JPH05301994A - Rubber compounding composition - Google Patents

Rubber compounding composition

Info

Publication number
JPH05301994A
JPH05301994A JP11029492A JP11029492A JPH05301994A JP H05301994 A JPH05301994 A JP H05301994A JP 11029492 A JP11029492 A JP 11029492A JP 11029492 A JP11029492 A JP 11029492A JP H05301994 A JPH05301994 A JP H05301994A
Authority
JP
Japan
Prior art keywords
rubber
microbial cellulose
composition
cellulose
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11029492A
Other languages
Japanese (ja)
Inventor
Eiji Ono
栄治 小野
Shigeru Yamanaka
茂 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP11029492A priority Critical patent/JPH05301994A/en
Publication of JPH05301994A publication Critical patent/JPH05301994A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the subject composition useful for tire, etc., having excellent strength, lightness, wet skid properties by blending a rubber composition consisting essentially of natural rubber with a given amount of microbial cellulose. CONSTITUTION:(A) A rubber composition consisting essentially of natural rubber is blended with (B) 0.5-25 pts.wt. calculated as dried material of microbial cellulose obtained by standing culture to give the objective composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の使用分野】本発明はゴム組成物の強度の改良
に関する。
FIELD OF THE INVENTION This invention relates to improving the strength of rubber compositions.

【0002】[0002]

【従来の技術】従来のゴム組成物は、ジエン系合成ゴム
が主流であり、例えば耐油、耐オゾン性を有するゴム組
成物としてアクリロニトリル−ブタジエン共重合ゴムと
塩化ビニル樹脂とから成るゴム組成物が使われている。
2. Description of the Related Art A conventional rubber composition is mainly composed of a diene-based synthetic rubber. For example, a rubber composition having an oil resistance and an ozone resistance is a rubber composition comprising an acrylonitrile-butadiene copolymer rubber and a vinyl chloride resin. It is used.

【0003】タイヤの軽量化には、軽くて強い細い繊維
が求められている。現状ではカーボンブラックが5%程
度配合されていてタイヤは重い。カーボンブラックは粒
状のものが連なった構造で強くない。
To reduce the weight of tires, light and strong fine fibers are required. Currently, about 5% of carbon black is blended and the tire is heavy. Carbon black is not a strong structure because it has a series of granular particles.

【0004】また近年の高価格オイル下の社会的要請で
ある省エネルギーをタイヤ性能の上で発現させるために
は、低転がり抵抗性が必須であることは従来から知られ
ていたが、一般に低転がり抵抗性を示すゴム材料は湿潤
路面での路面把握力、いわゆるウエットスキッド性が劣
る傾向にあり、両者の性能は相反するものと考えられて
きた。これまでジエン系合成ゴムにコハク酸のハーフア
ミドアルカリ塩等の乳化剤を配合する方法(特開昭59
−45340)やスズ、ケイ素及びゲルマニュウの金属
と炭素との結合を分子鎖に含む重合体であるジエン系合
成ゴム(特開昭58−122939)やゴム組成物に非
金属繊維(平均繊維長30〜4000ミクロン、平均径
10〜35ミクロン)を配合したスタッドレスタイヤ用
トレッドゴム組成物(特開平3−152140)などが
ある。しかし、強度については改善されていない。
It has been conventionally known that low rolling resistance is indispensable in order to realize energy saving, which is a social demand under high price oil in recent years, in terms of tire performance, but generally low rolling resistance is required. It has been considered that a rubber material exhibiting resistance has a poor road gripping ability on a wet road surface, that is, a so-called wet skid property, and the performances of the two are contradictory. Heretofore, a method of blending a diene-based synthetic rubber with an emulsifier such as an alkali amide salt of succinic acid (JP-A-59-59).
-45340), tin, silicon, and diene synthetic rubber (Japanese Patent Laid-Open No. 58-122939), which is a polymer containing a bond between a metal and carbon of germanium in its molecular chain, and a nonmetallic fiber (average fiber length). There is a tread rubber composition for studless tires (Japanese Patent Laid-Open No. 3-152140) containing 30 to 4000 microns and an average diameter of 10 to 35 microns. However, the strength has not been improved.

