JPH05299122A - Charging method - Google Patents

Charging method

Info

Publication number
JPH05299122A
JPH05299122A JP4106509A JP10650992A JPH05299122A JP H05299122 A JPH05299122 A JP H05299122A JP 4106509 A JP4106509 A JP 4106509A JP 10650992 A JP10650992 A JP 10650992A JP H05299122 A JPH05299122 A JP H05299122A
Authority
JP
Japan
Prior art keywords
charging
electrode
lithium
carbon
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4106509A
Other languages
Japanese (ja)
Other versions
JP2883491B2 (en
Inventor
Yoshikazu Yoshimoto
芳和 好本
Hideaki Tanaka
英明 田中
Masaru Yoshida
勝 吉田
Shigeo Nakajima
重夫 中島
Hiroshi Wada
和田  弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4106509A priority Critical patent/JP2883491B2/en
Publication of JPH05299122A publication Critical patent/JPH05299122A/en
Application granted granted Critical
Publication of JP2883491B2 publication Critical patent/JP2883491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce self discharging of a lithium secondary battery using carbon as a negative electrode active material by carrying out charging at a temperature higher than the temperature at which the lithium secondary battery is used. CONSTITUTION:The operating temperature of a lithium secondary battery is the temperature at the time of using as well as of preservation, namely, 10 deg.-30 deg.C when normally used, and charging is carried out at no less than 60 deg.C when the temperature at the time of preservation reaches the maximum of 60 deg.C. The charging includes the one at the time of forming a negative electrode such as implanting or holding lithium ion in carbon, besides the one as battery charging. The self discharging ratio is thus reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素が負極活物質とし
て用いられたリチウム二次電池の充電方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for charging a lithium secondary battery in which carbon is used as a negative electrode active material.

【0002】[0002]

【従来の技術】炭素はその層状構造の故に層間に種々の
原子や分子等を取り込み層間化合物を形成する。この性
質を利用して各種電池への応用について研究が成されて
いるが、とり分けリチウム二次電池の負極として利用す
る研究が近年盛んになっている。リチウム二次電池で
は、負極にリチウムが使われるのであるが、リチウム金
属をそのまま用いた場合には充放電のサイクル寿命が短
いという問題があり、Li−Al等の合金を負極として
利用することも多い。しかし、この場合にもサイクル寿
命が十分に長いというわけではなく、またリチウムやリ
チウム合金を用いる場合には、リチウムの利用効率を低
く保たねばならず、さらには過放電の場合に正極に対し
て正極がサイクル寿命を十分保持できる限度以上にリチ
ウムが侵入するために性能が低下してしまうという欠点
がある。
2. Description of the Related Art Due to its layered structure, carbon incorporates various atoms and molecules between layers to form an intercalation compound. Utilization of this property has been studied for application to various batteries, but in particular, research for utilizing it as a negative electrode of a lithium secondary battery has become active in recent years. In the lithium secondary battery, lithium is used for the negative electrode, but when lithium metal is used as it is, there is a problem that the cycle life of charging and discharging is short, and an alloy such as Li-Al may be used as the negative electrode. Many. However, even in this case, the cycle life is not long enough, and when lithium or a lithium alloy is used, the utilization efficiency of lithium must be kept low, and further, in the case of overdischarge, the positive electrode is not used. Therefore, there is a drawback in that the performance deteriorates because lithium invades beyond the limit at which the positive electrode can sufficiently maintain the cycle life.

【0003】黒鉛のリチウム層間化合物を利用した炭素
電極は炭素電極に担持させたリチウムの量により電池の
容量が決まる負極支配の電池電極として利用できるもの
であり、上述のサイクル寿命,過放電等の問題を解消で
きる電極として開発が進められている。この炭素電極は
活物質である炭素の製法により電極としての適性を大き
く変えるものであり、これまでの研究によりプロパン,
ベンゼン等の炭化水素を1000℃程度で気相熱分解し
て製造したものが電極として最も優れていることがわか
っている。
A carbon electrode using a lithium intercalation compound of graphite can be used as a negative electrode-dominant battery electrode whose battery capacity is determined by the amount of lithium supported on the carbon electrode, and is used for the above-mentioned cycle life, over discharge, etc. Development is proceeding as an electrode that can solve the problem. This carbon electrode greatly changes its suitability as an electrode depending on the manufacturing method of carbon as an active material.
It has been found that the best electrode is produced by vapor-decomposing hydrocarbon such as benzene at about 1000 ° C.

