JPH05299548A - Forcibly-cooled integrated circuit device and cooling thereof - Google Patents

Forcibly-cooled integrated circuit device and cooling thereof

Info

Publication number
JPH05299548A
JPH05299548A JP4106367A JP10636792A JPH05299548A JP H05299548 A JPH05299548 A JP H05299548A JP 4106367 A JP4106367 A JP 4106367A JP 10636792 A JP10636792 A JP 10636792A JP H05299548 A JPH05299548 A JP H05299548A
Authority
JP
Japan
Prior art keywords
integrated circuit
cooling
circuit device
cooling medium
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4106367A
Other languages
Japanese (ja)
Inventor
Shigeo Kato
重雄 加藤
Toshimitsu Miyata
敏光 宮田
Masahiko Kawada
雅彦 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4106367A priority Critical patent/JPH05299548A/en
Publication of JPH05299548A publication Critical patent/JPH05299548A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain an integrated circuit device, which is superior in cooling efficiency without using cooling water for cooling integrated circuits and has no possibility of disconnection of the circuits and to provide a highly reliable electronic computer. CONSTITUTION:A cooling coil 106 of a refrigeration machine 105 works as one part of a heat exchanger 107 and cools a cooling medium 108 heated to a high temperature to bring the medium 108 into the state of a low temperature. A cooling medium 110 brought into the state of a low temperature is sent to an integrated circuit device 101 by fans 109 through a control valve 111. A thermometer 117 is mounted to each integrated circuit chip 102 in the device 101 and detects the temperature of the integrated circuit chip. The detection signal is sent to a temperature control device 119 through a connector 118, the opening of the valve 111 is adjusted by the output of the device 119 and the temperature of the integrated circuit chip is set at a temperature most suitable for the operation of the integrated circuit chip.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気体によって強制的に
冷却を行う高集積化された集積回路装置とその電子計算
機への応用に係り、集積回路装置の一層の高集積化と電
子計算機の性能及び信頼性の向上を図ったものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly integrated integrated circuit device forcibly cooled by a gas and its application to an electronic computer. This is intended to improve performance and reliability.

【0002】[0002]

【従来の技術】電子計算機を高速化するに従い、演算や
記憶に用いられる半導体集積回路から発生する熱量が大
きくなってきている。これは半導体集積回路の演算など
の速度が半導体集積回路に投入される電力量に比例する
からである。投入された電力は全て発熱となるため、こ
の発熱を十分取り去らないと半導体装置は作動できない
ような高温度となってしまう。そこで、強力な冷却がで
きる集積回路装置が高速な電子計算機の実現のために必
須なこととなってきている。
2. Description of the Related Art As the speed of electronic computers has increased, the amount of heat generated from semiconductor integrated circuits used for computation and storage has increased. This is because the operation speed of the semiconductor integrated circuit is proportional to the amount of electric power supplied to the semiconductor integrated circuit. Since all of the electric power that is input generates heat, the temperature of the semiconductor device becomes so high that it cannot operate unless this heat is sufficiently removed. Therefore, an integrated circuit device capable of powerful cooling has become indispensable for realizing a high-speed electronic computer.

【0003】さて、強制冷却装置を付けた集積回路装置
については、公開特許公報昭60−92642等に示さ
れている。
An integrated circuit device provided with a forced cooling device is disclosed in Japanese Patent Laid-Open Publication No. Sho 60-92642.

