JPH053014A - Scan-type charged particle beam microscope - Google Patents

Scan-type charged particle beam microscope

Info

Publication number
JPH053014A
JPH053014A JP3178735A JP17873591A JPH053014A JP H053014 A JPH053014 A JP H053014A JP 3178735 A JP3178735 A JP 3178735A JP 17873591 A JP17873591 A JP 17873591A JP H053014 A JPH053014 A JP H053014A
Authority
JP
Japan
Prior art keywords
sample
hole
particle beam
electric field
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3178735A
Other languages
Japanese (ja)
Inventor
Mamoru Nakasuji
護 中筋
Hiroyasu Shimizu
弘泰 清水
Shohei Suzuki
正平 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3178735A priority Critical patent/JPH053014A/en
Publication of JPH053014A publication Critical patent/JPH053014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To accurately observe a groove bottom or side surface having a submicron or less dimension by applying a high electric field to a sample surface to form a downwardly convex equipotential surface in the interior of a hole having a high aspect ratio. CONSTITUTION:Upon incidence of a primary electron beam upon the bottom of a hole 7 of a sample 6, a secondary electron is emitted from the point of incidence. Since a high voltage is applied from a power source 12 to a detection electrode 4, an equipotential surface is formed near the sample 6 and the internal space of the hole 7 comes to have a downwardly convexed equipotential surface due to the difference in dielectric constant between the sample hole interspace and the sample body. As a result, the secondary electron emitted from the hole bottom receives a force causing it to be directed toward a center of the hole. Small-energy secondary electrons are emitted in large quantity from a residual resist film, in particular, on the bottom of the hole and receives the lens action of the electric field with great influence. Consequently, they go out of the hole via paths 10 without colliding against the wall surface. On the other hand, the reflected electrons and large-energy secondary electrons do not have resist film information so much and impinge upon the hole wall without receiving any lens action. This construction permits secondary electrons, having failed to go out from the hole, to get out of it, thus serving to observe the hole bottom.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、走査型荷電粒子線顕微
鏡に関し、特にこのような顕微鏡において、アスペクト
比の大きな穴や溝の内部をも観察可能にする技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning charged particle beam microscope, and more particularly to a technique for making it possible to observe the inside of a hole or groove having a large aspect ratio in such a microscope.

【0002】[0002]

【従来の技術】従来、走査型電子顕微鏡のような荷電粒
子線顕微鏡が例えば半導体装置あるいは半導体装置の製
造工程中の状態を観察するために使用されている。走査
型電子顕微鏡でこのような半導体装置などの試料を観察
する場合、例えば半導体基板上に被着されたレジスト層
の穴の形成状態を調べる場合のように、試料に形成され
たアスペクト比の大きな、すなわちその幅に比較して深
さまたは奥行が深い、穴や溝の内部を観察する必要があ
る場合が存在する。
2. Description of the Related Art Conventionally, a charged particle beam microscope such as a scanning electron microscope is used for observing, for example, a semiconductor device or a state during a manufacturing process of the semiconductor device. When observing a sample of such a semiconductor device with a scanning electron microscope, for example, when examining the formation state of holes in a resist layer deposited on a semiconductor substrate, a large aspect ratio formed on the sample is observed. That is, there are cases where it is necessary to observe the inside of a hole or groove, which is deeper or deeper than its width.

【0003】このような場合、従来は、電子顕微鏡にお
いて試料面に強力な磁界を印加し、前記穴または溝の底
部から放出される2次電子をこの磁界によって2次電子
検出器に導く方法が試みられている。
In such a case, conventionally, there is a method of applying a strong magnetic field to the sample surface in an electron microscope and guiding secondary electrons emitted from the bottom of the hole or groove to the secondary electron detector by this magnetic field. Being tried.