【0004】[0004]

【発明が解決しようとする課題】リチウム二次電池の特
徴には、従来のニッカド等の二次電池に比較してエネル
ギー密度が高い事や自己放電が少ない事等がある。自己
放電についていうと、ニッカドでは20%/月であるの
に対しリチウム二次電池では1%/月と非常に少ない自
己放電率を実現することが出来る。これは、負極として
リチウム金属やリチウム合金を用いた場合には、活物質
としてのリチウムが余る程に存在していることによって
いる。しかし、必要最少限のリチウムだけを担持してい
る炭素電極を負極として用いた場合には、6%/月程度
の自己放電が室温にて生じるのが現状であり、炭素電極
を使用する際の唯一の問題となっている。 本発明は、
リチウム二次電池負極に炭素電極を用いた場合に生じる
上記自己放電を低減することを目的とする。
The characteristics of the lithium secondary battery include high energy density and low self-discharge as compared with the conventional secondary battery such as NiCad. With regard to self-discharge, it is possible to realize a very low self-discharge rate of 20% / month for Nicad and 1% / month for a lithium secondary battery. This is because when lithium metal or a lithium alloy is used as the negative electrode, lithium is excessively present as an active material. However, when a carbon electrode supporting only the minimum necessary lithium is used as the negative electrode, self-discharge of about 6% / month occurs at room temperature under the present circumstances. It is the only problem. The present invention is
It is an object of the present invention to reduce the self-discharge that occurs when a carbon electrode is used as the negative electrode of a lithium secondary battery.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、炭素を負極活物質として用いたリチウム
二次電池の充電を行うに際して、リチウム二次電池の使
用温度よりも高い温度で行うことを特徴とする充電方法
を提供する。
In order to achieve the above object, the present invention is to charge a lithium secondary battery using carbon as a negative electrode active material at a temperature higher than the operating temperature of the lithium secondary battery. There is provided a charging method characterized in that

【0006】本発明における炭素は、グラファイト構造
を有する炭素であって、その層状構造の層間にリチウム
が挿入されていわゆる層間化合物を形成するものであ
る。リチウム二次電池を非水有機溶媒を用いて構成する
場合には、上記炭素として炭化水素類の気相熱分解法に
より製造されるものを用いるのが好ましい。尚、炭化水
素類とは炭化水素またはこれらの化合物をいう。
The carbon in the present invention is carbon having a graphite structure, and lithium is inserted between the layers of the layered structure to form a so-called intercalation compound. When the lithium secondary battery is constructed using a non-aqueous organic solvent, it is preferable to use, as the carbon, one produced by a vapor phase pyrolysis method of hydrocarbons. The hydrocarbons mean hydrocarbons or their compounds.

【0007】リチウム二次電池の使用温度とは、使用時
及び保存時の温度をいい、例えば、通常使用温度が10
℃〜30℃であり、保存時の温度が最大60℃に達する
ような場合には、60℃以上で充電を行う。
The operating temperature of the lithium secondary battery refers to the temperature during use and storage, for example, the normal operating temperature is 10
When the storage temperature is 60 ° C. to 30 ° C. and the maximum temperature during storage reaches 60 ° C., charging is performed at 60 ° C. or higher.

【0008】リチウム二次電池の充電とは、いわゆる電
池としての充電以外に、負極化成時の充電、すなわち炭
素へのリチウムイオンの挿入担持をも含む。
The charging of the lithium secondary battery includes, in addition to charging as a so-called battery, charging during negative electrode formation, that is, insertion and loading of lithium ions into carbon.