【0004】図3は、従来の強制冷却装置を付けた集積
回路装置の断面図である。絶縁基板(301)は表面に
導電体を有している。複数の半導体集積回路チップ(3
02)が半田バンプ(303)を介して、絶縁基板の導
電体部に半田づけしている。冷却筐体(304)にはダ
イヤフラム(305)が付いている。冷却筐体内にはス
プリング等からなる加圧助成部材(306)があり、ダ
イヤフラムに取り付く加圧体(307)に力を与えて、
半導体集積回路チップと加圧体との圧着力を冷却筐体内
には冷却水(308)が入口(309)から出口(31
0)へと矢印のように流れている。半導体集積回路チッ
プで発生した熱は加圧体、ダイアフラムを経て、冷却水
へと放熱されることになる。
FIG. 3 is a sectional view of an integrated circuit device equipped with a conventional forced cooling device. The insulating substrate (301) has a conductor on its surface. A plurality of semiconductor integrated circuit chips (3
02) is soldered to the conductor portion of the insulating substrate via the solder bump (303). The cooling enclosure (304) is equipped with a diaphragm (305). In the cooling housing, there is a pressure assisting member (306) such as a spring, which applies a force to the pressure body (307) attached to the diaphragm,
The pressure force between the semiconductor integrated circuit chip and the pressurizing body is controlled by the cooling water (308) from the inlet (309) to the outlet (31
It flows to 0) like an arrow. The heat generated in the semiconductor integrated circuit chip is radiated to the cooling water through the pressurizing body and the diaphragm.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来技術
は以下に示す点で配慮がなされておらず、信頼性や使い
勝手の点で優れた電子計算機の集積回路装置を実現でき
ないという問題点があった。すなわち、 (1)集積回路装置の冷却のため冷却水が必要で漏水、
集積回路の絶縁不良が起きやすく、冷却水の配管や排水
も必要で事務機械としての電子計算機の部品の冷却法と
しては全く不適当なものである。
However, the above-mentioned prior art is not considered in the following points, and there is a problem in that it is impossible to realize an integrated circuit device of a computer excellent in reliability and usability. It was (1) Cooling water is required to cool the integrated circuit device, and water leakage,
Insulation failure of the integrated circuit is likely to occur, and cooling water piping and drainage are also necessary, so it is completely unsuitable as a cooling method for parts of electronic computers as office machines.

【0006】(2)スプリング等の加圧部材が強い加圧
力を出して、加圧体が集積回路チップに接触しなければ
ならない。しかし、この強力な加圧力は半田バンプを疲
労させ、集積回路装置の回路断線の原因となっている。
(2) The pressing member such as a spring must exert a strong pressing force so that the pressing member contacts the integrated circuit chip. However, this strong pressing force fatigues the solder bumps and causes circuit breakage of the integrated circuit device.

【0007】本発明の目的は、上記の問題点を解決し、
集積回路の冷却のために冷却水を用いることなく、冷却
性に優れしかも回路断線の恐れのない集積回路装置を得
て、信頼性の高い電子計算機を提供することにある。
The object of the present invention is to solve the above problems,
An object of the present invention is to provide a highly reliable electronic computer by obtaining an integrated circuit device which is excellent in cooling property and is free from the risk of circuit disconnection without using cooling water for cooling the integrated circuit.

【0008】[0008]

【課題を解決するための手段】上記の目的は、以下の手
段によって達成された。すなわち、 (1)冷却水による冷却法を止め、熱伝導性の優れた気
体冷却媒体、例えば、ヘリウムやアルゴンや窒素を冷却
して、集積回路チップに接触させ冷却することにした。
これによって、冷却水によって漏水が起きたり、集積回
路の絶縁不良がなくなり、冷却水の配管や排水も不要と
することができた。
The above object has been achieved by the following means. That is, (1) the cooling method using cooling water was stopped, and a gas cooling medium having excellent thermal conductivity, such as helium, argon, or nitrogen, was cooled and brought into contact with the integrated circuit chip for cooling.
As a result, the leakage of cooling water and the insulation failure of the integrated circuit are eliminated, and it is possible to eliminate the need for cooling water piping and drainage.

【0009】(2)気体冷却媒体による集積回路チップ
への直接冷却を採用した。そのため、集積回路チップに
は加圧力が不要となり、半田バンプの疲労のよる集積回
路装置の回路断線をなくすことができた。
(2) Direct cooling of the integrated circuit chip by a gas cooling medium is adopted. Therefore, the integrated circuit chip does not need to be pressed, and the circuit breakage of the integrated circuit device due to fatigue of solder bumps can be eliminated.