【0005】[0005]

【本発明が解決しようとする課題】本発明の目的は強度
に優れたゴム組成物を提供することにある。
An object of the present invention is to provide a rubber composition having excellent strength.

【0006】[0006]

【課題を解決するための手段】本発明は、従来のゴム組
成物に、該組成物に静置培養で得た微生物セルロース
(以下微生物セルロ−スと略す)を乾燥物に換算し、該
組成物に対し0.5ないし25重量部を含有することを
特徴とするゴム配合組成物である。該組成物は強度に優
れていることを見いだし本発明を完成するに至った。以
下に本発明を詳細に説明する。
[Means for Solving the Problems] According to the present invention, a conventional rubber composition is prepared by converting microbial cellulose (hereinafter abbreviated as microbial cellulose) obtained by static culture in the composition into a dried product. The rubber compounding composition is characterized in that it contains 0.5 to 25 parts by weight of the composition. They have found that the composition has excellent strength and completed the present invention. The present invention will be described in detail below.

【0007】ゴム材料の成型加工は一般に次のように行
われる。最初に素練りして柔らかくなった原料ゴムに、
カーボン、オイル、老化防止剤などを練り込み、さらに
温度を下げて硫黄を練り込む、その後所定のモールド内
に加圧封入し、150℃前後の温度で一定時間プレス加
熱することによって製品となる。
The molding process of a rubber material is generally performed as follows. To the raw rubber that was first masticated and softened,
A product is obtained by kneading carbon, oil, an antioxidant and the like, further lowering the temperature and kneading sulfur, and then pressurizing and enclosing in a predetermined mold and press-heating at a temperature of about 150 ° C. for a certain period of time.

【0008】原料ゴムに架橋剤として混合する硫黄の量
や加硫促進剤の種類、量によって変化し、また温度、時
間などの加硫条件によっても異なったものとなる。この
ときの硫黄原子(S)が1個で架橋点の働きをするモノ
スルフィド架橋、架橋点がS2個でできているジスルフ
ィド架橋、多くのSで構成されているポリスルフィド架
橋があり、さらにSの分子内架橋もある。一方、架橋剤
として有機過酸化物を用いると、異なったものとゴム分
子鎖の炭素原子(C)同士が直接結合するC−C架橋が
得られる。例えばポリスルフィド架橋ゴムは、耐屈曲疲
労性、亀裂抵抗性、耐摩耗性などに優れるが、耐クリー
プ性、耐応力緩和性などが良くない。これに対し最も短
いC−C架橋ゴムはその反対で、耐屈曲疲労性などが劣
るが耐クリープ性などに優れている。S架橋、S−S架
橋はこれらの中間的な特性を示すことが知られている。
このような従来型ゴム材料に対し、加工性の優れたゴム
材料として最近注目されているのが熱可塑性エラストマ
ーおよび液状エラストマーである。熱可塑性エラストマ
ーとは、1本の分子鎖中に結晶構造や凝集構造などの硬
質ブロックを形成しやすい樹脂部分と硬質ブロックを作
りにくい従来型のゴム成分よりなる部分とを、一緒にも
ち合わせているような高分子材料を云う。また液状エラ
ストマーとは、分子量が3000〜6000で、その分
子末端に水酸基やカルボキシル基をつけた液状の高分子
と、多官能性の鎖延長剤や結合剤等を反応させることに
よって得られるゴムを云う。
The amount of sulfur mixed in the raw rubber as a crosslinking agent varies depending on the type and amount of the vulcanization accelerator, and also varies depending on vulcanization conditions such as temperature and time. At this time, there are monosulfide bridges having one sulfur atom (S) that acts as a crosslinking point, disulfide bridges having two S2 crosslinking points, and polysulfide bridges composed of many S. There is also intramolecular crosslinking. On the other hand, when an organic peroxide is used as the cross-linking agent, a C-C cross-link in which different carbon atoms (C) in the rubber molecular chain are directly bonded to each other is obtained. For example, polysulfide crosslinked rubber is excellent in bending fatigue resistance, crack resistance, wear resistance, etc., but is not good in creep resistance, stress relaxation resistance, etc. On the other hand, the shortest C-C crosslinked rubber is the opposite, and is inferior in flex fatigue resistance but excellent in creep resistance. It is known that S-crosslinking and S-S-crosslinking show intermediate properties between these.
In contrast to such conventional rubber materials, thermoplastic elastomers and liquid elastomers have recently received attention as rubber materials having excellent processability. A thermoplastic elastomer is a combination of a resin part that easily forms a hard block such as a crystal structure or an aggregated structure in one molecular chain and a part that is made of a conventional rubber component that makes it difficult to form a hard block together. It is a high-polymer material. The liquid elastomer is a rubber obtained by reacting a liquid polymer having a molecular weight of 3,000 to 6000 with a hydroxyl group or a carboxyl group at its molecular end with a polyfunctional chain extender or binder. say.

