitation coil 13 around the cantilever 2
By providing an excitation power source for exciting this, the spin direction and the polarization rate at the tip of the probe 1 can be controlled.

【0015】詳細な動作の一例を図2により説明する。
SiやSiO2 などの探針用基板23の上にパーマロイ
(Ni−Fe合金)などの強磁性体からなる磁性膜22
を銅などの非磁性膜21を界して積層した探針1を構成
する。この積層膜はエピタキシャル成長した膜であるこ
とが望ましい。前記磁性膜22としては、パーマロイの
他にFe,Ni,Coを少なくとも一元素を含む磁性体
で構成してもよく、また、非磁性膜21はCuの他にC
r,Pt,Au,Ag,Al,Cを少なくとも一元素含
む膜で構成してもよい。また探針1は、Mn,Alなど
の非磁性体を交互に積層して構成しても同様の効果を有
する磁性探針を構成できる。
An example of detailed operation will be described with reference to FIG.
A magnetic film 22 made of a ferromagnetic material such as permalloy (Ni—Fe alloy) on a probe substrate 23 such as Si or SiO 2.
To form a probe 1 in which a non-magnetic film 21 such as copper is laminated. This laminated film is preferably an epitaxially grown film. The magnetic film 22 may be made of a magnetic material containing at least one element of Fe, Ni, and Co in addition to permalloy, and the nonmagnetic film 21 may be made of C in addition to Cu.
A film containing at least one element of r, Pt, Au, Ag, Al, and C may be used. Further, the probe 1 can also be configured as a magnetic probe having the same effect by alternately stacking non-magnetic materials such as Mn and Al.

【0016】この探針1の上部磁性膜のスピンP1 24
と下部磁性膜のスピンP2 25の向きは、一般に反平行
に形成されるが、同一方向でも同じ効果を得られること
はいうまでもない。また上部磁性膜のスピンP1 24と
下部磁性膜のスピンP2 25の偏極率は、ほぼ等しい。
The spin P 1 24 of the upper magnetic film of the probe 1
The spin P 2 25 of the lower magnetic film is generally antiparallel to each other, but it goes without saying that the same effect can be obtained even in the same direction. The spin P 1 24 of the upper magnetic film and the spin P 2 25 of the lower magnetic film have substantially the same polarizability.

【0017】今、探針1のスピンが試料3の表面に垂直
で、また試料のスピン26が試料面に垂直に交互に形成
された場合を述べる。探針1と試料3の間にトンネルバ
イアス11を印加し、この時の電流値を電流検出回路1
2で検出する。図2(a)のごとく、上部磁性膜のスピ
ンP1 24と下部磁性膜のスピンP2 25の偏極率が等
しい場合(P1=P2)、試料のスピン26の向きが交互
に変化しても探針1と試料3の間の電流27は一定であ
る。探針1の周囲に励磁用コイル13を設け、励起用電
源14により直流的に励磁用コイル13を励磁すると、
図2(b)に示したように上部磁性膜のスピンP1 24
と下部磁性膜のスピンP2 25の偏極率に差を付けるこ
とができる(P1≦P2)。また逆向きの励磁により(P1
2)が実現できることは言うまでもない。(P2−P1
で与えられる偏極率をもった探針1を試料3の表面上を
走査したとき、探針1と同じ向きのスピンを持つ領域で
は、逆向きの領域に調べて大きな電流27の値が検出で
きる。
Now, the case where the spins of the probe 1 are formed perpendicularly to the surface of the sample 3 and the spins 26 of the sample are formed alternately perpendicular to the surface of the sample will be described. A tunnel bias 11 is applied between the probe 1 and the sample 3, and the current value at this time is measured by the current detection circuit 1.
Detect with 2. As shown in FIG. 2A, when the spin P 1 24 of the upper magnetic film and the spin P 2 25 of the lower magnetic film have the same polarizability (P 1 = P 2 ), the orientation of the spin 26 of the sample changes alternately. Even so, the current 27 between the probe 1 and the sample 3 is constant. When the exciting coil 13 is provided around the probe 1 and the exciting power source 14 excites the exciting coil 13 in a direct current,
As shown in FIG. 2B, the spin P 1 24 of the upper magnetic film is
And the polarizability of the spin P 2 25 of the lower magnetic film can be made different (P 1 ≤P 2 ). In addition, by exciting in the opposite direction (P 1
It goes without saying that P 2 ) can be realized. (P 2 -P 1)
When the probe 1 having the polarization ratio given by is scanned on the surface of the sample 3, in a region having spins in the same direction as the probe 1, the region in the opposite direction is examined and a large value of the current 27 is detected. it can.

