JPH05300645A - Dc power transmission controller - Google Patents

Dc power transmission controller

Info

Publication number
JPH05300645A
JPH05300645A JP4100908A JP10090892A JPH05300645A JP H05300645 A JPH05300645 A JP H05300645A JP 4100908 A JP4100908 A JP 4100908A JP 10090892 A JP10090892 A JP 10090892A JP H05300645 A JPH05300645 A JP H05300645A
Authority
JP
Japan
Prior art keywords
power transmission
neutral line
pole
line
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4100908A
Other languages
Japanese (ja)
Inventor
Shigeru Ueno
茂 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4100908A priority Critical patent/JPH05300645A/en
Publication of JPH05300645A publication Critical patent/JPH05300645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Direct Current Feeding And Distribution (AREA)

Abstract

PURPOSE:To make maintenance or inspection of a neutral line while power transmission is continued by respectively controlling the power rectifier and inverter of one pole of a DC power transmission line constituted in a two-pole state to a constant current and voltage and the power rectifier and inverter sides of the other pole to a constant voltage which makes the potential at the neutral line zero and constant voltage which makes a DC voltage constant. CONSTITUTION:A DC power transmission system is constituted of a transformer 1 which transforms an AC voltage into the optimum voltage to a converter 2, the converter 2, a by-pass switch 3 which is connected in parallel with the converter 2, positive-and negative-pole DC power transmission lines 4 and 6, a neutral line 5, earthing conductors 7, neutral line switches 8, a DC reactor 9, etc. At the time of tripping the line 5, the switches 8 at both ends of the line 5 are opened after the normal operation mode (a power rectifier is in constant-current control ACR and the inverter is in AVR) is changed to the AVR in which the power rectifier on one pole side, for example, the negative pole side is in the AVR which makes the potential at the line 5 zero while the power rectifier on the positive pole side is kept in the ACR. Therefore, the neutral line 5 can be maintained and inspected while power transmission is continued.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は双極方式直流送電設備に
関し、特に中性線の点検・保守作業時に直流送電設備の
停止を伴なわずに作業を可能とするための直流送電制御
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bipolar type DC power transmission facility, and more particularly to a DC power transmission control device for enabling work without stopping the DC power transmission facility at the time of inspecting and maintaining neutral lines. Is.

【0002】[0002]

【従来の技術】近年世界的に見ると、直流送電は長距離
大容量送電,海底ケ―ブル送電,あるいは非同期連系な
どに積極的に適用されている。日本においても、電源周
波数が異なる東地域(50Hz)と西地域(60Hz)間の非同
期連系や北海道と本州間の送電に適用されている。
2. Description of the Related Art In recent years, DC power transmission has been actively applied to long-distance and large-capacity power transmission, submarine cable power transmission, or asynchronous interconnection. In Japan, it is also applied to asynchronous interconnection between the eastern region (50Hz) and western region (60Hz), which have different power supply frequencies, and power transmission between Hokkaido and Honshu.

【0003】直流送電を電力系統に採用する理由は、送
電線路の建設費が安いこと,安定度の問題がないこと,
非同期でも連系できることなどの直流送電本来の利点に
よることの他に、信頼性の点においても交流送電機器と
比較して遜色の無いものになってきたことがあげられ
る。
The reason why DC power transmission is adopted in the power system is that the construction cost of the power transmission line is low and there is no problem of stability.
In addition to the inherent advantages of direct current power transmission, such as the ability to be interconnected even asynchronously, it can be said that it has become comparable to AC power transmission equipment in terms of reliability.

【0004】直流送電方式は単極方式と図1に示される
双極方式に分けられる。双極方式は直流正・負極用の2
本の導体と接地電位である中性線とで構成される。双極
方式の特徴としては、 (1)正・負極単独の運転が可能なため直流送電系統の
運用効率の面で優れている。 (2)正・負極の運転をバランスさせる定常運転では、
中性線にほとんど電流が流れず損失の少い運転が可能。 等が上げられる。
The DC power transmission system is divided into a monopolar system and a bipolar system shown in FIG. Bipolar method is for DC positive / negative electrode 2
It is composed of a book conductor and a neutral wire that is at ground potential. The characteristics of the bipolar system are as follows: (1) The positive and negative poles can be operated independently, which is excellent in the operational efficiency of the DC transmission system. (2) In the steady operation that balances the positive and negative operation,
Almost no current flows in the neutral wire, and operation with little loss is possible. Etc. are raised.

【0005】双極方式直流送電系統の中性線の点検・保
守に際しては中性線を系統から切り離す必要がある。し
かし双方の極の電圧及び電流は順変換器側は実電流制御
で逆変換器側は定電圧制御で制御されているが、それぞ
れの極の電圧及び電流は制御誤差により若干異なってい
るのが一般的な直流送電系統の運転状態である。そのた
め、常になんらかの電流が中性線に流れている。しか
も、中性線に流れる電流は直流であるため、その電流を
切るために電流零点を強制的に起こし電流を切るような
特殊な直流遮断器等が求められる。一般的には、その様
な特殊遮断器を組み込むことはせず、直流送電系統の両
端にある変換器を停止させてから、中性線を無電圧,無
電流の状態にしてから中性線を切り離して点検・保守を
行っていた。従って、点検・保守期間,もしくは、片極
への運転切り換え時の際は点検・保守作業開始および終
了時の回線引き替え作業の相方で直流送電系統の停止を
取っていた。そのため、中性線の点検・保守に伴う送電
停止は直流送電系統の運転効率を低下させるため問題が
あった。
When inspecting and maintaining the neutral line of the bipolar DC transmission system, it is necessary to disconnect the neutral line from the system. However, the voltage and current of both poles are controlled by the actual current control on the forward converter side and the constant voltage control on the inverse converter side, but the voltage and current of each pole are slightly different due to the control error. This is the operating state of a general DC transmission system. Therefore, some current is always flowing in the neutral line. Moreover, since the current flowing through the neutral wire is direct current, a special direct current circuit breaker or the like is required to forcibly cause the current zero point to cut off the current in order to cut off the current. Generally, such a special circuit breaker is not installed, the converters at both ends of the DC transmission system are stopped, the neutral line is put into a state of no voltage and no current, and then the neutral line. Had been separated for inspection and maintenance. Therefore, during the inspection / maintenance period, or when switching the operation to one pole, the DC power transmission system was stopped at the other side of the line replacement work at the start and end of the inspection / maintenance work. Therefore, there was a problem that stopping the power transmission due to the inspection and maintenance of the neutral line reduces the operating efficiency of the DC power transmission system.

【0006】[0006]

【発明が解決しようとする課題】本発明は、直流送電系
統を停止することなく、中性線の点検・保守作業を可能
とする制御方式を組み込んだ制御装置を提供するもので
ある。
SUMMARY OF THE INVENTION The present invention provides a control device incorporating a control system that enables inspection and maintenance work of a neutral line without stopping the DC power transmission system.

【0007】[0007]

【課題を解決するための手段】現在の直流送電系統の中
性線点検・保守作業の際には、直流送電系統を全面的に
停止させ系統から切り離した上で接地電位の状態で作業
を実施している。しかしながら、前記直流送電系統のよ
うな系統連系設備を停止させるのは、設備の重要性及び
直流送電系統の運転効率の点から大きな問題であった。
通常、図2に示すように直流送電系統の変換器制御はそ
れぞれの極で順変換器側のV−I特性と逆変換器側のV
−I特性の交点Eで運転している。すなわち順変換器側
が定電流制御,逆変換器側が定電圧制御で協調制御され
ている。そこで、本発明は双極方式直流送電系統の中性
線の点検・保守に際して、送電を継続した状態すなわち
無停電で、片極の順変換器側の制御方式を定電流制御か
ら中性線電位を強制的に0にするような定電圧制御に変
え、中性線電位を0電位すなわち直流正負送電系統間で
等電位(Vd1=Vd2)となるように制御する。一方、直
流送電系統の送電電力(P1 +P2 )は他方の極の順変
換器の定電流制御の電流(Id1)を制御することによっ
て行うことができる。なぜなら、中性線電位を0電位に
制御することは、中性線に直流(ΔId )が流れないよ
う制御していることになる。即ち、直流正・負極側に流
れる電流(Id1,Id2)及び電圧(Vd1,Vd2)の絶対
値を同一とすべく制御していることになり、定電流制御
をしている片極に追随して他方の極も制御していること
を意味する。このことは、中性線を切り外しても、通常
の双極直流送電系統が送電可能な送電電力と同一の電力
を送電できることを意味している。
[Means for Solving the Problems] During the neutral line inspection / maintenance work of the current DC transmission system, the DC transmission system is completely stopped and disconnected from the system, and then the work is performed at the ground potential state. is doing. However, stopping a system interconnection facility such as the DC transmission system has been a serious problem in terms of the importance of the facility and the operating efficiency of the DC transmission system.
Generally, as shown in FIG. 2, converter control of a DC transmission system is performed at each pole with a VI characteristic on the forward converter side and a V-I characteristic on the reverse converter side.
Driving at the intersection E of the -I characteristics. That is, the forward converter side is controlled by constant current, and the inverse converter side is controlled by constant voltage control. Therefore, in the present invention, when inspecting / maintaining the neutral line of the bipolar DC transmission system, the control system on the side of the forward converter of one pole is changed from the constant current control to the neutral line potential during continuous power transmission, that is, without interruption. The constant voltage control is forcibly set to 0, and the neutral line potential is controlled to 0 potential, that is, equal potential (V d1 = V d2 ) between the DC positive and negative power transmission systems. On the other hand, the transmission power (P 1 + P 2 ) of the DC transmission system can be obtained by controlling the constant current control current (I d1 ) of the forward converter of the other pole. This is because controlling the neutral line potential to 0 potential means controlling direct current (ΔI d ) so that it does not flow in the neutral line. That is, the absolute values of the currents (I d1 , I d2 ) and the voltages (V d1 , V d2 ) flowing on the DC positive and negative electrodes are controlled to be the same, and the constant current control is performed. It means that the other pole is controlled following the pole. This means that even if the neutral line is cut off, the same electric power as the electric power that can be transmitted by the normal bipolar DC transmission system can be transmitted.