【0009】例えば、タイヤのトレッド配合は直接路面
に接する部分で、その使用目的、条件によりいろいろな
トレッドパターンが施され、牽引力、制動力、横滑り防
止の効果を持たせている。ここに使われるゴム質はトレ
ッドと呼ばれ、主として耐摩耗性、耐破壊特性、耐スキ
ッド性などを配慮した配合が用いられる。一般にはブタ
ジエンゴム(以下BRと称する)がスチレン・ブタジエ
ンゴム(以下SBRと称する)よりも苛酷な使用条件で
耐摩耗性が優れているのでトレッド配合は大型タイヤに
対してはBR主体の配合にSBRをブレンドして使用さ
れる。一方小型タイヤに対しては、SBRが主体で使用
される。SBRはBRよりも発熱が大きいことから発熱
を重視するところにはSBRは向かない。しかし逆に、
この発熱が大きい性質を利用して、スキッド抵抗の増加
や走行時の騒音防止などの対策として使用することもあ
る。
For example, in the tread composition of a tire, various tread patterns are applied in a portion which is in direct contact with the road surface, depending on the purpose of use and the conditions thereof, to provide the effect of traction force, braking force and skid prevention. The rubber material used here is called a tread, and a compounding mainly considering wear resistance, fracture resistance, skid resistance and the like is used. Generally, butadiene rubber (hereinafter referred to as BR) has better wear resistance than styrene-butadiene rubber (hereinafter referred to as SBR) under severe operating conditions, so the tread composition should be mainly BR composition for large tires. Used by blending SBR. On the other hand, SBR is mainly used for small tires. Since SBR generates more heat than BR, SBR is not suitable for places where heat generation is important. But conversely,
This property of large heat generation may be used as a measure to increase skid resistance and prevent noise during running.

【0010】トレッド配合の加硫系は、過加硫となって
も物性のあまり変化しないような平坦加硫性を要求され
る。通常はスルフェンアミド類、チアゾール類の単独、
あるいは両者の併用などの加硫促進剤が用いられた硫黄
加硫である。
The vulcanization system containing the tread is required to have a flat vulcanizability so that the physical properties do not change so much even if it is overvulcanized. Usually sulfenamides, thiazoles alone,
Alternatively, it is sulfur vulcanization using a vulcanization accelerator such as a combination of both.

【0011】一方、本発明に用いられる微生物セルロー
スとは、生産された状態では、結晶性および一軸配向性
が非常に高いセルロースからなる非常に細い(幅あるい
は直径100nm以下と言われる)リボン状の繊維が複
雑に絡み合ったネットワーク状の構造物をしており、こ
の構造物は、その中の空隙に多量の液体を含んでおり、
その外観はゲル状である。この微生物セルロース構造物
内の空隙に含まれている液体成分、例えば水は、自由水
として存在し、外力を加えると容易に絞り出されてく
る。このように結晶性が非常に高い多数のリボン状の繊
維により構成されているので湿状態のものでも、引張等
の外力にたいして耐える。微生物セルロースは、植物起
源の木綿、木材パルプ等のセルロースと一次構造上は差
がないが、上に述べたようなネットワークのようないわ
ゆる高次構造は、植物起源のセルロースでは見られな
い。従って微生物セルロース特有のものであり、それゆ
え、ゲル状であるにもかかわらず強度を持つこと等、種
々の性質を示す。
On the other hand, the microbial cellulose used in the present invention is a very thin ribbon (which is said to have a width or a diameter of 100 nm or less) made of cellulose having extremely high crystallinity and uniaxial orientation in the produced state. It has a network-like structure in which fibers are intertwined intricately, and this structure contains a large amount of liquid in the voids inside,
Its appearance is gel-like. The liquid component contained in the voids in the microbial cellulose structure, such as water, exists as free water and is easily squeezed out when an external force is applied. Since it is composed of a large number of ribbon-shaped fibers having extremely high crystallinity, it can withstand external forces such as tension even in a wet state. Microbial cellulose does not differ in primary structure from cellulose of plant-derived cotton, wood pulp, etc., but so-called higher-order structure such as the network described above is not found in plant-derived cellulose. Therefore, it is peculiar to microbial cellulose, and therefore exhibits various properties such as strength even though it is in a gel form.