【0018】このような探針1を図1に示したカンチレ
バー2の先端に設置し、探針1と試料3の間の原子間力
を一定、すなわち探針1と試料3の間の距離を一定に保
つようにXYZスキャナー9のZ軸圧電素子を制御す
る。Z軸圧電素子の制御信号から試料の表面形態を探針
1と試料3の間の電流変化から試料の磁気情報をそれぞ
れ分離して計測できる。
Such a probe 1 is installed at the tip of the cantilever 2 shown in FIG. 1 so that the atomic force between the probe 1 and the sample 3 is constant, that is, the distance between the probe 1 and the sample 3 is kept constant. The Z-axis piezoelectric element of the XYZ scanner 9 is controlled so as to keep it constant. From the control signal of the Z-axis piezoelectric element, the surface morphology of the sample can be measured by separating the magnetic information of the sample from the current change between the probe 1 and the sample 3.

【0019】ここでは探針1と試料3のスピンの向きが
試料面に垂直な場合について述べたが、試料面に平行の
スピンの場合についても同様の作用が得られることは言
うまでもない。またカンチレバー2の変位を検出するに
は、光てこ方式以外に、非接触,大面積変位検出方式、
即ち、光干渉方式,静電容量方式,光臨界角方式、ある
いはトンネル電流検出方式などを採用することによって
も実現できる。
Although the case where the spin directions of the probe 1 and the sample 3 are perpendicular to the sample surface has been described here, it is needless to say that the same effect can be obtained in the case of the spin parallel to the sample surface. In addition, in order to detect the displacement of the cantilever 2, in addition to the optical lever method, a non-contact, large area displacement detection method,
That is, it can be realized by adopting an optical interference method, an electrostatic capacity method, an optical critical angle method, a tunnel current detection method, or the like.

【0020】また、探針1を構成する強磁性体膜は、図
2のごとく積層膜の他に、単層の強磁性体膜でもよい。
The ferromagnetic film forming the probe 1 may be a single-layer ferromagnetic film other than the laminated film as shown in FIG.

【0021】図3は、本発明の他の応用例の説明図であ
る。発振器15により励磁用コイル13を数十から数メ
ガHzの範囲の特定の周波数で交流的に励磁し、カンチ
レバー2の先端の探針1のスピン偏極率を変化する。こ
の時、探針1と試料3の間の電流も交流的に変化する。
発振器15の励磁周波数を参照信号17としてロックイ
ンアンプ16に導入し、これと同じ周波数成分のトンネ
ル電流のピーク値を検出する。他は上記の実施例と同様
に動作して計測する。この方式により検出電流の信号/
ノイズ比を改善できる。
FIG. 3 is an explanatory diagram of another application example of the present invention. The exciting coil 13 is AC-excited by the oscillator 15 at a specific frequency in the range of several tens to several megaHz, and the spin polarization rate of the probe 1 at the tip of the cantilever 2 is changed. At this time, the current between the probe 1 and the sample 3 also changes in an alternating current.
The excitation frequency of the oscillator 15 is introduced into the lock-in amplifier 16 as the reference signal 17, and the peak value of the tunnel current of the same frequency component as this is detected. Others operate and measure in the same manner as the above-mentioned embodiment. With this method, the detected current signal /
The noise ratio can be improved.