【0004】[0004]

【発明が解決しようとする課題】ところが、このように
試料面に磁界を印加する方法では、試料の穴または溝の
底部から放出される2次電子がこれらの穴または溝の側
壁に衝突することなく2次電子検出器に導かれるように
するためきわめて強力な磁界を印加する必要があった。
例えば、サブミクロン幅のトレンチ(溝)の底を観察す
るためには、磁界の強度を例えば30テスラ(30万ガ
ウス以上)にする必要があり、このためには超伝導コイ
ルなどを使用する必要があって実用的ではないという不
都合があった。
However, in the method of applying the magnetic field to the sample surface in this way, secondary electrons emitted from the bottom of the hole or groove of the sample collide with the side walls of these holes or grooves. It was necessary to apply a very strong magnetic field so that the secondary electron detector could be guided to the secondary electron detector.
For example, in order to observe the bottom of a submicron-wide trench, it is necessary to set the magnetic field strength to, for example, 30 Tesla (300,000 Gauss or more). For this purpose, it is necessary to use a superconducting coil or the like. There was an inconvenience that it was not practical.

【0005】本発明の目的は、このような従来の手法に
おける問題点に鑑み、簡単な構造により、アスペクト比
の大きな穴または溝の底部をも適確に観察可能な走査型
荷電粒子線顕微鏡を提供することにある。
In view of the above problems in the conventional method, an object of the present invention is to provide a scanning charged particle beam microscope capable of accurately observing the bottom of a hole or groove having a large aspect ratio with a simple structure. To provide.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明によれば、粒子線源からの荷電粒子線を対物
レンズの磁場の中に配置された試料に照射して走査し、
前記試料からの2次荷電粒子線を検出することにより試
料の観察を行なう走査型荷電粒子線顕微鏡が提供され、
該顕微鏡は、前記試料表面に高電界を印加する手段を備
え、前記試料に設けられた高アスペクト比の穴または溝
の内部観察をも可能にしたことを特徴とする。
In order to achieve the above object, according to the present invention, a charged particle beam from a particle beam source is irradiated onto a sample arranged in a magnetic field of an objective lens to scan the sample.
A scanning charged particle beam microscope for observing a sample by detecting a secondary charged particle beam from the sample is provided.
The microscope is characterized in that it is provided with a means for applying a high electric field to the surface of the sample, and enables observation of the inside of a hole or groove having a high aspect ratio provided in the sample.

【0007】前記高電界を印加する手段は、前記試料の
荷電粒子線入射側に配設され、正の電位を有し、外半径
が前記試料までの距離の2倍より大きくかつ内半径が前
記試料までの距離の1/2倍より小さい穴付電極とする
と好都合である。
The means for applying the high electric field is arranged on the charged particle beam incident side of the sample, has a positive potential, has an outer radius larger than twice the distance to the sample and an inner radius of the sample. It is convenient to use an electrode with holes that is smaller than 1/2 times the distance to the sample.

【0008】また、前記高電界を印加する手段は、前記
試料に負電圧を印加する手段とすることもできる。
Further, the means for applying the high electric field may be means for applying a negative voltage to the sample.

【0009】さらに、前記高電界を印加する手段は、観
察点近傍に配設されかつ正電圧を印加したシンチレータ
検出器とすることもできる。
Further, the means for applying the high electric field may be a scintillator detector arranged near the observation point and applying a positive voltage.

【0010】[0010]

【作用】上記構成に係わる走査型荷電粒子線顕微鏡にお
いては、被観察試料面に高電界が印加される。従って、
試料に設けられた高アスペクト比の穴または溝の内部に
おける等電位面は該穴または溝の内部で下に凸に歪んだ
形状を成す。従って、高アスペクト比の穴または溝の底
部から放出された2次電子は下に凸に歪んだ等電位面を
有する電界によって穴または溝の内側へ向う方向の弱い
力を受ける。従って、この電界がなければ穴または溝の
壁に吸収され穴などの外へ出られない角度で放出された
2次電子も穴の中央部方向に曲げられ、穴または溝の外
に出ることができ、検出電極などによって検出され信号
として寄与する。このため、高アスペクト比の穴または
溝の底あるいは側面の観察も可能となる。
In the scanning charged particle beam microscope having the above structure, a high electric field is applied to the surface of the sample to be observed. Therefore,
The equipotential surface inside the high-aspect-ratio hole or groove provided in the sample has a downwardly convexly distorted shape inside the hole or groove. Therefore, the secondary electrons emitted from the bottom of the hole or groove having a high aspect ratio are subjected to a weak force in the direction toward the inside of the hole or groove by the electric field having the equipotential surface distorted downward. Therefore, without this electric field, secondary electrons that are absorbed by the wall of the hole or groove and are emitted at an angle such that they cannot go out of the hole are also bent toward the central part of the hole and can go out of the hole or groove. It can be detected and contributed as a signal by the detection electrode. Therefore, it is possible to observe the bottom or side surface of a hole or groove having a high aspect ratio.