【0009】充電方法としては、電池を組立てる前であ
れば、例えば、400℃程度に保った容器中にリチウム
と炭素電極とを密封して数日間保つというような気相で
の担持法、または電解液中にリチウム金属と炭素電極を
浸し電気的に互いを短絡させ長時間おく方法、所定の電
流にて電解液中で充電を行う方法等があるが、好ましく
は、電解液中で定電圧、または定電流充電を行うのが良
い。尚、電池として充電する際にもこの方法を用いる。
As a charging method, before assembling the battery, for example, a method of carrying in a gas phase, in which lithium and a carbon electrode are sealed in a container kept at about 400 ° C. and kept for several days, or There are a method of soaking the lithium metal and the carbon electrode in the electrolytic solution and electrically shorting each other for a long time, a method of charging in the electrolytic solution at a predetermined current, and the like, but preferably a constant voltage in the electrolytic solution. , Or constant current charging is better. This method is also used when charging as a battery.

【0010】[0010]

【作用】上記炭素電極の自己放電についてその特徴を調
べた結果、自己放電により失われたと思われていた炭素
中のリチウムは大部分が炭素中に残っていることがわか
った。リチウムを十分に担持した炭素電極は0Vvs.
Li/Li+の電位を有しているが、電池の放電により
リチウムを放出してゆくとその電位は徐々に上昇する。
(図1参照)図は、LiClO41M/lPCを用い対
極Liシートで0.5mA/cm2の電流密度でのデー
タである。電池として利用するのは電池の構成にもよる
が、例えば0〜0.7Vvs.Li/Li+の電位領域
を利用する。電池を充電し炭素電極にリチウムを担持さ
せた後保存を行いその後放電を行うと1ケ月室温の保存
で約6%の容量の低下が生じる。この時の炭素電極の電
位は0.7VvsLi/Li+に上昇しているのである
が、さらに1.2VvsLi/Li+になるまで放電を
してやると保存をしていない電極について同じことをし
た場合に比べて約4%余分に電気量を取り出すことがで
きた。
As a result of investigating the characteristics of the above self-discharge of the carbon electrode, it was found that most of lithium in carbon, which was thought to be lost by the self-discharge, remained in carbon. A carbon electrode sufficiently supporting lithium has a voltage of 0 Vvs.
Although it has a potential of Li / Li +, the potential gradually increases as lithium is released by discharging the battery.
(See FIG. 1) The figure shows data at a current density of 0.5 mA / cm 2 using a counter electrode Li sheet using LiClO 4 1M / lPC. The battery used depends on the structure of the battery, but is, for example, 0 to 0.7 Vvs. The potential region of Li / Li + is used. When the battery is charged and the carbon electrode is loaded with lithium, and then stored, and then discharged, the capacity decreases by about 6% after storage for one month at room temperature. The potential of the carbon electrode at this time has risen to 0.7 VvsLi / Li +, but when discharging is further performed to 1.2 VvsLi / Li +, compared to the case where the same is done for the electrode that has not been stored. About 4% extra electricity could be extracted.

【0011】すなわち、失われたと考えていた約6%の
リチウムのうち約4%は高電位領域に移行していること
がわかった。さらに、電極の温度を60℃に上昇させて
放電を行うと、残りの約2%に相当する電気量も取り出
せることがわかった。以上のことから、約6%と大きか
った自己放電の原因は、充電が不十分であったために、
炭素中にリチウムを取り込む空の部位が存在しており、
かつこの部位にリチウムが入った場合の電位は、0.7
Vvs.Li/Li+より高くなり、さらにこの部位に
入ったリチウムは室温では取り出しにくい為であると考
えられる。
That is, it was found that about 4% of about 6% of lithium considered to be lost has moved to the high potential region. Further, it was found that when the temperature of the electrode was raised to 60 ° C. and electric discharge was performed, the remaining amount of electricity corresponding to about 2% could be extracted. From the above, the cause of self-discharge, which was as large as about 6%, was due to insufficient charging.
There is an empty site that takes in lithium in carbon,
And the potential when lithium enters this part is 0.7
Vvs. It is considered that it is higher than Li / Li +, and further, lithium that has entered this portion is difficult to take out at room temperature.

【0012】そこで、この空の部位をなくしてやれば、
保存中にこの部位に移動するリチウムがなくなり、取り
出せなくなるリチウムがなくなる。従って、温度を上げ
て充電しなくても、例えば十分に時間をかけて充電を行
なえば自己放電をある程度低減できる。
Therefore, if this empty part is eliminated,
There is no lithium that migrates to this site during storage and no lithium that cannot be taken out. Therefore, even if the battery is not charged by raising the temperature, the self-discharge can be reduced to some extent by performing the charging for a sufficient time.