【0010】(3)集積回路の温度を検出し、集積回路
を冷却する気体冷却媒体の冷却量を制御することとし
た。これによって集積回路は作動出来ない高温度あるい
は低温度となることがなくなり、集積回路装置の信頼性
が高まるとともに、さらに一層集積回路を高集積化する
ことが可能となった。
(3) The temperature of the integrated circuit is detected and the cooling amount of the gas cooling medium for cooling the integrated circuit is controlled. As a result, the integrated circuit is prevented from operating at a high temperature or a low temperature, and the reliability of the integrated circuit device is improved, and the integrated circuit can be further highly integrated.

【0011】[0011]

【作用】本発明では、各要素は次のように作用する。In the present invention, each element works as follows.

【0012】(1)冷却媒体であるヘリウム、アルゴ
ン、窒素等の不活性な気体冷却媒体は熱交換器を介して
冷凍機で冷却される。
(1) A cooling medium, which is an inert gas cooling medium such as helium, argon, or nitrogen, is cooled by a refrigerator via a heat exchanger.

【0013】(2)冷却された気体冷却媒体は送風機に
よって集積回路装置内に送り込まれ、集積回路を冷却し
た後、熱交換器へと循環する。
(2) The cooled gas cooling medium is blown into the integrated circuit device by the blower, cools the integrated circuit, and then circulates to the heat exchanger.

【0014】(3)集積回路装置内には温度計があり、
集積回路の温度が検出される。この温度に従い気体冷却
媒体の冷却量を制御するため、集積回路は作動出来ない
高温度あるいは低温度となることがない。
(3) There is a thermometer in the integrated circuit device,
The temperature of the integrated circuit is detected. Since the cooling amount of the gas cooling medium is controlled according to this temperature, the integrated circuit does not become a high temperature or a low temperature at which it cannot operate.

【0015】[0015]

【実施例】以下、本発明の一実施例を図1を用いて説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0016】図1は本発明の強制冷却集積回路装置及び
その冷却方法の一部断面図である。
FIG. 1 is a partial sectional view of a forced cooling integrated circuit device and a cooling method thereof according to the present invention.

【0017】強制冷却集積回路装置(101)内の集積
回路チップ(102)は絶縁基板(103)の上に乗せ
られている。絶縁基板には集積回路チップを結ぶ配線が
その内部になされている(図示せず)。またその表面に
は配線に接続する導電体(図示せず)を有している。半
田バンプ(104)は、複数の集積回路チップを絶縁基
板上の導電体部に半田接合している。もし、集積回路チ
ップが発熱しないならば、この状態で集積回路装置は動
作する。しかし、実際には、電熱器を凌ぐ程の多量の熱
が発生するため、その冷却対策をしなければならない。
The integrated circuit chip (102) in the forced cooling integrated circuit device (101) is mounted on the insulating substrate (103). Wiring connecting the integrated circuit chips is provided inside the insulating substrate (not shown). Further, a conductor (not shown) connected to the wiring is provided on the surface thereof. The solder bumps (104) solder-bond a plurality of integrated circuit chips to a conductor portion on an insulating substrate. If the integrated circuit chip does not generate heat, the integrated circuit device operates in this state. However, in reality, a large amount of heat that exceeds that of an electric heater is generated, and therefore cooling measures must be taken.