【0011】前記高電界を印加する手段として、試料の
荷電粒子線入射側に配設され、例えば正の電位が印加さ
れた穴付電極を用いることができ、この穴付電極の外半
径を前記試料までの距離の2倍より大きくしかつ穴の内
半径を前記試料までの距離の1/2倍より小さくするこ
とにより、試料表面の観察点近傍に対し十分に一様な高
電界を印加することができ、さらに試料の高アスペクト
比の穴または溝の内部に下に凸に歪んだ電界を効果的に
形成することが可能になる。
As the means for applying the high electric field, a holed electrode provided on the charged particle beam incident side of the sample and to which a positive potential is applied, for example, can be used. A sufficiently uniform high electric field is applied to the vicinity of the observation point on the sample surface by making the inner radius of the hole larger than twice the distance to the sample and smaller than the half radius of the hole to the sample. Further, it becomes possible to effectively form a downwardly convexly distorted electric field inside the high aspect ratio hole or groove of the sample.

【0012】また、前記高電界を印加する手段として、
前記試料に負電圧を印加する手段を用いた場合には、グ
ランド電位を有する電子レンズなど試料の周辺部との間
に電位差を発生することができ、従って試料に電界を加
えることができる。
As means for applying the high electric field,
When a means for applying a negative voltage to the sample is used, a potential difference can be generated between the sample and a peripheral part of the sample such as an electron lens having a ground potential, and thus an electric field can be applied to the sample.

【0013】さらに、前記高電界を印加する手段として
シンチレータ検出器を用いた場合には、シンチレータ検
出器自体は通常正の電圧が印加されているため、この電
圧により試料表面に高電界を印加することができる。
Furthermore, when a scintillator detector is used as the means for applying the high electric field, a positive voltage is usually applied to the scintillator detector itself, so that this voltage applies a high electric field to the sample surface. be able to.

【0014】[0014]

【実施例】以下、図面を参照して本発明の1実施例につ
き説明する。図1は、本発明の1実施例に係わる走査型
電子顕微鏡の概略の構成を示す。同図の電子顕微鏡は、
図示しない電子レンズから射出される電子ビームを集束
するための磁気対物レンズを構成する上極1および下極
11を備えている。上極1は例えば円筒形の穴空き磁極
とされ、下極11は平面磁極となっており、これらの磁
極1および11は互いに図示しない磁性体部材によって
磁気的に連結されており、上極1と下極11との間に磁
束3を発生させるためのコイルを有している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic structure of a scanning electron microscope according to one embodiment of the present invention. The electron microscope in the figure is
It has an upper pole 1 and a lower pole 11 forming a magnetic objective lens for focusing an electron beam emitted from an electron lens (not shown). The upper pole 1 is, for example, a cylindrical perforated magnetic pole, the lower pole 11 is a plane magnetic pole, and these magnetic poles 1 and 11 are magnetically coupled to each other by a magnetic member (not shown). And a coil for generating the magnetic flux 3 between the lower pole 11 and the lower pole 11.

【0015】対物レンズの上極1の下端には電子ビーム
が通過する開口を備えた圧力制限アパーチャ2が設けら
れている。また、下極11の上には試料6が置かれ、試
料6と上極1との間には例えば同心円状の検出用電極4
が配置されている。この検出用電極4には例えば600
ボルト程度の正の高電圧が電源12から印加されてい
る。また、この検出用電極4には直流分をカットするコ
ンデンサ13を介して増幅器14が接続されている。
At the lower end of the upper pole 1 of the objective lens, a pressure limiting aperture 2 having an opening through which an electron beam passes is provided. A sample 6 is placed on the lower electrode 11, and a concentric detection electrode 4 is placed between the sample 6 and the upper electrode 1.
Are arranged. This detection electrode 4 has, for example, 600
A positive high voltage of about volt is applied from the power supply 12. An amplifier 14 is connected to the detection electrode 4 via a capacitor 13 that cuts a direct current component.