【0013】また、空の部位へのリチウムの移動は温度
とともに速くなり、さらに移行できる空の部位の数も増
加すると考えられる。そこで、使用温度以上の温度で充
電することにより、使用温度で移行可能な空の部位をす
べてリチウムで埋めてしまうことが可能となる。さら
に、電解液中での充電では充電速度が速くなり、一定の
電流値で充電できる量も増加する。
Further, it is considered that the migration of lithium to the vacant site becomes faster with the temperature, and the number of vacant sites that can be transferred further increases. Therefore, by charging at a temperature equal to or higher than the use temperature, it becomes possible to fill all empty sites that can be transferred at the use temperature with lithium. In addition, charging in an electrolytic solution increases the charging speed and increases the amount that can be charged at a constant current value.

【0014】尚、同様のことは、他のアルカリ金属を炭
素中に挿入して用いる場合にも起こると考えられ、アル
カリ金属を炭素に対して出し入れすることを利用した電
池に広くこの方法が使用できると考えられる。
It is considered that the same thing occurs when other alkali metals are used by inserting them into carbon, and this method is widely used for batteries utilizing the putting in and out of alkali metals with respect to carbon. It is thought to be possible.

【0015】[0015]

【実施例】【Example】

実施例1 円筒状の石英反応管の周囲が赤外線ヒーターに囲まれた
構造の製造装置を用い、以下のようにして負極となる炭
素電極を製造した。
Example 1 A carbon electrode as a negative electrode was manufactured as follows using a manufacturing apparatus having a structure in which a cylindrical quartz reaction tube was surrounded by an infrared heater.

【0016】まず、14×50×0.05厚(mm)の
大きさのニッケル板を用意し、これを基板として上記石
英反応管内に載置する。次に、原料ガスとしてプロパン
とアルゴンの混合ガスを上記石英反応管内に供給し、基
板温度が1000℃となるように上記石英反応管内部を
赤外線ヒーターにより加熱する。尚、プロパンとアルゴ
ンは体積比で1:1の割合で混合した。これにより、基
板上も128μm厚の炭素膜が形成された。
First, a nickel plate having a size of 14 × 50 × 0.05 thickness (mm) is prepared, and this is placed as a substrate in the quartz reaction tube. Next, a mixed gas of propane and argon is supplied as a raw material gas into the quartz reaction tube, and the inside of the quartz reaction tube is heated by an infrared heater so that the substrate temperature becomes 1000 ° C. Propane and argon were mixed at a volume ratio of 1: 1. As a result, a carbon film having a thickness of 128 μm was also formed on the substrate.

【0017】得られた炭素膜について、CuKα線を用
いてX線回折を行ったところ、グラファイトの(00
2)面に相当するピークとして26.4°、その半値幅
として0.58°が得られた。これより、この炭素膜は
グラファイト構造を有しており、C軸方向の面間隔が
3.372Å,C軸方向の結晶子の大きさは144Åで
あることがわかった。また、表面のアルゴンレーザーラ
マンスペクトルを測定したところ、1580cm-1と1
360cm-1にピークが測定され、1580cm-1のピ
ーク強度に対する1360cm-1のピーク強度の比は
0.9であった。
The obtained carbon film was subjected to X-ray diffraction using CuKα ray, and was found to have graphite (00
The peak corresponding to the 2) plane was 26.4 °, and the half-width thereof was 0.58 °. From this, it was found that this carbon film had a graphite structure, the interplanar spacing in the C-axis direction was 3.372Å, and the crystallite size in the C-axis direction was 144Å. Moreover, when the argon laser Raman spectrum of the surface was measured, it was 1580 cm −1 and 1
Peak was measured 360 cm -1, the ratio of the peak intensity of 1360 cm -1 to the peak intensity of 1580 cm -1 was 0.9.