【0012】微生物セルロースは生産された時は、一見
ゲル状の形態をしている。つまり、微生物セルロース
は、前記のように細い繊維で構成されており、繊維と繊
維の空隙に液体成分を繊維重量の95%以上も含んでい
るが、このゲル状物の中の繊維と繊維の空隙に液体成分
は、一般の高分子ゲルのように分子状態で拘束されてい
るわけではない。例えば、液体成分が水の場合は大部分
がゲル状微生物セルロースの中に自由水として存在し、
指で軽くつまむだけで液体成分を絞り出すことが可能で
ある。また微生物セルロースは、結晶性の高いα−セル
ロースで構成されること、非常に表面配向性が強いこ
と、極めて高強度を有している等の特徴を有している。
Microbial cellulose, when produced, appears to be in the form of a gel. That is, the microbial cellulose is composed of thin fibers as described above, and contains 95% or more by weight of the liquid component of the liquid component in the voids between the fibers. The liquid component is not bound in the voids in a molecular state like general polymer gels. For example, when the liquid component is water, most of it exists as free water in the gelled microbial cellulose,
It is possible to squeeze out the liquid component by simply pinching it with your finger. In addition, microbial cellulose is characterized by being composed of α-cellulose having high crystallinity, having extremely strong surface orientation, and having extremely high strength.

【0013】このようなゲル状で得られる微生物セルロ
ースは生産方法として静置培養により得られる。しかし
一方で撹拌培養により得られる微生物セルロースはゲル
状を程さずペレット形状である。
The microbial cellulose obtained in such a gel form can be obtained by static culture as a production method. However, on the other hand, the microbial cellulose obtained by stirring culture is not gel-like but pellet-like.

【0014】微生物セルロースは、セルロースおよびセ
ルロースを主鎖としたヘテロ多糖を含むものおよびβ、
α等のグルカンを含む。ヘテロ多糖の場合はセルロース
以外の構成成分としてマンノース、フラクトース、ガラ
クトース、キシロース、アラビノース、ラムノース、ウ
ロン酸等の六単糖、五単糖および有機酸等を含む。これ
らの多糖が単一物質として存在するセルロースもある
し、2種類以上の多糖が混在しているセルロースもあ
る。
Microbial cellulose includes those containing cellulose and a heteropolysaccharide having cellulose as a main chain and β,
Including glucan such as α. In the case of a heteropolysaccharide, the constituent components other than cellulose include hexoses such as mannose, fructose, galactose, xylose, arabinose, rhamnose and uronic acid, pentasaccharides and organic acids. There are celluloses in which these polysaccharides exist as a single substance, and there are celluloses in which two or more types of polysaccharides are mixed.

【0015】このような微生物セルロースを生産する微
生物は、とくに限定しないが、例えばアセトバクター・
パスツリアヌス(Asetobacter pasturianus)ATCC10
821、FERM P−12884、同アセチ(A.acet
i)、同ランセンス(A.ransens)、ザルチナ・ヴェント
リクリ(Sarcina ventriculi)、バクテリウム・キシロ
イデス(Bacterium xyloi-des)、 シュードモナス属細
菌、アグロバクテリウム属細菌、リゾビウム属細菌等が
挙げられる。
Microorganisms that produce such microbial cellulose are not particularly limited, and for example, acetobacter
Pasteurianus (Asetobacter pasturianus) ATCC10
821, FERM P-12884, the same aceti (A.acet
i), A. ransens, Sarcina ventriculi, Bacterium xyloi-des, Pseudomonas spp, Agrobacterium spp, Rhizobium spp, and the like.