【0018】さて、集積回路装置の冷却対策のための冷
凍機(105)の冷却コイル(106)は熱交換器(1
07)の一部となり、循環して戻ってきた点線の矢印で
示した高温となった冷却媒体(108)を冷却して低温
にする。この冷却媒体の冷却温度は、冷却される集積回
路チップとの温度差が大きい程冷却効果がある。ただ
し、集積回路チップが過冷却されるのは集積回路の動作
上不適当である。そのような点で、冷却媒体の冷却温度
は摂氏15度ないし摂氏マイナス50度が適当であるこ
とが分かったので、この温度の範囲で運転される。送風
機(109)は実線の矢印で示した低温となった冷却媒
体(110)を制御弁(111)に送る。制御弁で流量
を制御された低温の冷却媒体は集積回路装置内に送られ
る。絶縁基板の上には、筐体(112)が気密に固定さ
れている。筐体内には冷却媒体の流れを整える隔壁(1
13)が固定されている。この隔壁には集積回路チップ
に位置する所に冷却媒体供給口(114)が明いてい
る。冷却媒体入口(115)から供給された冷却媒体は
図中の実線のように流れて冷却媒体供給口から噴出し
て、集積回路チップの上の冷却フィン(116)を一様
に冷却する。冷却フィンは大きな伝熱面積を持つため、
集積回路チップは有効に冷却される。集積回路チップに
は温度計(117)が取り付き、集積回路チップの温度
を検出する。その信号はコネクタ(118)を経て、温
度制御装置(119)に送られ、その出力によって、制
御弁の開度が調整され、集積回路チップの動作に最も適
した温度にされる。例えば、計算が行われない時は集積
回路チップには僅かな電流しか流れないので発熱は小さ
く、低温となった冷却媒体は僅かしか流されない。高速
な多量の計算が始まると、集積回路チップの温度は上昇
始めるので温度計は素早く検知し、制御弁が開かれ多量
の低温となった冷却媒体が流され、集積回路チップの温
度は動作上最も適した温度に調整される。図では便宜
上、温度計は集積回路チップの上に示してあるが、集積
回路チップ内の回路の一部に組み込むのがよい。また、
温度計は複数の集積回路チップ内の回路に組み込まれ
て、ファジー理論等を用いて制御弁の制御をすると、さ
らに集積回路チップの温度制御は完璧となる。電子計算
機では、数個ないし数十個の集積回路装置が必要とされ
るが、いずれの集積回路装置の温度状態もおおきな差が
ない場合は、冷却量の制御は各集積回路装置の制御弁で
はなくてもよい。この場合は、冷却用媒体の送風機の送
風量を調整して、冷却用媒体の冷却量を制御することが
できる。また、冷凍機の冷凍量を調整して、冷却用媒体
の冷却量を制御することも可能である。勿論、温度計で
検出した集積回路チップの温度信号を温度制御装置に送
り、温度制御装置が送風機や冷凍機を制御することにな
る。
The cooling coil (106) of the refrigerator (105) for cooling the integrated circuit device is a heat exchanger (1).
The cooling medium (108) which has become a part of (7) and has circulated and returned to have a high temperature as indicated by a dotted arrow is cooled to a low temperature. The cooling temperature of the cooling medium has a larger cooling effect as the temperature difference between the cooling medium and the integrated circuit chip to be cooled is larger. However, it is inappropriate for the operation of the integrated circuit that the integrated circuit chip is overcooled. At such a point, it has been found that the cooling temperature of the cooling medium is 15 degrees Celsius or minus 50 degrees Celsius, so that the cooling medium is operated in this temperature range. The blower (109) sends the cooling medium (110) having a low temperature indicated by the solid arrow to the control valve (111). The low-temperature cooling medium whose flow rate is controlled by the control valve is sent into the integrated circuit device. A housing (112) is airtightly fixed on the insulating substrate. A partition wall (1) that regulates the flow of the cooling medium is provided in the housing.
13) is fixed. In this partition, a cooling medium supply port (114) is exposed at a position located on the integrated circuit chip. The cooling medium supplied from the cooling medium inlet (115) flows as shown by the solid line in the figure and is ejected from the cooling medium supply port to uniformly cool the cooling fins (116) on the integrated circuit chip. Since the cooling fin has a large heat transfer area,
The integrated circuit chip is effectively cooled. A thermometer (117) is attached to the integrated circuit chip to detect the temperature of the integrated circuit chip. The signal is sent to the temperature control device (119) via the connector (118), and the output thereof adjusts the opening of the control valve to bring the temperature to the most suitable temperature for the operation of the integrated circuit chip. For example, when no calculation is performed, a small amount of current flows through the integrated circuit chip, so that heat generation is small, and the cooling medium that has become low temperature is flowed only slightly. When a large amount of high-speed calculations are started, the temperature of the integrated circuit chip begins to rise, so the thermometer detects it quickly, the control valve is opened, and a large amount of cooling medium that has become low temperature is flowed, and the temperature of the integrated circuit chip becomes It is adjusted to the most suitable temperature. Although the thermometer is shown above the integrated circuit chip for convenience of illustration, it may be incorporated into a portion of the circuit within the integrated circuit chip. Also,
When the thermometer is incorporated in a circuit in a plurality of integrated circuit chips and the control valve is controlled by using the fuzzy theory or the like, the temperature control of the integrated circuit chip is further perfected. In an electronic computer, several to several tens of integrated circuit devices are required, but if there is no significant difference in the temperature state of any integrated circuit device, the control of the cooling amount is controlled by the control valve of each integrated circuit device. You don't have to. In this case, the amount of cooling medium blown by the blower can be adjusted to control the amount of cooling of the cooling medium. It is also possible to control the cooling amount of the cooling medium by adjusting the freezing amount of the refrigerator. Of course, the temperature signal of the integrated circuit chip detected by the thermometer is sent to the temperature control device, and the temperature control device controls the blower and the refrigerator.