【0018】この炭素膜をニッケル板からはがさずに、
そのまま作用極1とし、対極2にリチウム板、参照極3
にリチウム片を用いた3極法にて1モル/lの過塩素酸
リチウムを含有するプロピレンカーボネート溶液4中で
3mAの定電流充電にて0Vvs.Li/Li+となる
まで充電を行った(図2参照)。この時の液温は80℃
に保った。この時、充電に要した電気量は41.0mA
hであった。次にこの電極の系(図2)を室温にもど
し、0〜0.7Vv.s.Li/Li+の電位幅にて放充電
を5回繰り返した。1回目の放電電気量は30.0mA
hであり、2回目以降は27.0mAhであった。2回
目以降の充放電効率は100%であった。5回目の充電
の終了した電極をそのままの状態で1カ月間放置した後
再度放電を行うと、26.5mAhの電気量が取り出せ
た。このことから、自己放電率は1.7%/月であるこ
とがわかった。
Without peeling off this carbon film from the nickel plate,
The working electrode 1 is used as it is, the counter electrode 2 is a lithium plate, and the reference electrode 3 is
In a propylene carbonate solution 4 containing 1 mol / l of lithium perchlorate in a three-pole method using lithium pieces as the anode, 0 V vs. Charging was performed until it became Li / Li + (see FIG. 2). Liquid temperature at this time is 80 ℃
Kept on. At this time, the amount of electricity required for charging was 41.0 mA.
It was h. Next, the system of this electrode (FIG. 2) was returned to room temperature, and discharge was repeated 5 times with a potential range of 0 to 0.7 Vv.s.Li/Li+. The amount of electricity discharged for the first time is 30.0 mA
h, and 27.0 mAh after the second time. The charge and discharge efficiency after the second time was 100%. When the electrode that had been charged for the fifth time was left as it was for 1 month and then discharged again, an electric quantity of 26.5 mAh could be extracted. From this, it was found that the self-discharge rate was 1.7% / month.

【0019】同じ方法で作製した電極を最初の充電で液
温を室温に保つ以外は全く同様にして試験をした場合、
自己放電率は7.0%/月であった。また、充電に要し
た時間は、実施例に比べて約20倍となった。
When an electrode manufactured by the same method is tested in exactly the same manner except that the liquid temperature is kept at room temperature by the first charge,
The self-discharge rate was 7.0% / month. In addition, the time required for charging was about 20 times that of the example.

【0020】また、実施例1と同様の方法で作製した電
極を室温にて0.3mAの電流で充電した。このときの
炭素膜厚は130μmであり、充電電気量は37.0m
Ahであった。次にこの電極を3mAの電流で0〜0.
7Vv.s.Li/Li+の電位幅で5回放充電を行った。
1回目の放電電気量は30.1mAhであり、2回目以
降は27.4mAhであり、充放電効率は99%であっ
た。5回目の充電終了後、このまま1カ月間電極を放置
した後再度放電を行うと、26.1mAhの電気量が取
り出せた。これから、自己放電率は4.8%/月である
ことがわかった。初期3mAで充電した場合の7.0%
/月と比べて自己放電率は減少した。
An electrode manufactured in the same manner as in Example 1 was charged at room temperature with a current of 0.3 mA. The carbon film thickness at this time was 130 μm, and the amount of electricity charged was 37.0 m.
It was Ah. Next, this electrode was applied with 0 to 0.
Charge and discharge was performed 5 times with a potential range of 7 Vv.s.Li/Li+.
The discharge electricity amount of the first time was 30.1 mAh, the second and subsequent times were 27.4 mAh, and the charge / discharge efficiency was 99%. After completion of the fifth charge, the electrode was left as it was for one month and then discharged again, and an electric quantity of 26.1 mAh could be extracted. From this, it was found that the self-discharge rate was 4.8% / month. 7.0% when charged at initial 3mA
/ The self-discharge rate decreased compared to the month.

【0021】本実施例では、電解液の温度を80℃にし
て充電を行ったが、本実施例のようなプロピレンカーボ
ネート系の電解液を用いたリチウム二次電池では、その
使用温度と電解液の性質とを考えると、60〜80℃程
度の温度で充電するのが好ましい。
In this embodiment, charging was performed by setting the temperature of the electrolytic solution to 80 ° C. However, in the lithium secondary battery using the propylene carbonate-based electrolytic solution as in this example, the operating temperature and the electrolytic solution were used. Considering the nature of, it is preferable to charge at a temperature of about 60 to 80 ° C.