【0016】図1においては、試料6としては、例え
ば、半導体基板のような何らかの基板6a上に形成され
たレジスト層6bを有するものが示されている。このよ
うな試料6のレジスト層6bにはアスペクト比の大きな
穴あるいは溝7が設けられており、図1ではこの穴7の
部分を観察するものとしている。なお、このような試料
6が配置される資料室は例えば低圧力の気体を充填して
もよく、その場合は電極4に印加される高電圧による放
電を防止するため、例えば0.1Torr以下の気体圧
力に保つと好都合である。
FIG. 1 shows a sample 6 having a resist layer 6b formed on a substrate 6a such as a semiconductor substrate. A hole or groove 7 having a large aspect ratio is provided in the resist layer 6b of the sample 6 as described above, and the portion of the hole 7 is observed in FIG. The sample chamber in which such a sample 6 is arranged may be filled with a gas having a low pressure, and in that case, in order to prevent discharge due to a high voltage applied to the electrode 4, the sample chamber may have a pressure of 0.1 Torr or less. It is convenient to keep the gas pressure.

【0017】以上のような構成を有する走査型電子顕微
鏡においては、図示しない電子銃から射出された1次電
子線が圧力制限アパーチャ2の開口および検出用電極4
の開口を通り試料6に入射し、図示しない走査手段によ
って試料6の穴7の近傍が走査される。
In the scanning electron microscope having the above structure, the primary electron beam emitted from the electron gun (not shown) is opened in the pressure limiting aperture 2 and the detection electrode 4 is formed.
The sample 6 is incident on the sample 6 through the opening and the scanning means (not shown) scans the vicinity of the hole 7 of the sample 6.

【0018】試料6に1次電子線が入射すると入射点か
ら2次電子が放出される。この2次電子は対物レンズ
1,11によって形成される磁束3によってスパイラル
状に運動しながら検出用電極4に入射し、コンデンサ1
3および増幅器14を介して出力信号として取出され
る。
When the primary electron beam is incident on the sample 6, secondary electrons are emitted from the incident point. The secondary electrons enter the detection electrode 4 while spirally moving by the magnetic flux 3 formed by the objective lenses 1 and 11, and the condenser 1
3 and the amplifier 14 are taken out as an output signal.

【0019】このような動作において、1次電子線が試
料6の穴7の底に入射すると、その入射点から2次電子
が放出される。この場合、検出用電極4に電源12から
高電圧が印加されているため、試料6の近傍では図1の
5で示されるような等電位面が形成され、特に試料6の
穴7の内部空間は試料との誘電率の相違のため下に凸形
状に歪んだ等電位面となる。このため、穴7の底から放
出された2次電子は穴の中心方向へ向う力を受ける。特
に、穴7の底のレジストの残り部分のような薄い膜から
はエネルギの小さい2次電子が多く放出される。このよ
うな2次電子は電界によるレンズ作用を大きく受けるの
で、光軸から大きな角度方向で飛び出した2次電子も穴
7の壁面に衝突することなく、例えば10で示されるよ
うな軌跡を辿ることによって穴7の外に出ることができ
る。一方、反射電子や大きなエネルギを持つ2次電子は
薄い膜の情報をあまり持たない有害な電子であるが、こ
れらはこの穴のレンズ作用をほとんど受けず穴の壁面に
入射してしまう。このように、試料6の表面に強い電界
を加えることによって、従来例えば図1の点線8で示す
ように穴7の外に出ることができなかった2次電子もこ
の電界によるレンズ作用により穴7の外に出ることが可
能となり、従ってアスペクト比の大きな穴7の底部をも
適確に観察することが可能になる。
In such an operation, when the primary electron beam is incident on the bottom of the hole 7 of the sample 6, secondary electrons are emitted from the incident point. In this case, since a high voltage is applied to the detection electrode 4 from the power source 12, an equipotential surface as shown by 5 in FIG. 1 is formed in the vicinity of the sample 6, and especially the inner space of the hole 7 of the sample 6 is formed. Becomes an equipotential surface that is distorted in a convex shape downward due to the difference in dielectric constant from the sample. Therefore, the secondary electrons emitted from the bottom of the hole 7 receive a force toward the center of the hole. In particular, a large amount of secondary electrons with low energy are emitted from a thin film such as the remaining portion of the resist on the bottom of the hole 7. Since such secondary electrons are greatly affected by the lens action due to the electric field, the secondary electrons protruding in a large angle direction from the optical axis do not collide with the wall surface of the hole 7 and follow the locus shown by 10, for example. Allows to get out of the hole 7. On the other hand, backscattered electrons and secondary electrons having large energy are harmful electrons that do not have much information on the thin film, but they are hardly affected by the lens action of the hole and enter the wall surface of the hole. As described above, by applying a strong electric field to the surface of the sample 6, the secondary electrons that could not go out of the hole 7 as shown by the dotted line 8 in FIG. Therefore, the bottom of the hole 7 having a large aspect ratio can be accurately observed.