【0019】図2は、本発明の強制冷却集積回路装置及
びその冷却方法の電子計算機への応用例を示すものであ
る。
FIG. 2 shows an example of application of the forced cooling integrated circuit device and the cooling method of the present invention to an electronic computer.

【0020】数個ないし数十個の集積回路装置を組み込
んだ演算や記憶をする計算部(201)は、電子計算機
筐体(202)の上部に置かれる。電子計算機筐体の下
部には冷凍機(203)、熱交換器(204)、送風機
(205)が置かれ、冷却媒体を冷却する。すなわち、
集積回路装置を冷却して高温となった冷却媒体(20
6)を冷却して、低温となった冷却媒体(207)とす
る訳である。低温となる空間には断熱材(208)が充
填される。冷凍機は集積回路装置が発生する熱を放熱し
なければならないので、電子計算機筐体の外部から冷却
風(209)を取り入れ、熱風(210)を系外に出す
ことになる。しかし、これは電子計算機筐体の下部にあ
るため、電子計算機の周りの設置環境との合致性が非常
によい。勿論、外部からの冷却風の取り入れ、熱風の系
外への排出が天井の方が良い場合もある。この場合は、
冷凍機、熱交換器、送風機は電子計算機筐体の上部に置
かれた方が都合がよい。
A calculation unit (201) incorporating several to several tens of integrated circuit devices for performing calculations and storage is placed on the top of the computer case (202). A refrigerator (203), a heat exchanger (204), and a blower (205) are placed at the bottom of the computer case to cool the cooling medium. That is,
Cooling medium (20
That is, 6) is cooled to be the cooling medium (207) having a low temperature. A heat insulating material (208) is filled in the space having a low temperature. Since the refrigerator must radiate the heat generated by the integrated circuit device, the cooling air (209) is taken in from the outside of the computer housing and the hot air (210) is taken out of the system. However, since it is located at the bottom of the computer case, it is very compatible with the installation environment around the computer. Of course, there are cases where it is better to take in cooling air from the outside and discharge hot air out of the system at the ceiling. in this case,
The refrigerator, heat exchanger and blower are conveniently located on top of the computer housing.

【0021】[0021]

【発明の効果】以上述べてきたように本発明によれば、
冷却水による冷却法を止め、熱伝導性の優れた気体冷却
媒体を冷却して、集積回路チップに接触させ冷却するこ
とにしたため、冷却水によって漏水が起きたり、集積回
路の絶縁不良がなくなり、冷却水の配管や排水も不要と
することができた。また、気体冷却媒体による集積回路
チップへの直接冷却を採用したため、集積回路チップに
は加圧力が不要となり、半田バンプの疲労のよる集積回
路装置の回路断線をなくすことができた。さらに、集積
回路の温度を検出し、集積回路を冷却する気体冷却媒体
の冷却量を制御することによって集積回路は作動出来な
い高温度あるいは低温度となることがなくなり、集積回
路装置の一層の高集積化と電子計算機の性能及び信頼性
の向上が可能となった。
As described above, according to the present invention,
Since we decided to stop the cooling method using cooling water and cool the gas cooling medium with excellent thermal conductivity to bring it into contact with the integrated circuit chip to cool it, leakage of water due to cooling water and insulation failure of the integrated circuit disappeared, It was possible to eliminate the need for cooling water piping and drainage. Further, since the direct cooling of the integrated circuit chip by the gas cooling medium is adopted, the integrated circuit chip does not need a pressing force, and the circuit disconnection of the integrated circuit device due to fatigue of solder bumps can be eliminated. Furthermore, by detecting the temperature of the integrated circuit and controlling the cooling amount of the gas cooling medium that cools the integrated circuit, the integrated circuit is prevented from becoming a high temperature or a low temperature at which the integrated circuit cannot operate, and the temperature of the integrated circuit device is further increased. It has become possible to improve integration and performance and reliability of electronic computers.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す一部断面図。FIG. 1 is a partial sectional view showing an embodiment of the present invention.