【0022】実施例2 実施例1と同じ条件で作製した電極に、実施例1と同じ
条件で充電を行った。この時の電極の炭素膜厚は140
μmであり、充電電気量は45.1mAhであった.こ
の電極を80℃の状態のままで1日保存した後、電極の
系(図2)の温度を室温に下げ、0〜0.7Vv.s.Li
/Li+の電位幅で放充電を5回繰り返した。1回目の
放電電気量は、31.9mAhであり2回目以降は2
9.7mAhであり、充放電効率は100%であった。
5回目の充電の終わった電極を、そのままの状態で1カ
月間放置した後、再度放電を行うと、29.4mAhの
電気量が取り出せた。このことから、自己放電率は1.
0%/月であることがわかり、これは実施例1の場合よ
り小さかった。
Example 2 An electrode manufactured under the same conditions as in Example 1 was charged under the same conditions as in Example 1. The carbon film thickness of the electrode at this time is 140
μm, and the amount of electricity charged was 45.1 mAh. After storing this electrode at 80 ° C for 1 day, the temperature of the electrode system (Fig. 2) was lowered to room temperature, and 0 to 0.7 Vv.s.
The discharge was repeated 5 times with a potential width of / Li +. The amount of electricity discharged for the first time is 31.9 mAh, and 2 for the second time and thereafter.
It was 9.7 mAh, and the charge / discharge efficiency was 100%.
When the electrode that had been charged for the fifth time was left as it was for 1 month and then discharged again, an electric quantity of 29.4 mAh could be extracted. From this, the self-discharge rate is 1.
It was found to be 0% / month, which was less than in Example 1.

【0023】実施例3 実施例2において、80℃で1日保存するところを室温
で1日保存したところ、自己放電率は1.4%/月であ
り、実施例1より小さかったが、実施例2よりは大きか
った。
Example 3 In Example 2, when the sample was stored at 80 ° C. for 1 day, but stored at room temperature for 1 day, the self-discharge rate was 1.4% / month, which was smaller than that in Example 1. Greater than Example 2.

【0024】実施例4 実施例2と同じ方法、すなわち80℃で充電後、80℃
で1日保存し、室温にて放充電を5回繰り返した電極
(この時点で充電状態となっている)を五酸化バナジウ
ムを正極に用いて20×60×0.6厚(mm)サイズ
の電池として組み上げた。電解液は1MLiClO4
有のプロピレンカーボネートで、容器にはステンレスを
用いた。この電池を過放電させた後、80℃にて3mA
の電流で充電しその後室温にて1ケ月間保存した。この
後の自己放電率を測定すると、1.0%/月であった。
ちなみに過放電後、室温にて3mAの電流で充電した場
合には、10%/月の自己放電率が測定された。これら
のことから、電池として組み上げた後、過放電を行った
場合でも高温で充電すれば、自己放電率が低く抑えられ
ることがわかった。
Example 4 The same method as in Example 2, that is, after charging at 80 ° C., then at 80 ° C.
It was stored for 1 day at room temperature, and the electrode (charged at this point) that had been discharged 5 times at room temperature was used in a positive electrode of vanadium pentoxide. It was assembled as a battery. The electrolytic solution was propylene carbonate containing 1M LiClO 4 , and stainless steel was used for the container. After over-discharging this battery, 3mA at 80 ℃
It was charged at a current of 1 and then stored at room temperature for 1 month. The self-discharge rate after this was measured and found to be 1.0% / month.
By the way, when the battery was charged with a current of 3 mA at room temperature after over-discharging, a self-discharge rate of 10% / month was measured. From these, it was found that the self-discharge rate can be suppressed to a low level by charging the battery at a high temperature even when it is overdischarged after being assembled as a battery.