【0016】微生物セルロースの生成蓄積のためには、
上記の微生物を用いて、通常の細菌を培養する一般的な
方法に従えばよい。すなわち、炭素源、窒素源、無機塩
類、その他必要に応じて、アミノ酸、ビタミン等の有機
微量栄養素を含有する通常の栄養培地に添加し、20℃
ないし40℃に制御し静置培養を行えばよい。このよう
にして生産された微生物セルロースは、菌体あるいは、
培地成分を含むので、用途に応じて洗浄をすればよい。
洗浄は、希アルカリ、希酸、有機溶剤、熱水等を単独あ
るいは組み合わせて行えばよい。微生物セルロースをワ
ーリング・ブレンダーで10,000rpm5ないし9
0分、好ましくは10ないし30分間粉砕すればよい。
このようにして離解を行い、離解物を製造することが可
能であるが、離解の程度は、JAPAN TAPPI 紙試験法N
o.52−89に記載の方法で測定可能である。
For the production and accumulation of microbial cellulose,
A general method for culturing ordinary bacteria using the above-mentioned microorganism may be followed. That is, it is added to a normal nutrient medium containing a carbon source, a nitrogen source, inorganic salts, and other organic trace nutrients such as amino acids and vitamins at 20 ° C.
The static culture may be carried out by controlling the temperature to 40 ° C. The microbial cellulose produced in this manner is microbial cells or
Since it contains the medium components, it may be washed according to the application.
The washing may be performed with a dilute alkali, a dilute acid, an organic solvent, hot water or the like alone or in combination. Microbial cellulose with Waring blender 10,000 rpm 5-9
It may be pulverized for 0 minutes, preferably 10 to 30 minutes.
It is possible to carry out disaggregation in this way to produce disaggregated products, but the degree of disaggregation depends on JAPAN TAPPI
o. It can be measured by the method described in 52-89.

【0017】ゴム組成物特にタイヤ引張り強度を発現さ
れるためには、この方法で測定された見かけの繊維幅が
1ミクロン以下、繊維長が重量平均繊維長30ミクロン
以下、数平均繊維長25ミクロン以下が好ましい。重量
平均繊維長30ミクロンより大きい場合あるいは数平均
繊維長25ミクロンより大きい場合は、通常に比べてゴ
ム組成物に配合すると強度効果が見られない。
In order to develop the rubber composition, especially the tire tensile strength, the apparent fiber width measured by this method is 1 micron or less, the fiber length is 30 micron or less in weight average fiber length, and 25 micron in number average fiber length. The following are preferred. When the weight average fiber length is larger than 30 μm or when the number average fiber length is larger than 25 μm, the strength effect is not observed when compounded in the rubber composition as compared with the usual case.

【0018】静置、撹拌培養で得た微生物セルロースを
ワーリング・ブレンダーで離解した該離解物の長さ30
ミクロン以上のものが撹拌培養では約40%に対し静置
培養では10%以下であった。従って静置培養で得た微
生物セルロースが本発明の目的には好ましい。
Microbial cellulose obtained by stationary culture with stirring was disaggregated with a Waring blender to obtain a dissociated product having a length of 30.
About 40% of micron or more particles were obtained in the agitation culture, and 10% or less in the static culture. Therefore, microbial cellulose obtained by static culture is preferable for the purpose of the present invention.

【0019】上記の微生物セルロースの離解物は自然乾
燥あるいはアセトン、アセトニトリル等の溶剤に置換し
てから風乾等の方法で乾燥してから使用できる。該乾燥
物はSBR、BR等の原料ゴムの素練りのときに添加し
て混練りすればよい。
The disaggregated product of the above-mentioned microbial cellulose can be used after being naturally dried or after being replaced with a solvent such as acetone or acetonitrile and then dried by a method such as air drying. The dried product may be added and kneaded at the time of mastication of raw rubber such as SBR and BR.