【図2】本発明の応用例の一実施例を示す断面図。FIG. 2 is a sectional view showing an example of an application example of the present invention.

【図3】従来の技術の一実施例を示す断面図である。FIG. 3 is a sectional view showing an example of a conventional technique.

【符号の説明】[Explanation of symbols]

101…強制冷却集積回路装置 102…集積回路チ
ップ 103…絶縁基板 104…半田バンプ
105…冷凍機 106…冷却コイル 107…熱交換器 108…高温となった冷却媒体
109…送風機 111…制御弁 112…筐体 113…隔壁
116…冷却フィン 117…温度計 118…コネクタ 119…温度
制御装置
101 ... Forced cooling integrated circuit device 102 ... Integrated circuit chip 103 ... Insulating substrate 104 ... Solder bump
105 ... Refrigerator 106 ... Cooling coil 107 ... Heat exchanger 108 ... High temperature cooling medium
109 ... Blower 111 ... Control valve 112 ... Housing 113 ... Partition
116 ... Cooling fin 117 ... Thermometer 118 ... Connector 119 ... Temperature control device

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】集積回路の温度を検出し、集積回路を冷却
する気体冷却媒体の冷却量を制御することを特徴とする
電子計算機の半導体集積回路装置。
1. A semiconductor integrated circuit device for an electronic computer, which detects a temperature of an integrated circuit and controls a cooling amount of a gas cooling medium for cooling the integrated circuit.
【請求項2】請求項1記載の半導体集積回路装置におい
て、集積回路の温度を検出する温度計を集積回路装置内
に組み込んだことを特徴とする電子計算機の半導体集積
回路装置。
2. The semiconductor integrated circuit device according to claim 1, wherein a thermometer for detecting the temperature of the integrated circuit is incorporated in the integrated circuit device.
【請求項3】請求項1記載の半導体集積回路装置におい
て、冷却媒体として、冷却された気体、例えば、ヘリウ
ム、アルゴン、窒素等の不活性な元素を用いることを特
徴とする電子計算機の半導体集積回路装置。
3. The semiconductor integrated circuit device according to claim 1, wherein a cooled gas, for example, an inert element such as helium, argon or nitrogen is used as a cooling medium. Circuit device.
【請求項4】請求項3記載の半導体集積回路装置におい
て、冷却用媒体を冷凍機で冷却し、循環させて集積回路
を冷却することを特徴とする電子計算機の半導体集積回
路装置。
4. The semiconductor integrated circuit device according to claim 3, wherein the cooling medium is cooled by a refrigerator and circulated to cool the integrated circuit.
【請求項5】請求項4記載の半導体集積回路装置におい
て、冷却用媒体を冷凍機で摂氏15度ないし摂氏マイナ
ス50度に冷却し、循環させて集積回路を冷却すること
を特徴とする電子計算機の半導体集積回路装置。
5. The computer according to claim 4, wherein the cooling medium is cooled to 15 degrees Celsius or -50 degrees Celsius by a refrigerator and circulated to cool the integrated circuit. Semiconductor integrated circuit device.
【請求項6】請求項1記載の半導体集積回路装置におい
て、冷却する媒体を導入する入口の制御弁の開度を調節
して、冷却用媒体の冷却量を制御することを特徴とする
電子計算機の半導体集積回路装置。
6. A semiconductor integrated circuit device according to claim 1, wherein the cooling amount of the cooling medium is controlled by adjusting the opening of a control valve at the inlet for introducing the cooling medium. Semiconductor integrated circuit device.
【請求項7】請求項1記載の半導体集積回路装置におい
て、冷却用媒体の送風量を調整して、冷却用媒体の冷却
量を制御することを特徴とする電子計算機の半導体集積
回路装置。
7. The semiconductor integrated circuit device of an electronic computer according to claim 1, wherein the amount of air blown by the cooling medium is adjusted to control the cooling amount of the cooling medium.
【請求項8】請求項1記載の半導体集積回路装置におい
て、冷凍機の冷凍量を調整して、冷却用媒体の冷却量を
制御することを特徴とする電子計算機の半導体集積回路
装置。
8. The semiconductor integrated circuit device according to claim 1, wherein the amount of refrigeration of the refrigerator is adjusted to control the cooling amount of the cooling medium.
【請求項9】上記記載の半導体集積回路装置を統合して
電子計算機として作動する部分と、冷却用媒体を循環さ
せて集積回路を冷却する部分と、冷凍機を一つの筐体に
収め、自己装置内で強制冷却ができることを特徴とする
電子計算機。
9. A unit in which the semiconductor integrated circuit device described above is integrated to operate as an electronic computer, a unit in which a cooling medium is circulated to cool the integrated circuit, and a refrigerator are housed in one housing. An electronic computer characterized by being able to perform forced cooling within the device.
JP4106367A 1992-04-24 1992-04-24 Forcibly-cooled integrated circuit device and cooling thereof Pending JPH05299548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4106367A JPH05299548A (en) 1992-04-24 1992-04-24 Forcibly-cooled integrated circuit device and cooling thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4106367A JPH05299548A (en) 1992-04-24 1992-04-24 Forcibly-cooled integrated circuit device and cooling thereof