【0025】実施例5 充放電機能を備えた充電器において、電池の加温機能を
付け加えたものを作製した。負極に炭素電極を用いたリ
チウム電池の充電器としてこの充電器を利用すると次の
ような利点を有することを見い出した。まず、過放電さ
せてしまった該リチウム二次電池を通常の加温能力のな
い充電器で充電した後、1カ月放置しておくと容量が8
%減少してしまったが、該充電器を用い80℃に昇温し
て充電を行うと1カ月放置しても1.4%しか電池容量
は減少しなかった。 また、充電状態の該リチウム二次
電池を半年間保存した後使用したところ、7.0%電池
容量が減少していた。この電池を通常の充電器で充電し
た後すぐに使用すると、充電した量と同じだけの放電容
量は得られたが、初期の容量と比べると、7.0%容量
が減少したままであった。この電池を該充電器にて80
℃に加温した後放電を行い続いて充電してやると、電池
容量は保存前の容量に復帰した。このように、該充電器
は炭素電極を負極としたリチウム二次電池に対して非常
に有利な充電器であることがわかった。
Example 5 A charger having a charging / discharging function and a battery heating function was prepared. It has been found that the use of this charger as a charger for a lithium battery using a carbon electrode as the negative electrode has the following advantages. First, the overcharged lithium secondary battery is charged with a normal charger that does not have a heating capacity, and then left for 1 month to have a capacity of 8
%, But when the temperature was raised to 80 ° C. using the charger and charging was performed, the battery capacity decreased only by 1.4% even if left for one month. Further, when the charged lithium secondary battery was used after being stored for half a year, the battery capacity was decreased by 7.0%. When this battery was used immediately after being charged by a normal charger, the same discharge capacity as the charged capacity was obtained, but the capacity remained 7.0% lower than the initial capacity. .. This battery is 80
When the battery was warmed to ℃, discharged, and subsequently charged, the battery capacity returned to that before storage. Thus, it was found that the charger is a very advantageous charger for a lithium secondary battery having a carbon electrode as a negative electrode.

【0026】[0026]

【発明の効果】本発明による充電方法を用いることによ
り、従来6%/月の自己放電率が最少であった炭素電極
の自己放電率を1%/月にまで低減することができた。
By using the charging method according to the present invention, it was possible to reduce the self-discharge rate of the carbon electrode, which was conventionally the minimum self-discharge rate of 6% / month, to 1% / month.

【図面の簡単な説明】[Brief description of drawings]

【図1】炭素電極の放電曲線を示す図である。FIG. 1 is a diagram showing a discharge curve of a carbon electrode.

【図2】炭素電極の充放電装置の説明図である。FIG. 2 is an explanatory diagram of a carbon electrode charging / discharging device.

【符号の説明】[Explanation of symbols]

1 作用極 2 対極 3 参照極 4 プロピレンカーボネート溶液 1 Working electrode 2 Counter electrode 3 Reference electrode 4 Propylene carbonate solution

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 重夫 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 和田 弘 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeo Nakajima 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Within Sharp Corporation (72) Inventor Hiroshi Wada 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Within the corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素が負極活物質として用いられたリチ
ウム二次電池の充電方法であって、リチウム二次電池の
使用温度よりも高い温度で充電することを特徴とする充
電方法。
1. A charging method for a lithium secondary battery in which carbon is used as a negative electrode active material, wherein the charging is performed at a temperature higher than the operating temperature of the lithium secondary battery.
【請求項2】 上記炭素は、炭化水素類の気相熱分解法
により製造されたものであることを特徴とする請求項1
の充電方法。
2. The carbon is produced by a vapor phase pyrolysis method of hydrocarbons.
Charging method.
JP4106509A 1992-04-24 1992-04-24 Charging method Expired - Fee Related JP2883491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4106509A JP2883491B2 (en) 1992-04-24 1992-04-24 Charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4106509A JP2883491B2 (en) 1992-04-24 1992-04-24 Charging method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10174255A Division JPH10308241A (en) 1998-06-22 1998-06-22 Lithium secondary battery and charging device thereof

Publications (2)

Publication Number Publication Date
JPH05299122A true JPH05299122A (en) 1993-11-12
JP2883491B2 JP2883491B2 (en) 1999-04-19

Family

ID=14435402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4106509A Expired - Fee Related JP2883491B2 (en) 1992-04-24 1992-04-24 Charging method

Country Status (1)