【0020】なお、検出用電極4の外半径をワーキング
ディスタンス、すなわち検出用電極4から試料表面まで
の距離、より充分大きく、特に該ワーキングディスタン
スの2倍より大きく設定し、かつ検出用電極4の内半径
がワーキングディスタンスの1/2倍より小さくされ
る。このような設定によって試料面に均等かつ十分大き
な電界が印加できることが実験的に判明している。
The outer radius of the detection electrode 4 is set to be a working distance, that is, the distance from the detection electrode 4 to the surface of the sample, which is sufficiently larger, in particular, larger than twice the working distance. The inner radius is made smaller than half the working distance. It has been experimentally proved that an electric field that is uniform and sufficiently large can be applied to the sample surface by such a setting.

【0021】また、図1の電子顕微鏡においては、試料
6の上側にある磁極1と試料6の下側の磁極11で対物
レンズを構成しているため、試料6と検出用電極4との
間には3で示されるような強い磁界が存在する。従っ
て、穴7から出た2次電子はこの強い磁界のため検出用
電極4には直交せず、磁界の回りを回りながら低圧力の
気体分子と衝突し、電子イオン対を生成させることによ
って2次電子を増倍させ、数千倍〜数万倍に増加した後
検出用電極4に入射する。
Further, in the electron microscope of FIG. 1, since the objective lens is composed of the magnetic pole 1 on the upper side of the sample 6 and the magnetic pole 11 on the lower side of the sample 6, the space between the sample 6 and the detection electrode 4 is reduced. Has a strong magnetic field as indicated by 3. Therefore, the secondary electron emitted from the hole 7 is not orthogonal to the detection electrode 4 due to this strong magnetic field, and collides with a gas molecule having a low pressure while rotating around the magnetic field to generate an electron-ion pair. The secondary electrons are multiplied and increased to several thousand to several ten thousand times, and then enter the detection electrode 4.

【0022】なお、通常の環境制御型走査電子顕微鏡
(ESEM)では、試料6の配置される資料室の圧力は
最大感度あるいは最大S/N比を与える圧力に保たれる
が、本発明では検出用電極4に高い電圧をかける必要が
あるため、このような一般的なESEMの場合より圧力
を高真空側にずらせることによって、放電電圧を上げ高
電界が試料表面に印加できるよう構成すると好都合であ
る。
In a normal environment-controlled scanning electron microscope (ESEM), the pressure of the sample room in which the sample 6 is placed is kept at a pressure that gives the maximum sensitivity or the maximum S / N ratio. Since it is necessary to apply a high voltage to the working electrode 4, it is advantageous to shift the pressure to a higher vacuum side than in the case of such a general ESEM to increase the discharge voltage and apply a high electric field to the sample surface. Is.

【0023】さらに、以上の実施例では検出用電極4に
高電圧を印加することにより試料表面に高い電界が生ず
るように構成したが、試料自体に例えば負の電圧を印加
することもできる。この場合は、例えば上極1などがグ
ランド電位とされ、試料6と上極1との間の電位差によ
って試料6の表面に高電界が印加される。なお、試料6
に負の電圧を印加するためには、例えば負の電圧源に接
続されたプローブなどを試料6に接触させるように構成
してもよい。
Furthermore, in the above embodiments, a high electric field is generated on the sample surface by applying a high voltage to the detection electrode 4, but a negative voltage may be applied to the sample itself. In this case, for example, the upper pole 1 is set to the ground potential, and a high electric field is applied to the surface of the sample 6 due to the potential difference between the sample 6 and the upper pole 1. Sample 6
In order to apply a negative voltage to the sample 6, for example, a probe connected to a negative voltage source may be brought into contact with the sample 6.