Publications (1)

Publication Number Publication Date
JPH05299548A true JPH05299548A (en) 1993-11-12

Family

ID=14431760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4106367A Pending JPH05299548A (en) 1992-04-24 1992-04-24 Forcibly-cooled integrated circuit device and cooling thereof

Country Status (1)

Country Link
JP (1) JPH05299548A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063434A (en) * 2003-08-08 2005-03-10 Hewlett-Packard Development Co Lp Electronic device cooling system and its utilization method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063434A (en) * 2003-08-08 2005-03-10 Hewlett-Packard Development Co Lp Electronic device cooling system and its utilization method

Similar Documents

Publication Publication Date Title
US7499278B2 (en) Method and apparatus for dissipating heat from an electronic device
JP4493117B2 (en) Cooling method and cooling device for notebook personal computer
US5676199A (en) Thermostat controlled cooler for a CPU
US4495780A (en) Cooling method and apparatus for hermetic type control box
US7289326B2 (en) Direct contact cooling liquid embedded package for a central processor unit
US6243268B1 (en) Cooled IC chip modules with an insulated circuit board
JP2015521272A (en) System and method for thermoelectric heat exchange system
WO2005078792A1 (en) Electronic device cooling device and electronic device cooling method
JPS632148B2 (en)
KR20020027505A (en) Processor and temperature control method therefor
JP2002517894A (en) Computer cooling system
JP2007010211A (en) Cooling device of electronics device
US20030218865A1 (en) Semiconductor thermal management system
US7559210B2 (en) Method and apparatus for cooling a heat source
TW202017459A (en) Combination of server rack and heat transfer appartus, cooling system for server rack, and method of maintaining server rack within a predetermined range of temperature
JP3921913B2 (en) Wafer processing apparatus and wafer manufacturing method
JPH05299548A (en) Forcibly-cooled integrated circuit device and cooling thereof
JP2000277962A (en) Cooling device for heat generating element
JP2002163041A (en) Portable information equipment
JP2002076219A (en) Device and method for controlling cpu temperature
US20050189089A1 (en) Fluidic apparatus and method for cooling a non-uniformly heated power device
KR100928537B1 (en) Thermal insulation housing of the camera
JP2011096983A (en) Cooling device
JP2015095614A (en) Cooler and electronic apparatus mounting the same
JP4404861B2 (en) Apparatus for cooling a heat generating component and method for manufacturing an apparatus for cooling a heat generating component