【0020】本発明のゴム配合組成物はゴム組成物に微
生物セルロースを乾燥物に換算し、該組成物に対し0.
5ないし25重量部を含有することで従来のゴム組成物
に比べて強度に優れていることを発見した。
The rubber compounding composition of the present invention is obtained by converting microbial cellulose into a dry matter in the rubber composition,
It has been discovered that the inclusion of 5 to 25 parts by weight is superior in strength to conventional rubber compositions.

【0021】試験方法1 強度試験 引張試験は25度でJISK6301に従って測定し
た。
Test Method 1 Strength Test The tensile test was carried out at 25 degrees according to JIS K6301.

【0022】試験方法2 ゴム組成物の重量比 重量/体積比から求めた。Test method 2 Weight ratio of rubber composition It was determined from the weight / volume ratio.

【0023】[0023]

【実施例】以下、本発明を実施例に基づいて具体的に説
明する。
EXAMPLES The present invention will be specifically described below based on examples.

【0024】静置培養で得られた微生物セルロース
(A)の調製 微生物セルロース生産培地としては、フラクトース4
0.0g/l、コーンスティープリカー50ml/l、
硫酸アンモニウム3.0g/l、リン酸1カリウム1.
0g/l、硫酸マグネシウム7水塩1.0g/l、フィ
チン酸100mg/l、クエン酸鉄アンモニウム15m
g/l、塩化カルシウム15mg/l、モリブデン酸ア
ンモニウム1mg/l、硫酸亜鉛7水塩2mg/l、硫
酸マンガン4水塩1mg/l、硫酸銅5水塩0.02m
g/l、ニコチン酸0.5mg/l、ピリドキシン塩酸
塩0.5mg/l、チアミン塩酸塩0.5mg/l、パ
ントテン酸カルシウム0.2mg/l、リボフラビン
0.2mg/l、葉酸0.02mg/l、ビオチン0.
02mg/l、酵母エキス100mg/l、マルトエキ
ストラクト100mg/l(pH5.0)の組成のもの
を用いた。該培地を120℃で20分間、オートクレー
ブした後に、アセトバクター・アセチ・サブスピーシス
・キシリナム(ATCC10820)を1×104個/
ml の濃度で接種し、ガラス製の大型シャーレ(内径
20×5cm)の中に培地と菌液の混合物150mlを
入れ、30℃で14日間静置培養した。培養後に、培養
液から生成した微生物セルロースのゲルを1%アルカリ
液で洗浄し、pHが中性になるまで水道水で洗浄し、こ
の微生物セルロースのゲルをワーリング・フレンダーで
10,000rpmで15分間行った。該離解物を該離
解物の2倍量のアセトンで3時間置換し、該離解物を6
00メッシュの篩いの中に入れて2日間室温で自然乾燥
して調製した。
Preparation of Microbial Cellulose (A) Obtained by Static Culture As a microbial cellulose production medium, fructose 4
0.0 g / l, corn steep liquor 50 ml / l,
Ammonium sulfate 3.0 g / l, 1 potassium phosphate 1.
0 g / l, magnesium sulfate heptahydrate 1.0 g / l, phytic acid 100 mg / l, ammonium ferric citrate 15 m
g / l, calcium chloride 15 mg / l, ammonium molybdate 1 mg / l, zinc sulfate heptahydrate 2 mg / l, manganese sulfate tetrahydrate 1 mg / l, copper sulfate pentahydrate 0.02 m
g / l, nicotinic acid 0.5 mg / l, pyridoxine hydrochloride 0.5 mg / l, thiamine hydrochloride 0.5 mg / l, calcium pantothenate 0.2 mg / l, riboflavin 0.2 mg / l, folic acid 0.02 mg / L, biotin 0.
The composition used was 02 mg / l, yeast extract 100 mg / l, and malto extract 100 mg / l (pH 5.0). After autoclaving the medium at 120 ° C. for 20 minutes, 1 × 10 4 Acetobacter aceti subsp. Xylinum (ATCC 10820) /
The mixture was inoculated at a concentration of ml, 150 ml of the mixture of the medium and the bacterial solution was placed in a large glass Petri dish (inner diameter 20 × 5 cm), and static culture was carried out at 30 ° C. for 14 days. After culturing, the microbial cellulose gel produced from the culture solution was washed with a 1% alkaline solution and tap water until the pH became neutral, and the microbial cellulose gel was washed with a Waring blender at 10,000 rpm for 15 minutes. went. The disaggregated product was replaced with twice the amount of acetone as the dissociated product for 3 hours, and the dissociated product was mixed with 6 times.
It was prepared by placing it in a 00 mesh sieve and air-drying at room temperature for 2 days.

【0025】振盪培養で得られた微生物セルロース
(B)の調製 上記の培地400mlを1L容の撹拌培養槽に張り込ん
で主培養を行った。主培養の培養温度は30℃、撹拌速
度は400rpm、通気量は1VVMとした。培養径過
48時間目に得たペレット状の微生物セルロースを上記
の方法で調製した。
Preparation of Microbial Cellulose (B) Obtained by Shaking Culture 400 ml of the above-mentioned medium was put into a 1 L stirring culture tank to carry out main culture. The culture temperature of the main culture was 30 ° C., the stirring speed was 400 rpm, and the aeration rate was 1 VVM. Pelletized microbial cellulose obtained 48 hours after the culture was prepared by the above method.

【0026】実施例1−6 ゴム組成物の調製(単位は重量部) SBR−1712 83 BR 40 カーボンブラック 40 亜鉛華 3 ステアリン酸 1.5 老化防止剤 AW 2 (Ethoxy-dihydro
-methyl-phosphite) パラフィンワックス 3 プロセス油 18 加硫促進剤 1 硫黄 1.8 微生物セルロース(A) 0.5〜25 上記の亜鉛華、加硫促進剤、硫黄を除く添加剤をバンバ
リーミキサー(TOYOSEI-KI製)により混合した後、これ
に亜鉛華等の残りの添加剤を添加して混練りロール機
(TOYOSEIKI)にて混練りした。プレス加硫条件145
℃で22分行い、厚さ3mmのゴムを作製した。これら
のゴム配合組成物の物性の結果を表1に示した。
Examples 1-6 Preparation of rubber composition (unit is parts by weight) SBR-1712 83 BR 40 carbon black 40 zinc white 3 stearic acid 1.5 anti-aging agent AW 2 (Ethoxy-dihydro)
-Methyl-phosphite) Paraffin wax 3 Process oil 18 Vulcanization accelerator 1 Sulfur 1.8 Microbial cellulose (A) 0.5-25 The above zinc white, vulcanization accelerator, and additives other than sulfur are added to a Banbury mixer (TOYOSEI). -Made by KI), and then the remaining additives such as zinc white were added and kneaded by a kneading roll machine (TOYOSEIKI). Press vulcanization condition 145
It was carried out at ℃ for 22 minutes to produce a rubber having a thickness of 3 mm. The results of the physical properties of these rubber compounding compositions are shown in Table 1.

【0027】比較例1−4 実施例と同じようにゴム配合組成物を得、その物性の結
果を表1に示した。
Comparative Example 1-4 A rubber compounding composition was obtained in the same manner as in Example, and the results of its physical properties are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】本発明のゴム配合組成物は、従来のゴム
組成物に比べて強度、ゴムの軽量化に優れている有用な
技術である。
The rubber compound composition of the present invention is a useful technique which is superior in strength and weight reduction of rubber as compared with the conventional rubber composition.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 天然ゴムを主成分とするゴム組成物にお
いて、該組成物に静置培養で得た微生物セルロースを乾
燥物に換算し、該組成物に対し0.5ないし25重量部
を含有することを特徴とするゴム配合組成物。
1. In a rubber composition containing natural rubber as a main component, the composition contains 0.5 to 25 parts by weight of microbial cellulose obtained by static culture in the composition, converted to a dried product. A rubber compounding composition comprising:
JP11029492A 1992-04-28 1992-04-28 Rubber compounding composition Pending JPH05301994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11029492A JPH05301994A (en) 1992-04-28 1992-04-28 Rubber compounding composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11029492A JPH05301994A (en) 1992-04-28 1992-04-28 Rubber compounding composition

Publications (1)

Publication Number Publication Date
JPH05301994A true JPH05301994A (en) 1993-11-16

Family

ID=14532052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11029492A Pending JPH05301994A (en) 1992-04-28 1992-04-28 Rubber compounding composition

Country Status (1)

Country Link
JP (1) JPH05301994A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8022136B2 (en) 2007-09-10 2011-09-20 Sumitomo Rubber Industries, Ltd. Vulcanized rubber composition, pneumatic tire and the process of producing the same
US9012541B2 (en) 2012-09-03 2015-04-21 Sumitomo Rubber Industries, Ltd. Rubber composition and pneumatic tire
US9068060B2 (en) 2013-01-10 2015-06-30 Sumitomo Rubber Industries, Ltd. Composite and method for producing the same, rubber composition, and pneumatic tire
US9181355B2 (en) 2010-06-10 2015-11-10 Sumitomo Rubber Industries, Ltd. Modified natural rubber, method for producing same, rubber composition, and pneumatic tire
US9217075B2 (en) 2012-01-24 2015-12-22 Sumitomo Rubber Industries, Ltd. Rubber composition for tire, and pneumatic tire
US9410033B2 (en) 2011-11-11 2016-08-09 Sumitomo Rubber Industries, Ltd. Rubber composition for undertread, and pneumatic tire
US10336890B2 (en) 2014-03-17 2019-07-02 Sumitomo Rubber Industries, Ltd. Rubber composition for studless winter tires, and studless winter tire

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8022136B2 (en) 2007-09-10 2011-09-20 Sumitomo Rubber Industries, Ltd. Vulcanized rubber composition, pneumatic tire and the process of producing the same
US9181355B2 (en) 2010-06-10 2015-11-10 Sumitomo Rubber Industries, Ltd. Modified natural rubber, method for producing same, rubber composition, and pneumatic tire
US9410033B2 (en) 2011-11-11 2016-08-09 Sumitomo Rubber Industries, Ltd. Rubber composition for undertread, and pneumatic tire
US9217075B2 (en) 2012-01-24 2015-12-22 Sumitomo Rubber Industries, Ltd. Rubber composition for tire, and pneumatic tire
US9012541B2 (en) 2012-09-03 2015-04-21 Sumitomo Rubber Industries, Ltd. Rubber composition and pneumatic tire
US9068060B2 (en) 2013-01-10 2015-06-30 Sumitomo Rubber Industries, Ltd. Composite and method for producing the same, rubber composition, and pneumatic tire
US10336890B2 (en) 2014-03-17 2019-07-02 Sumitomo Rubber Industries, Ltd. Rubber composition for studless winter tires, and studless winter tire

Similar Documents

Publication Publication Date Title
JP7319189B2 (en) Rubber composition containing polysaccharide
KR102696644B1 (en) Polysaccharide-elastomer masterbatch composition
JP6021734B2 (en) Rubber composition and pneumatic tire
EP0794224A4 (en) Diene rubber, process for producing the same, and rubber composition
CN106146906B (en) A kind of preparation method and application of natural emulsion filler
JP6352691B2 (en) Truck / Bus Tire
CN110240758A (en) A kind of self-lubricating abrasion-resistant rubber material and preparation method thereof
JP6224429B2 (en) Rubber composition for tire and pneumatic tire
JPH05301994A (en) Rubber compounding composition
WO1999050309A1 (en) Conjugated diene rubber, process for producing the same, and rubber composition
JP2017088769A (en) Rubber composition and pneumatic tire made using the rubber composition
CN108794842A (en) A kind of damping Durable automobile tyre rubber material
JP6360107B2 (en) Rubber composition and pneumatic tire
CN1890267B (en) Rubbery product or rubbery substance containing product
CN101173063A (en) Multifunctional rubber chemicals and method for producing the same
CN109824948B (en) Rubber seal sizing material for capacitor printing and preparation method thereof
KR20210038376A (en) Conjugated-diene based copolymer rubber composition
KR100388629B1 (en) rubber composi tion filled silica and rubber compound method thereof
CN112251150A (en) High-temperature-resistant liquid sealant and preparation method thereof
JP2015030815A (en) Tire rubber composition and pneumatic tire
JPH02163139A (en) Nitrile rubber compound
JP2023010563A (en) Rubber composition for studless tires
CN118404871A (en) Composite rubber material and preparation method thereof
JP6348347B2 (en) Pneumatic tire
JPH10237230A (en) Rubber composition