【0022】[0022]

【発明の効果】本発明を用いれば、従来技術で不可能な
試料表面構造と試料の磁区構造を分離して複合計測で
き、試料の構造と磁化状態の相関解析が可能となる。
According to the present invention, it is possible to separate and measure a sample surface structure and a magnetic domain structure of a sample, which are not possible with the prior art, and to perform a correlation analysis between the structure of the sample and the magnetization state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例になる基本的な装置構成を示
すブロック図。
FIG. 1 is a block diagram showing a basic device configuration according to an embodiment of the present invention.

【図2】本発明を実現するための計測法の一具体例の説
明図。
FIG. 2 is an explanatory diagram of a specific example of a measuring method for realizing the present invention.

【図3】本発明の一実施例になる信号/ノイズ比を改善
するための装置構成を示すブロック図。
FIG. 3 is a block diagram showing a device configuration for improving a signal / noise ratio according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…探針、2…カンチレバー、3…試料、4…レーザ
源、5…位置センサ、6…位置検出器、7…サーボ制御
回路、8…XY走査回路、9…XYZスキャナー、10
…表示装置、11…トンネルバイアス、12…電流検出
器、13…励磁用コイル、14…励起用電源、15…発
振器、16…ロックインアンプ、17…参照信号、21
…非磁性膜、22…磁性膜、23…探針用基板、24,
34…上部磁性膜のスピンP1、25,35…下部磁性
膜のスピンP2、26…試料のスピン、27…電流。
1 ... Probe, 2 ... Cantilever, 3 ... Sample, 4 ... Laser source, 5 ... Position sensor, 6 ... Position detector, 7 ... Servo control circuit, 8 ... XY scanning circuit, 9 ... XYZ scanner, 10
... Display device, 11 ... Tunnel bias, 12 ... Current detector, 13 ... Excitation coil, 14 ... Excitation power supply, 15 ... Oscillator, 16 ... Lock-in amplifier, 17 ... Reference signal, 21
... non-magnetic film, 22 ... magnetic film, 23 ... probe substrate, 24,
34 ... Spin P 1 of upper magnetic film, 25, 35 ... Spin P 2 of lower magnetic film, 26 ... Spin of sample, 27 ... Current.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】a)尖針を有する可撓性のカンチレバー
と、 b)前記カンチレバーの直流的な変位を検出する手段
と、 c)前記カンチレバーの直流的な変位を一定に保つよう
に探針の位置を制御する手段と、 d)前記尖針と試料の間に流れる電流を検出する手段
と、 e)前記尖針をスピン偏極した強磁性針で構成する手段
と、 f)前記強磁性針のスピン偏極率を変化する手段と、 g)前記特定の周波数成分の試料と探針間の電流を検出
する手段と、 h)前記尖針を試料表面に沿って走査する手段と、 i)前記カンチレバーの変位、および試料と尖針間の電
流を走査位置ごとに表示する手段とを有することを特徴
とする走査表面磁気顕微鏡。
1. A flexible cantilever having a pointed needle, b) means for detecting a direct current displacement of the cantilever, and c) a probe for maintaining a constant direct current displacement of the cantilever. Means for controlling the position of d), d) means for detecting a current flowing between the tip and the sample, e) means for forming the tip with a spin-polarized ferromagnetic needle, and f) the ferromagnetism. Means for changing the spin polarization of the needle; g) means for detecting a current between the sample of the specific frequency component and the probe; h) means for scanning the tip needle along the sample surface; i. ) A scanning surface magnetic microscope comprising: a displacement of the cantilever and a means for displaying the current between the sample and the needle at each scanning position.
【請求項2】請求項1において、強磁性針のスピン偏極
率を選択された特定の周波数で変化する手段を有するこ
とを特徴とする走査表面磁気顕微鏡。
2. A scanning surface magnetic microscope according to claim 1, further comprising means for changing the spin polarization rate of the ferromagnetic needle at a selected specific frequency.
【請求項3】請求項1,2において、強磁性針が薄膜で
構成されることを特徴とする走査表面磁気顕微鏡。
3. A scanning surface magnetic microscope according to claim 1, wherein the ferromagnetic needle is made of a thin film.
【請求項4】請求項1,2,3において、強磁性針が強
磁性体と非磁性体が交互に積層された薄膜で構成される
ことを特徴とする走査表面磁気顕微鏡。
4. The scanning surface magnetic microscope according to claim 1, wherein the ferromagnetic needle is composed of a thin film in which a ferromagnetic material and a non-magnetic material are alternately laminated.
JP10732992A 1992-01-10 1992-04-27 Scanning surface magnetic microscope Pending JPH05302965A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10732992A JPH05302965A (en) 1992-04-27 1992-04-27 Scanning surface magnetic microscope
EP93100055A EP0551814B1 (en) 1992-01-10 1993-01-05 Surface observing apparatus and method
DE69309318T DE69309318T2 (en) 1992-01-10 1993-01-05 Method and device for observing a surface
US08/001,250 US5436448A (en) 1992-01-10 1993-01-06 Surface observing apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10732992A JPH05302965A (en) 1992-04-27 1992-04-27 Scanning surface magnetic microscope