【0008】この際の、制御対象機器として開閉装置8
があるが、本発明の制御装置を用いる事によって、無電
流もしくは小電流での開閉能力のみが求められるため、
本発明制御装置を用いる事に伴って特別な開閉能力を有
する開閉装置8を組み込む必要性は生じない利点も有す
る。
At this time, the switchgear 8 is used as a device to be controlled.
However, by using the control device of the present invention, only the switching ability with no current or a small current is required,
With the use of the control device of the present invention, there is also an advantage that it is not necessary to incorporate the opening / closing device 8 having a special opening / closing capability.

【0009】[0009]

【作用】双極方式直流送電系統の中性線の点検・保守に
際して、送電を継続した状態すなわち無停電で、本発明
組み込み制御装置によって中性線の電位を強制的に0に
制御し、その後に中性系統を引き外し、引き外し後も順
変換器側の制御方式を定電流制御及び中性線電位を0電
位とする定電圧制御に組み合わせることによって、送電
電力は正常な双極制御方式直流送電系統と同等な電力を
送電可能とする制御装置を提供するものである。また、
前記制御装置中性線復帰時も前記切り外し時とほぼ逆の
手順で無停電で正常な双極制御方式直流送電系統へ復帰
させることも可能としている。
In the inspection and maintenance of the neutral line of the bipolar DC transmission system, the potential of the neutral line is forcibly controlled to 0 by the built-in control device of the present invention in a state where power transmission is continued, that is, without interruption, and then The neutral system is tripped, and even after the trip, the control system on the forward converter side is combined with the constant current control and the constant voltage control with the neutral line potential set to 0 potential, so that the transmission power is a normal bipolar control system DC transmission It is intended to provide a control device capable of transmitting electric power equivalent to that of a grid. Also,
Even when the neutral line of the control device is restored, it is possible to restore the normal bipolar transmission system to the normal direct current transmission system without interruption by the procedure substantially opposite to the procedure of the disconnection.

【0010】[0010]

【実施例】双極方式送電系統は交流送電系統と交流を直
流に変換、もしくは直流を交流に変換する変換所および
直流電力を送電する直流送電系統から構成される。そし
て、変換所は交流送電電圧を変換器に最適な電圧に変換
する変換器用変圧器1、変換器2、変換器に並列に接続
されたバイパススイッチ3、直流正/負極送電線4,
6、中性線5、接地線7、中性線開閉装置8、直流リア
クトル9等から構成される。次に本実施例の作用につい
て述べる。 (1) 中性線5の引き外し時 通常の運転モ―ド(順変換器側:定電流制御(AC
R),逆変換器側:定電圧制御(AVR))から下記制
御に移る。 (a)順変換器側の各極変換器の制御の一方を定電流制御
(ACR),他方を中性線5の電位を0とする定電圧制
御(AVR)へ変える。 (b)中性線5の電位が0であることを確認後、直流送電
系統両端の中性線開閉装置8を開路操作制御する。 上記中性線開閉装置8開路操作によって中性線5は無電
圧化され、中性線5の無電圧下での点検・保守作業が可
能となる。 (2) 中性線5の投入時 上記(1)項の中性線5の点検・保守作業終了後、中性
線5点検・保守モ―ドから通常の運転モ―ドにもどす場
合に下記復帰制御を行う。 (a)中性線5の電位が0であることを確認後、直流送電
系統両端の中性線開閉装置8を閉路操作制御する。
[Embodiment] A bipolar transmission system includes an AC transmission system, a conversion station for converting AC to DC or DC to AC, and a DC transmission system for transmitting DC power. Then, the conversion station converts the AC transmission voltage into the optimum voltage for the converter, the converter transformer 1, the converter 2, the bypass switch 3 connected in parallel to the converter, the DC positive / negative electrode transmission line 4,
6, a neutral wire 5, a ground wire 7, a neutral wire switchgear 8, a DC reactor 9 and the like. Next, the operation of this embodiment will be described. (1) When the neutral wire 5 is tripped Normal operation mode (Forward converter side: Constant current control (AC
R), inverse converter side: constant voltage control (AVR)), and shifts to the following control. (a) One of the controls of each pole converter on the forward converter side is changed to constant current control (ACR), and the other is changed to constant voltage control (AVR) in which the potential of the neutral line 5 is zero. (b) After confirming that the potential of the neutral line 5 is 0, the neutral line switchgear 8 at both ends of the DC transmission system is subjected to open circuit operation control. The neutral wire 5 is made non-voltage by the opening operation of the neutral wire switchgear 8, and the inspection / maintenance work under the non-voltage condition of the neutral wire 5 becomes possible. (2) When turning on the neutral line 5 After returning to the normal operation mode from the neutral line 5 inspection / maintenance mode after the inspection / maintenance work of the neutral line 5 described in (1) above, Perform return control. (a) After confirming that the potential of the neutral line 5 is 0, the neutral line switchgear 8 at both ends of the DC transmission system is controlled to be closed.

【0011】(b)順変換器側の中性線5の電位を0とす
る定電圧制御していた片極の制御を他極と同様の電流制
御にもどし、順変換器側の各変換器の制御を両極とも定
電流制御にする。
(B) The control of one pole, which had been subjected to constant voltage control in which the potential of the neutral line 5 on the forward converter side was set to 0, is returned to the same current control as the other pole, and each converter on the forward converter side is returned. Both poles are controlled by constant current.

【0012】[0012]

【発明の効果】変換器制御装置に中性線点検・保守モ―
ドを組み込む事により、特別な開閉能力を有する開閉装
置を組み込むこと無く、直流送電系統を無停電で中性線
引き外し・組み込みが可能となるばかりでなく、送電電
力も定常の双極直流送電系統の送電電力と同一容量を送
電できる。そのため、中性線の点検・保守作業に伴って
の直流送電系統の送電効率低下を防止できる。
EFFECT OF THE INVENTION Neutral line inspection / maintenance mode is applied to the converter control device.
By incorporating a switch, not only can the DC transmission system be uninterrupted and the neutral wire can be removed and incorporated without incorporating a switchgear with a special switching capability, but the transmission power of the bipolar DC transmission system can also be stable. The same capacity as the transmitted power can be transmitted. Therefore, it is possible to prevent a decrease in the transmission efficiency of the DC transmission system due to the inspection and maintenance work of the neutral line.

【図面の簡単な説明】[Brief description of drawings]

【図1】双極構成直流送電系統の概念単線結線図[Figure 1] Conceptual single-line connection diagram of bipolar DC transmission system

【図2】直流送電系統制御特性図[Figure 2] DC transmission system control characteristic diagram

【符号の説明】[Explanation of symbols]