【0024】あるいは、さらに別の実施例として試料室
を高真空にし、正電圧を印加したシンチレータ検出器を
観測点の近傍に設けることもできる。この場合は、シン
チレータ検出器に印加された正電圧によって試料表面に
高電界を生じさせることができ、上記検出用電極4に正
電圧を印加する場合と同様の効果が得られる。
Alternatively, as yet another embodiment, the sample chamber may be set to a high vacuum and a scintillator detector to which a positive voltage is applied may be provided near the observation point. In this case, a high electric field can be generated on the sample surface by the positive voltage applied to the scintillator detector, and the same effect as in the case of applying the positive voltage to the detection electrode 4 can be obtained.

【0025】[0025]

【発明の効果】以上のように、本発明によれば、試料面
に高い電界を印加することにより、高アスペクト比の穴
あるいは溝の内部には下に凸に歪んだ等電位面が形成さ
れる。このため、穴の底のレジスト残滓などの薄い膜の
情報を多く含んだ低エネルギの2次電子のみをレンズ作
用によって光軸方向に曲げかつ穴の外に出すことができ
る。これに対し、高エネルギの2次電子や反射電子は薄
い膜の情報をあまり含んでいないむしろ有害な電子であ
り、これらの高エネルギの電子は静電レンズの作用をあ
まり受けず直進し穴の壁面で吸収され外部には放出され
ない。従って、本発明によれば、簡単な構造により、例
えばサブミクロン以下の寸法の穴や溝の底あるいは側面
をより適確に観察することが可能になる。
As described above, according to the present invention, by applying a high electric field to the sample surface, an equipotential surface which is downwardly distorted is formed inside the hole or groove having a high aspect ratio. It For this reason, only low-energy secondary electrons containing much information of a thin film such as the resist residue on the bottom of the hole can be bent in the optical axis direction by the lens action and can be emitted out of the hole. On the other hand, high-energy secondary electrons and backscattered electrons are rather harmful electrons that do not contain much information of the thin film, and these high-energy electrons do not receive much action of the electrostatic lens and go straight to form holes. It is absorbed by the wall surface and is not released to the outside. Therefore, according to the present invention, with a simple structure, it is possible to more accurately observe the bottom or side surface of a hole or groove having a size of, for example, submicron or less.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例に係わる走査型荷電粒子線顕
微鏡の概略の構成を示す断面的説明図である。
FIG. 1 is a cross-sectional explanatory view showing a schematic configuration of a scanning charged particle beam microscope according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 磁気対物レンズの上極 2 圧力制限アパーチャ 3 磁力線 4 2次電子検出用電極 5 等電位面 6 試料 6a 試料6の基板 6b 試料6のレジスト層 7 高アスペクト比の穴あるいは溝 8 2次電子放出方向線 10 2次電子軌道 11 磁気対物レンズの下極 12 電源 13 直流分カット用コンデンサ 14 増幅器 1 Upper pole of magnetic objective lens 2 Pressure limit aperture 3 lines of magnetic force 4 Secondary electron detection electrode 5 equipotential surface 6 samples 6a Sample 6 substrate 6b Resist layer of sample 6 7 High aspect ratio holes or grooves 8 Secondary electron emission direction line 10 Secondary electron orbit 11 Lower pole of magnetic objective lens 12 power supplies 13 Capacitor for DC component cutting 14 Amplifier