Publications (1)

Publication Number Publication Date
JPH05302965A true JPH05302965A (en) 1993-11-16

Family

ID=14456299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10732992A Pending JPH05302965A (en) 1992-01-10 1992-04-27 Scanning surface magnetic microscope

Country Status (1)

Country Link
JP (1) JPH05302965A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114186A (en) * 2001-10-03 2003-04-18 Seiko Instruments Inc Scanning probe microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114186A (en) * 2001-10-03 2003-04-18 Seiko Instruments Inc Scanning probe microscope

Similar Documents

Publication Publication Date Title
EP0726444B1 (en) Magnetic resonance method and apparatus for detecting an atomic structure of a sample along a surface thereof
EP0410131B1 (en) Near-field lorentz force microscopy
US5319977A (en) Near field acoustic ultrasonic microscope system and method
US5266897A (en) Magnetic field observation with tunneling microscopy
EP0383323A1 (en) Tunneling acoustic microscope
US6817231B2 (en) Scanning probe microscope for ultra sensitive electro-magnetic field detection and probe thereof
JPH01320750A (en) Scanning type tunnel microscope
JP2007232596A (en) Magnetic resonance force microscope
US8912789B2 (en) Magnetic force microscope and magnetic field observation method using same
JP3141555B2 (en) Scanning surface magnetic microscope
US6683451B1 (en) Magnetic resonance force microscope for the study of biological systems
US6078174A (en) Apparatus for measuring exchange force
Chong et al. Scanning Hall probe microscopy on an atomic force microscope tip
US6448766B1 (en) Method of imaging a magnetic field emanating from a surface using a conventional scanning force microscope
US6396261B1 (en) Scanning AC hall microscope
JPH05302965A (en) Scanning surface magnetic microscope
JP2014134523A (en) Magnetical characteristic evaluation apparatus for magnetic fine particle and magnetical characteristic evaluation method
JPWO2015182564A1 (en) Magnetic force microscope probe evaluation apparatus and evaluation method, and magnetic force microscope and magnetic force microscope control magnetic field adjustment method
JP3566567B2 (en) Magnetic resonance type exchange interaction force microscope and observation method using the same
JP3376374B2 (en) Method of creating image of sample surface in probe microscope
JP3084924B2 (en) Atomic force microscope
JP3417924B2 (en) Spin-polarized scanning tunneling microscope
Porter et al. Direct Piezoelectric Force Microscopy: Applications Towards the Characterisation of Multiferroic stacks
JPH0821870A (en) Scanning surface magnetism detecting device
JP2842000B2 (en) Observation method of magnetic domain or magnetic structure using scanning tunneling microscope