1…変換器用変圧器、2…変換器、3…バイパススイッ
チ、4…直流正極送電線、5…中性線、6…直流負極送
電線、7…接地線、8…中性線開閉装置、9…直流リア
クトル
DESCRIPTION OF SYMBOLS 1 ... Transformer for converters, 2 ... Converter, 3 ... Bypass switch, 4 ... DC positive electrode power transmission line, 5 ... Neutral wire, 6 ... DC negative electrode power transmission line, 7 ... Ground wire, 8 ... Neutral wire switchgear, 9 ... DC reactor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 双極構成直流送電設備において、一極の
順変換器側を定電流制御,逆変換器側を定電圧制御と
し、他の極の順変換器側を中性線電位を零とする定電圧
制御,逆変換器側を直流電圧を一定とする定電圧制御を
行うようにした直流送電制御装置。
1. In a bipolar power transmission facility, one pole of the forward converter side is set to constant current control, the other side of it is set to constant voltage control, and the other pole of the forward converter side is set to zero neutral line potential. A DC power transmission control device that performs constant voltage control that maintains constant DC voltage on the reverse converter side.
JP4100908A 1992-04-21 1992-04-21 Dc power transmission controller Pending JPH05300645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4100908A JPH05300645A (en) 1992-04-21 1992-04-21 Dc power transmission controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4100908A JPH05300645A (en) 1992-04-21 1992-04-21 Dc power transmission controller

Publications (1)

Publication Number Publication Date
JPH05300645A true JPH05300645A (en) 1993-11-12

Family

ID=14286445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4100908A Pending JPH05300645A (en) 1992-04-21 1992-04-21 Dc power transmission controller

Country Status (1)

Country Link
JP (1) JPH05300645A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100965163B1 (en) * 2007-09-18 2010-06-24 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Ac to dc converter control device
CN104242291A (en) * 2014-09-25 2014-12-24 Abb技术有限公司 Series multi-terminal direct-current power transmission system
CN104362611A (en) * 2014-10-11 2015-02-18 中国南方电网有限责任公司 Synchronous double-pole unlocking-locking method of high-voltage direct-current power transmission system in in-station grounding mode
WO2015055211A1 (en) * 2013-10-18 2015-04-23 Vestas Wind Systems A/S Converters for wind turbine generators

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100965163B1 (en) * 2007-09-18 2010-06-24 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Ac to dc converter control device
WO2015055211A1 (en) * 2013-10-18 2015-04-23 Vestas Wind Systems A/S Converters for wind turbine generators
US10483865B2 (en) 2013-10-18 2019-11-19 Vestas Wind Systems A/S Converters for wind turbine generators
CN104242291A (en) * 2014-09-25 2014-12-24 Abb技术有限公司 Series multi-terminal direct-current power transmission system
CN104362611A (en) * 2014-10-11 2015-02-18 中国南方电网有限责任公司 Synchronous double-pole unlocking-locking method of high-voltage direct-current power transmission system in in-station grounding mode

Similar Documents

Publication Publication Date Title
KR101293097B1 (en) System, method and apparatus for coupling photovoltaic arrays
Koldby et al. Challenges on the Road to an Offshore HVDC Grid
KR101931138B1 (en) Power Distribution on Ships
RU2396664C2 (en) Converting substation
CN108336750B (en) Converter, tripolar direct current system based on half VSC and fault transfer control method thereof
CN210350802U (en) Sharing earthing pole direct current transmission system circuit
CN112383229A (en) Multi-port power electronic transformer topological structure and alternating current-direct current micro-grid system thereof
RU2376694C1 (en) Converting substation
CN111431126A (en) Online ice melting device
US12009757B2 (en) Relating to bipole power transmission schemes
CN113595227A (en) Low-voltage transformer area load uninterrupted switching system and working method thereof
Guangkai et al. Research on hybrid HVDC
CN108199422A (en) A kind of operational mode switching system based on both ends flexible direct current power distribution network
RU2337451C1 (en) Method of ac three-phase voltage power transmission and system for its implementation
CN213585598U (en) Multi-port power electronic transformer topological structure and alternating current-direct current micro-grid system thereof
JPH05300645A (en) Dc power transmission controller
CN115940268A (en) Offshore wind power bipolar direct-current power transmission system, control method and storage medium
CN212586509U (en) Energy feedback type load testing system
JP2951141B2 (en) Method of improving unbalance in single-phase three-wire line and power supply device used therefor
Kamalapur et al. A Comparative Study of Monopolar and Bipolar HVDC Transmission Systems
Gilany et al. Reducing the short circuit levels in Kuwait transmission network (A case study)
RU2813005C1 (en) METHOD OF POWER SUPPLY TO CONSUMERS IN CASE OF DAMAGE TO PHASE OF 110 kV ELECTRICAL NETWORK
CN219287154U (en) Power supply station of ship dynamic positioning system
Krakhmalin et al. Reduction of short circuit current using DC transmission and split-winding power transformer
SU1206873A1 (en) Device for protection of aerial electric power line