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 粒子線源からの荷電粒子線を対物レンズ
の磁場の中に配置された試料に照射して走査し、前記試
料からの2次荷電粒子線を検出することにより試料の観
察を行なう走査型荷電粒子線顕微鏡であって、前記試料
表面に高電界を印加する手段を備えたことを特徴とする
走査型荷電粒子線顕微鏡。
1. An observation of a sample is performed by irradiating a sample placed in a magnetic field of an objective lens with a charged particle beam from a particle beam source to scan, and detecting a secondary charged particle beam from the sample. A scanning charged particle beam microscope for performing, comprising a means for applying a high electric field to the sample surface.
【請求項2】 前記高電界を印加する手段は、前記試料
の荷電粒子線入射側に配設され、正の電位を有し、外半
径が前記試料までの距離の2倍より大きくかつ内半径が
前記試料までの距離の1/2倍より小さい穴付電極であ
ることを特徴とする請求項1に記載の走査型荷電粒子線
顕微鏡。
2. The means for applying the high electric field is disposed on the charged particle beam incident side of the sample, has a positive potential, and has an outer radius larger than twice the distance to the sample and an inner radius. The scanning charged particle beam microscope according to claim 1, wherein is an electrode with a hole that is smaller than 1/2 times the distance to the sample.
【請求項3】 前記高電界を印加する手段は、前記試料
に負電圧を印加する手段を含む請求項1に記載の走査型
荷電粒子線顕微鏡。
3. The scanning charged particle beam microscope according to claim 1, wherein the means for applying the high electric field includes means for applying a negative voltage to the sample.
【請求項4】 前記高電界を印加する手段は、観察点近
傍に配設されかつ正電圧を印加したシンチレータ検出器
である請求項1に記載の走査型荷電粒子線顕微鏡。
4. The scanning charged particle beam microscope according to claim 1, wherein the means for applying the high electric field is a scintillator detector arranged near an observation point and applying a positive voltage.
JP3178735A 1991-06-24 1991-06-24 Scan-type charged particle beam microscope Pending JPH053014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3178735A JPH053014A (en) 1991-06-24 1991-06-24 Scan-type charged particle beam microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3178735A JPH053014A (en) 1991-06-24 1991-06-24 Scan-type charged particle beam microscope

Publications (1)

Publication Number Publication Date
JPH053014A true JPH053014A (en) 1993-01-08

Family

ID=16053673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3178735A Pending JPH053014A (en) 1991-06-24 1991-06-24 Scan-type charged particle beam microscope

Country Status (1)

Country Link
JP (1) JPH053014A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147430A (en) * 2004-11-22 2006-06-08 Hokkaido Univ Electron microscope
JP2013243368A (en) * 1999-01-08 2013-12-05 Applied Materials Inc Detection of microstructure defect

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243368A (en) * 1999-01-08 2013-12-05 Applied Materials Inc Detection of microstructure defect
JP2006147430A (en) * 2004-11-22 2006-06-08 Hokkaido Univ Electron microscope

Similar Documents

Publication Publication Date Title
JP3456999B2 (en) Detection system for high aspect ratio measurement
JP4093662B2 (en) Scanning electron microscope
US7960697B2 (en) Electron beam apparatus
EP0930638B1 (en) Scanning electron microscope and image forming method
US6646261B2 (en) SEM provided with a secondary electron detector having a central electrode
JP2003109532A (en) Particle beam device
JP4444494B2 (en) Electron detector
JP3170680B2 (en) Electric field magnetic lens device and charged particle beam device
JP4562945B2 (en) Particle beam equipment
JP2003068241A (en) Scanning electron beam device
JP4590590B2 (en) SEM for transmission operation with position sensitive detector
JPH053014A (en) Scan-type charged particle beam microscope
JP4658783B2 (en) Sample image forming method
JP3132796B2 (en) Method for observing semiconductor device and scanning electron microscope used therefor
JPH0773841A (en) Scanning electron microscope and secondary electron sensing system
JP2001319612A (en) Direct imaging electron microscope
JP4146103B2 (en) Electron beam apparatus equipped with a field emission electron gun
KR100239754B1 (en) Alignment position in sem
JPH076609Y2 (en) Focused ion beam processing equipment
JP2911281B2 (en) Electron beam apparatus and observation method thereof
JP3965691B2 (en) Scanning electron microscope
JPS63274049A (en) Scanning type electron microscope
JP2001057172A (en) Scanning electron microscope
JP3494208B2 (en) Scanning electron microscope
JPH01115042A (en) Sample stand of scanning type electronic microscope