Country Link
JP (1) JP2883491B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0832505A1 (en) * 1995-06-07 1998-04-01 Duracell Inc. Process for improving lithium ion cell
WO1998052244A1 (en) * 1997-05-15 1998-11-19 Valence Technology, Inc. Methods of fabricating electrochemical cells
EP0997962A2 (en) * 1998-10-28 2000-05-03 Space Systems / Loral, Inc. A lithium-ion battery charge control method
JP2001283914A (en) * 2000-03-30 2001-10-12 Matsushita Electric Ind Co Ltd Manufacturing method of lithium polymer battery
EP1120851A3 (en) * 2000-01-27 2003-07-09 New Billion Investments Limited A rechargeable solid state chromium-fluorine-lithium electric battery
US7591793B2 (en) 2003-10-31 2009-09-22 Tokyo University Of Agriculture And Technology Infant movement analysis system and infant movement analysis method
WO2014069460A1 (en) * 2012-10-30 2014-05-08 日本電気株式会社 Lithium secondary cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371566A (en) * 1989-08-09 1991-03-27 Japan Storage Battery Co Ltd Charging method for polymer electrolyte secondary cell
JPH03285273A (en) * 1990-03-30 1991-12-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371566A (en) * 1989-08-09 1991-03-27 Japan Storage Battery Co Ltd Charging method for polymer electrolyte secondary cell
JPH03285273A (en) * 1990-03-30 1991-12-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0832505A1 (en) * 1995-06-07 1998-04-01 Duracell Inc. Process for improving lithium ion cell
EP0832505A4 (en) * 1995-06-07 1998-11-04 Duracell Inc Process for improving lithium ion cell
WO1998052244A1 (en) * 1997-05-15 1998-11-19 Valence Technology, Inc. Methods of fabricating electrochemical cells
EP0997962A2 (en) * 1998-10-28 2000-05-03 Space Systems / Loral, Inc. A lithium-ion battery charge control method
EP0997962A3 (en) * 1998-10-28 2002-04-10 Space Systems / Loral, Inc. A lithium-ion battery charge control method
EP1120851A3 (en) * 2000-01-27 2003-07-09 New Billion Investments Limited A rechargeable solid state chromium-fluorine-lithium electric battery
JP2001283914A (en) * 2000-03-30 2001-10-12 Matsushita Electric Ind Co Ltd Manufacturing method of lithium polymer battery
JP4513160B2 (en) * 2000-03-30 2010-07-28 パナソニック株式会社 Method for producing lithium polymer battery
US7591793B2 (en) 2003-10-31 2009-09-22 Tokyo University Of Agriculture And Technology Infant movement analysis system and infant movement analysis method
WO2014069460A1 (en) * 2012-10-30 2014-05-08 日本電気株式会社 Lithium secondary cell
KR20150081324A (en) * 2012-10-30 2015-07-13 닛본 덴끼 가부시끼가이샤 Lithium secondary cell
US9831526B2 (en) 2012-10-30 2017-11-28 Nec Corporation Lithium secondary battery

Also Published As

Publication number Publication date
JP2883491B2 (en) 1999-04-19

Similar Documents

Publication Publication Date Title
US5162176A (en) Electrochemical secondary element
Broussely et al. Lithium-ion batteries for electric vehicles: performances of 100 Ah cells
JP2645609B2 (en) Method for producing lithium manganese oxide
JP3242878B2 (en) Lithium secondary battery
Venkatasetty Lithium battery technology
US6790243B2 (en) Lithium-ion cell and method for activation thereof
US20030135989A1 (en) Electrodes for alkali metal batteries
Nishi The dawn of lithium-ion batteries
JP2000133321A (en) Charge control method for lithium ion battery
WO2002047185A2 (en) Improved electrodes for lithium batteries
JPH05151995A (en) Nonaqueous electrolyte secondary battery
US5641465A (en) Lithium maganese oxide compound and method of preparation
JPH05299122A (en) Charging method
Chen et al. Modeling NCA/C6-Si battery ageing
JP2000113909A (en) Storing method for lithium secondary battery
JP3292777B2 (en) Manufacturing method of lithium secondary battery
JPH10308241A (en) Lithium secondary battery and charging device thereof
Matsuda et al. Graphite fiber as a positive electrode of rechargeable lithium cells
JPH06349524A (en) Secondary battery
JP2001283920A (en) Lithium secondary battery
JP2000243452A (en) Lithium-ion secondary battery
Aiken Achieving Lithium-Ion Cells with Improved Performance and Lifetime
Nishi Carbonaceous materials for lithium ion secondary battery anodes
JP2571095B2 (en) Rechargeable battery
KR20240030924A (en) Gas suppression device and suppression method for lithium sulfur battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees