JPH05296926A - Measuring method for insoluble component contained in engine oil for ship - Google Patents

Measuring method for insoluble component contained in engine oil for ship

Info

Publication number
JPH05296926A
JPH05296926A JP12290092A JP12290092A JPH05296926A JP H05296926 A JPH05296926 A JP H05296926A JP 12290092 A JP12290092 A JP 12290092A JP 12290092 A JP12290092 A JP 12290092A JP H05296926 A JPH05296926 A JP H05296926A
Authority
JP
Japan
Prior art keywords
oil
insoluble matter
absorption coefficient
engine oil
marine engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12290092A
Other languages
Japanese (ja)
Other versions
JP3192209B2 (en
Inventor
Isamu Imai
勇 今井
Ichiro Saito
一郎 斎藤
Mitsuo Ishii
光男 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP12290092A priority Critical patent/JP3192209B2/en
Publication of JPH05296926A publication Critical patent/JPH05296926A/en
Application granted granted Critical
Publication of JP3192209B2 publication Critical patent/JP3192209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure insoluble components contained in engine oil for ships by measuring the absorption coefficient at a specific wavelength by using an infrared absorption spectrum. CONSTITUTION:The A-method pentane insoluble components specified by the standard of the Japanese Petroleum Institution (JPI) can be analyzed indicectly from the absorption coefficient of 1800-2200cm<-1>, especially 1960cm<-1> of an infrared absorption spectrum. Five samples respectively containing the used oil of a ship engine by 100%, 50%, 33.3%, 22.9%, and 16.2% are prepared by diluting the used oil with new oil and the relation between the 1960cm<-1> absorption coefficient and the concentration of the used oil is checked. An excellent correlation (linear relation) exists between the concentration of the used oil (the concentration of particles composed mainly of soot) and the 1960cm<-1> absorption coefficient. When the composition of the particles composed mainly of soot is the same, the containing level of the particles composed mainly of soot can be analyzed as an insoluble mater from the 1960cm<-1> absorption coefficient of the used oil. A total of 50 samples can be analyzed by one time of continuous operation when an automatic system provided with an auto-sampler is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、舶用エンジン油を実際
に舶用エンジンに使用した場合の舶用エンジン油の汚濁
度の目安となる不溶分測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring insoluble matter which is a measure of the degree of pollution of marine engine oil when the marine engine oil is actually used in a marine engine.

【0002】[0002]

【従来の技術】舶用エンジン油の粘度、引火点、全塩基
価、水分等とともに不溶分試験は、実際に舶用エンジン
に使用した場合の舶用エンジン油の汚濁度を知る目安と
して重要な項目である。石油学会規格(以下JPIとい
う)による不溶分試験A法では、n−ペンタン(以後ペ
ンタンと略す)の溶剤を用いて、不溶分の分別、遠心分
離操作などを行うが、すべてが手作業であるため、時間
と手間がかかる非常に繁雑な作業になっている。
2. Description of the Related Art The insoluble matter test together with the viscosity, flash point, total base number, water content, etc. of marine engine oil is an important item as a standard for knowing the pollution degree of marine engine oil when it is actually used for marine engine. .. In the method A of insoluble matter test according to the Japan Petroleum Institute standards (hereinafter referred to as JPI), the solvent of n-pentane (hereinafter abbreviated as pentane) is used to perform fractionation of insoluble matter, centrifugation, etc., but all are manual work. Therefore, it is a very complicated work that takes time and effort.

【0003】[0003]

【発明が解決しようとする課題】このため石油学会規格
による不溶分試験方法よりも、もっと操作が簡便で、迅
速な舶用エンジン油中の不溶分測定方法の開発、確立が
要請されている。本発明は、従来のJPIによる不溶分
試験に比べ著しく操作が簡便で迅速であり、連続的に測
定できる舶用エンジン油中の不溶分を測定する方法を提
供するものである。
Therefore, there is a demand for the development and establishment of a method for measuring insoluble matter in marine engine oil, which is easier and quicker than the insoluble matter test method according to the Japan Petroleum Institute standards. The present invention provides a method for measuring the insoluble content in marine engine oil, which is remarkably simple and quick in operation as compared with the conventional insoluble content test by JPI and can be continuously measured.

【0004】[0004]

【課題を解決するための手段】従来、舶用エンジン油中
の不溶分を赤外吸収スペクトル(以下IRという)法に
より求める手法は全く知られていなかった。本発明者ら
は、IR法が舶用エンジン油中の不溶分測定方法になり
得るか否か検討した結果、ある特定波長においての吸光
係数とJPIによる不溶分試験による測定値との間で良
好な相関があることを見出し本発明を完成するに至っ
た。すなわち、本発明は赤外吸収スペクトルを用いるこ
とを特徴とする舶用エンジン油中の不溶分測定方法に関
する。
Heretofore, there has been no known method for obtaining insoluble matter in marine engine oil by an infrared absorption spectrum (hereinafter referred to as IR) method. As a result of studying whether or not the IR method can be a method for measuring insoluble matter in marine engine oil, the present inventors found that the absorption coefficient at a certain specific wavelength and the value measured by the insoluble matter test by JPI were favorable. They found that there was a correlation, and completed the present invention. That is, the present invention relates to a method for measuring insoluble matter in marine engine oil, which uses an infrared absorption spectrum.

【0005】また本発明は赤外吸収スペクトルの180
0〜2200cm-1での吸光係数を測定することを特徴
とする舶用エンジン油中の不溶分測定方法に関する。
The present invention also relates to an infrared absorption spectrum of 180
The present invention relates to a method for measuring insoluble matter in marine engine oil, which comprises measuring an extinction coefficient at 0 to 2200 cm -1 .

【0006】また本発明は舶用エンジン使用油と新油を
別々のセルに注入して、各々の透過率を測定し、新油の
透過率をもとに使用油の透過率を補正することを特徴と
する。
The present invention is also directed to injecting marine engine oil and new oil into separate cells, measuring the respective transmittances, and correcting the oil transmittance based on the new oil transmittance. Characterize.

【0007】さらに、本発明はオートサンプラーを付属
させた自動システムによる赤外吸収スペクトル分光光度
計を用いることをも特徴とする。
Furthermore, the present invention is also characterized by using an infrared absorption spectrum spectrophotometer by an automatic system with an autosampler attached.

【0008】以下本発明の構成を詳述する。The structure of the present invention will be described in detail below.

【0009】使用油中のペンタンに不溶性の物質を電子
顕微鏡で観察すると、図1の写真のように0.1〜10
μm程度の粒子が観察される。分光分析の分野でよく用
いられる光源としては、UV光、可視光、IR光などが
ある。図2は、すすのような粒子に光が照射されたと
き、その粒子の大きさの違いによって光を遮蔽する状態
をモデル化したものである。
When an insoluble substance in pentane in the oil used is observed with an electron microscope, it is 0.1 to 10 as shown in the photograph of FIG.
Particles of about μm are observed. Light sources often used in the field of spectroscopic analysis include UV light, visible light, and IR light. FIG. 2 is a model of a state in which when soot-like particles are irradiated with light, the light is shielded by the difference in size of the particles.

【0010】油の燃焼によって生成したすすの粒子径
は、当初は、0.1μm未満と言われているが、運転時
間の経過とともに次第に凝集し、電子顕微鏡の観察写真
のように、1μmさらには10μmと粗大化していく。
このような粒子に波長0.25μmのUV光、0.5μ
mの可視光、5μmのIR光を照射したとすると、0.
1μmの粒子の場合は粒子径よりも波長のほうが長いた
めいずれの光も透過する。
The particle size of soot produced by the combustion of oil is initially said to be less than 0.1 μm, but gradually aggregates with the lapse of operating time, and as shown by an electron microscope observation photograph, 1 μm or more. Coarsening to 10 μm.
UV light with a wavelength of 0.25 μm, 0.5 μ
m of visible light and 5 μm of IR light are irradiated.
In the case of 1 μm particles, the wavelength is longer than the particle diameter, so that any light is transmitted.

【0011】これが1μmの粒子になると、粒子径がU
V光や可視光の波長よりも大きくなるため、UV光と可
視光は遮蔽され、IR光のみが透過することになる。さ
らに10μmの粒子になると、いずれの光も遮蔽されて
透過できなくなる。従って、波長5μm程度のIR光を
用いれば、使用油中の比較的大きな粒子の生成レベルを
調べることができると考えられる。
When this becomes a particle of 1 μm, the particle diameter becomes U.
Since the wavelength is larger than the wavelength of V light or visible light, UV light and visible light are blocked and only IR light is transmitted. Further, when the particle size is 10 μm, any light is blocked and cannot be transmitted. Therefore, it is considered that the generation level of relatively large particles in the oil used can be investigated by using IR light having a wavelength of about 5 μm.

【0012】本発明では、油自体の吸収がない1800
〜2200cm-1、特に1960cm-1(5.1μm)
の波数を選択し、次式のようにセルの厚さを補正した
後、吸光係数を求め、JPIによるA法ペンタン不溶分
との相関を調べた。
In the present invention, there is no absorption of oil itself, 1800
~ 2200 cm -1 , especially 1960 cm -1 (5.1 μm)
Was selected, the cell thickness was corrected according to the following equation, the extinction coefficient was determined, and the correlation with the A method pentane insoluble matter by JPI was examined.

【0013】吸光係数(ABSORBANCE/c
m):log Iθ/I × 1/b Iθ : 新油 の1960cm-1の透過率 I : 使用油の1960cm-1の透過率 b : セルの厚さ(cm)
Absorption coefficient (ABSORBANCE / c
m): log I θ / I × 1 / b I θ : transmittance of fresh oil at 1960 cm −1 I: transmittance of used oil at 1960 cm −1 b: cell thickness (cm)

【0014】なお、測定は、オートサンプラーを付属さ
せた自動システムを用いた。また使用油と新油を溶剤希
釈せず直接別々の固定セルに注入し、2回の測定で使用
油を新油で補償(新油の透過率をもとに使用油の透過率
を補正)する方法を用いた。なお、固定セル間の厚みの
差は、自動補正用のソフトによりデータ処理時に補正し
た。
For the measurement, an automatic system with an auto sampler attached was used. In addition, the used oil and the new oil are directly injected into separate fixed cells without solvent dilution, and the used oil is compensated with the new oil in two measurements (the transmittance of the used oil is corrected based on the transmittance of the new oil). Was used. The thickness difference between the fixed cells was corrected at the time of data processing by software for automatic correction.

【0015】IR法による吸光係数と、JPIによるA
法ペンタン不溶分との相関を調べた結果、使用油濃度
(すすを主体とする粒子の濃度)と1800〜2200
cm-1、特に1960cm-1の吸光係数との間で良好な
相関(直線関係)が得られた。この結果1800〜22
00cm-1、特に1960cm-1の吸光係数からJPI
によるA法ペンタン不溶分を間接的に分析できる。
Extinction coefficient by IR method and A by JPI
As a result of examining the correlation with the method pentane insoluble matter, the oil concentration used (concentration of soot-based particles) and 1800-2200
cm -1, a good correlation (linear relationship) is obtained in particular between extinction coefficient of 1960cm -1. This result 1800-22
00cm -1, especially JPI from extinction coefficient of 1960cm -1
According to the method A, pentane insoluble matter can be indirectly analyzed.

【0016】[0016]

【実施例】本発明の実施例を次に示すが、本発明は以下
の実施例のみに限定されるものではない。 (実施例1)本発明で用いたIR分光光度計の仕様を表
1に示す。本発明者らが考案したオートサンプラーを付
属させた自動化システムであり、一回の連続運転で50
試料を処理できる。固定セルの厚さは、通常0.05m
m〜0.150mmの範囲内で任意に選択することがで
きるが、厚さ0.096mm〜0.104mmの範囲の
ものを使用した。
EXAMPLES Examples of the present invention are shown below, but the present invention is not limited to the following examples. (Example 1) Table 1 shows the specifications of the IR spectrophotometer used in the present invention. It is an automated system with an auto sampler, which was devised by the present inventors.
The sample can be processed. The thickness of the fixed cell is usually 0.05m
Although the thickness can be arbitrarily selected within the range of m to 0.150 mm, a thickness of 0.096 mm to 0.104 mm was used.

【0017】[0017]

【表1】 [Table 1]

【0018】使用油と新油を溶剤希釈せずに直接別々の
固定セルに注入し、2回の測定で使用油を新油で補償
(新油の透過率をもとに使用油の透過率を補正する)す
る方法を用いた。固定セル間の厚みの差は、本発明者ら
の開発に係る自動補正用のソフトにより、データ処理時
に補正した。測定領域は、4600から400cm-1
し、コンピューターに対してデータとして必要な波数を
入力すれば、指定された波数の吸光係数が測定できるよ
うにした。
The used oil and the new oil are directly injected into separate fixed cells without being diluted with a solvent, and the used oil is compensated with the new oil by two measurements (based on the transmittance of the new oil, the transmittance of the used oil To correct) was used. The difference in thickness between fixed cells was corrected at the time of data processing by the software for automatic correction according to the development of the present inventors. The measurement area was set to 4600 to 400 cm −1, and the absorption coefficient of the designated wave number could be measured by inputting the wave number required as data to the computer.

【0019】分析に供した試料は、システム油とシリン
ダー油を兼用する低硫黄燃料用、中硫黄燃料用、高硫黄
燃料用のものとシリンダー専用油を用いた。
The samples used for the analysis were low sulfur fuel, medium sulfur fuel, high sulfur fuel, and cylinder dedicated oil, which serve as system oil and cylinder oil.

【0020】先ず1960cm-1の吸光係数と油中粒子
濃度の関係を検討した。舶用エンジン油のHDS30
(日本石油(株)社製)の使用油を新油で希釈して、使
用油濃度100%、50.0%、33.3%、22.9
%および16.2%の5試料を作成し、1960cm-1
の吸光係数と使用油濃度との関係を調べたところ、図3
が得られた。図3は、使用油濃度(すすを主体とする粒
子の濃度)と1960cm-1の吸光係数には良好な相関
(直線関係)があることを示しており、すすを主体とす
る粒子の組成が同一であれば、使用油の1960cm-1
の吸光係数からすすを主体とする粒子の不溶分としての
含有レベルが分析できることを示している。
First, the relationship between the extinction coefficient at 1960 cm -1 and the particle concentration in oil was examined. HDS30 for marine engine oil
The oil used (manufactured by Nippon Oil Co., Ltd.) is diluted with fresh oil to obtain a used oil concentration of 100%, 50.0%, 33.3%, 22.9.
% And 16.2% of 5 samples were prepared, and 1960 cm -1
When the relationship between the extinction coefficient and the oil concentration used was investigated, Fig. 3
was gotten. FIG. 3 shows that there is a good correlation (linear relationship) between the oil concentration used (concentration of soot-based particles) and the absorption coefficient at 1960 cm −1. If they are the same, the oil used is 1960 cm -1
It is shown from the extinction coefficient of 1 that the content level of the particles mainly containing soot as an insoluble component can be analyzed.

【0021】(実施例2)次に摩耗金属の影響を検討し
た。油中にすすと共に存在する摩耗金属粉は、不溶分と
して分別されるものと考えられているが、これを確認す
る目的でJPI法による不溶分試験前後の使用油の金属
分を分析し比較した。金属分析機器としては、ICP
(Inductively coupled plas
ma)発光分光光度計を用い、使用油中の摩耗金属量
は、Fe、Cr、Ni、Cu、Pb、Sn、Al、Na
およびSiの総和とした。
(Embodiment 2) Next, the influence of wear metal was examined. It is considered that the wear metal powder present together with soot in the oil is separated as insoluble matter, but in order to confirm this, the metal content of the oil used before and after the insoluble matter test by the JPI method was analyzed and compared. .. ICP for metal analysis equipment
(Inductively coupled plus
ma) Using an emission spectrophotometer, the amount of wear metals in the oil used is Fe, Cr, Ni, Cu, Pb, Sn, Al, Na.
And the total of Si.

【0022】分析結果を図4に示す。この結果によれ
ば、使用油中の摩耗金属の大部分は、量の多少にかかわ
らず、不溶分中に分別されず、不溶分を除去した後の油
分に残存していることがわかった。
The analysis results are shown in FIG. According to this result, it was found that most of the wear metals in the oil used were not separated into the insoluble matter regardless of the amount, and remained in the oil after removing the insoluble matter.

【0023】次に、不溶分試験で得られた不溶分中の摩
耗金属の定量分析を実施した。結果を図5に示す。不溶
分中の摩耗金属の割合は、不溶分が少ないと高く、不溶
分が多いと低くなる傾向が認められたが、いずれの場合
もおよそ4%未満であることがわかった。
Next, a quantitative analysis of wear metal in the insoluble matter obtained by the insoluble matter test was carried out. Results are shown in FIG. It was found that the proportion of wear metal in the insoluble matter tended to be high when the insoluble matter was small and was low when the insoluble matter was large, but in each case, it was found to be less than 4%.

【0024】当初、摩耗金属は、密度が大きいため、粒
子の数としては、少量であっても不溶分重量に与える影
響が大きいものと考えていたが、この結果から、不溶分
中に占める摩耗金属分は、微量であり、摩耗金属がJP
I法による不溶分と1960cm-1の吸光係数との相関
関係を求める場合の誤差要因として大きなものではない
ことがわかった。
Initially, it was thought that the wear metal has a large density, so even if the number of particles is small, it has a large effect on the weight of the insoluble matter. The metal content is very small and the wear metal is JP
It was found that the error factor in obtaining the correlation between the insoluble content by the method I and the extinction coefficient at 1960 cm -1 is not a large factor.

【0025】(実施例3)次に硫酸カルシウムの影響に
ついて検討した。硫酸カルシウムは、燃料油中に含まれ
る硫黄化合物の燃焼によって生成する硫酸と、エンジン
油中に含まれる清浄剤との中和生成物である。舶用エン
ジン油は、燃料油中の硫黄含量によって使い分けられて
おり、高硫黄燃料用のエンジン油ほど硫酸カルシウムの
生成量が多い。
Example 3 Next, the effect of calcium sulfate was examined. Calcium sulfate is a neutralization product of sulfuric acid generated by combustion of a sulfur compound contained in fuel oil and a detergent contained in engine oil. Marine engine oils are selectively used according to the sulfur content in fuel oil, and the engine oil for high-sulfur fuels produces more calcium sulfate.

【0026】図6は、摩耗金属の影響を調べたときと同
様にJPI法の不溶分試験前後の各種使用油について、
硫酸カルシウムの特性吸収である1150cm-1の吸収
係数を求め、比較分析したものである。この結果から、
不溶分試験前後で硫酸カルシウム生成量の多少にかかわ
らず、1150cm-1の吸光係数には、ほとんど変化が
ないことがわかった。硫酸カルシウムは、大部分が不溶
分として分別されず、超微粒子で使用油中に分散してい
ると考えられる。
FIG. 6 shows various oils used before and after the insoluble matter test of the JPI method, as in the case of examining the effect of wear metals.
The absorption coefficient at 1150 cm −1 , which is the characteristic absorption of calcium sulfate, was determined and comparatively analyzed. from this result,
It was found that there was almost no change in the absorption coefficient at 1150 cm −1 regardless of the amount of calcium sulfate produced before and after the insoluble matter test. It is considered that most of calcium sulfate is not separated as an insoluble matter and is dispersed in the oil used as ultrafine particles.

【0027】しかし、JPI法で求められる不溶分は図
4の金属の場合でも明らかなとおり、使用油中に含まれ
る不溶分のごく一部がとらえられているものと考えら
れ、硫酸カルシウムについても図6の結果から直ちに不
溶分中に含まれないと断定することはできない。
However, the insoluble matter determined by the JPI method is considered to be such that a small part of the insoluble matter contained in the oil used is captured, as is clear even in the case of the metal of FIG. From the result of FIG. 6, it cannot be concluded immediately that it is not contained in the insoluble matter.

【0028】(実施例4)各種使用油の1960cm-1
の吸光係数とJPIによるA法ペンタン不溶分の関係を
検討した。実際に航行中の船舶から採取した59種類の
エンジン使用油について不溶分と1960cm-1の吸光
係数との関係を調査した。試料は、舶用エンジン油のス
ーパーMDL UX、MX、SX 及びHDSの4製品
(いずれも日本石油(株)社製)とし、無作為に選び出
して分析に供した。分析結果を図7に示す。両者の関係
は、直線性があり、統計解析すると相関係数は、0.9
3と良好な結果であった。また、59試料中には、硫酸
カルシウムレベルの高いものから、低いものまで含まれ
ていたにもかかわらず、硫酸カルシウムの影響と考えら
れる偏差は見いだされなかった。
(Example 4) 1960 cm -1 of various oils used
The relationship between the extinction coefficient of A and the pentane insoluble matter in Method A by JPI was examined. The relationship between the insoluble content and the extinction coefficient at 1960 cm −1 was investigated for 59 types of engine oils that were actually collected from ships in transit. Four samples of marine engine oil, Super MDL UX, MX, SX, and HDS (all manufactured by Nippon Oil Co., Ltd.) were used as samples, and were randomly selected for analysis. The analysis result is shown in FIG. 7. The relationship between the two is linear, and the correlation coefficient is 0.9 when statistically analyzed.
3 was a good result. In addition, in 59 samples, although there was a high level of calcium sulfate to a low level of calcium sulfate, no deviation was considered to be due to the effect of calcium sulfate.

【0029】以上の結果から、1960cm-1の吸光係
数を求めることにより、間接的に不溶分を測定できるこ
とがわかった。さらにIR法から求めた不溶分試験の精
度は、ほとんどの場合JPI法不溶分の試験精度の許容
差内に入っていることが確認された。
From the above results, it was found that the insoluble matter can be indirectly measured by obtaining the absorption coefficient at 1960 cm -1 . Further, it was confirmed that the accuracy of the insoluble matter test obtained from the IR method was within the tolerance of the test accuracy of the JPI method insoluble matter in most cases.

【0030】(実施例5)IR法による使用油の管理分
析例を以下に示す。図8は、TESエンジン試製油(日
本石油(株)で試製)の汚濁度管理分析をJPI法不溶
分試験とIR法とで実施し比較した結果である。この結
果は、油の補給や運転時間の経過に伴う不溶分量の変化
が1960cm-1の吸光係数の推移とよく一致してお
り、IR法が不溶分法に代わる汚濁度管理分析法として
充分使えることを示している。
Example 5 An example of control analysis of oil used by the IR method is shown below. FIG. 8 shows the results of comparison of the pollution control analysis of the TES engine trial oil (trial manufactured by Nippon Oil Co., Ltd.) by the JPI method insoluble matter test and the IR method. This result shows that the change in the amount of insoluble matter with the replenishment of oil and the operation time is in good agreement with the transition of the absorption coefficient at 1960 cm -1 , and the IR method can be sufficiently used as a pollution control analysis method instead of the insoluble matter method. It is shown that.

【0031】また、新油で補償した使用油のIRスペク
トルの一例を図9に示したが、このようにIR法は、汚
濁度レベルを知ると同時に油中の酸化劣化物、硝酸エス
テル、硫酸カルシウムなどの生成レベルも分析できる。
FIG. 9 shows an example of the IR spectrum of the oil used, which is compensated with fresh oil. In this way, the IR method shows the level of pollution and at the same time oxidative deterioration products, nitrate esters, and sulfuric acid in the oil. The production level of calcium and the like can also be analyzed.

【0032】[0032]

【発明の効果】本発明のIR法による舶用エンジン油中
の不溶分測定方法は、JPI法によるA法ペンタン不溶
分測定法と良好な相関関係を示し、かつJPI法よりも
簡便で、迅速であり、また連続的に測定できる方法であ
る。
INDUSTRIAL APPLICABILITY The method for measuring insoluble matter in marine engine oil by the IR method of the present invention shows good correlation with the method A for measuring pentane insoluble matter by the JPI method and is simpler and faster than the JPI method. There is also a method that can be continuously measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】舶用エンジン使用油の電子顕微鏡写真である。FIG. 1 is an electron micrograph of oil used in a marine engine.

【図2】黒い粒子が光を遮蔽するときのモデル図であ
る。
FIG. 2 is a model diagram when black particles block light.

【図3】HDS30使用油濃度と1960cm-1吸光係
数の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the HDS30 oil concentration and the 1960 cm −1 extinction coefficient.

【図4】不溶分試験前後の使用油中に含まれる金属分を
示す図である。
FIG. 4 is a diagram showing metal components contained in oil used before and after an insoluble matter test.

【図5】不溶分中に含まれる摩耗金属分を示す図であ
る。
FIG. 5 is a diagram showing a worn metal component contained in an insoluble component.

【図6】不溶分試験前後の使用油の1150cm-1吸光
係数の変化を示す図である。
FIG. 6 is a diagram showing changes in an absorption coefficient of 1150 cm −1 of oil used before and after an insoluble matter test.

【図7】航行中の船舶から採用した使用油の不溶分と1
960cm-1吸光係数の関係を示す図である。
[Fig. 7] Insoluble matter of oil used and 1
It is a figure which shows the relationship of 960 cm < -1 > absorption coefficient.

【図8】TESエンジン試製油の汚濁度管理分析結果
(1)を示す図である。
FIG. 8 is a diagram showing a pollution degree management analysis result (1) of a TES engine trial oil.

【図9】新油で補償した使用油のIRスペクトルの一例
を示す図である。
FIG. 9 is a diagram showing an example of an IR spectrum of a used oil compensated with fresh oil.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 赤外吸収スペクトルを用いることを特徴
とする舶用エンジン油中の不溶分測定方法。
1. A method for measuring insoluble matter in marine engine oil, which comprises using an infrared absorption spectrum.
【請求項2】 赤外吸収スペクトルの1800〜220
0cm-1での吸光係数を測定することを特徴とする請求
項1記載の舶用エンジン油中の不溶分測定方法。
2. Infrared absorption spectrum 1800-220
The method for measuring insoluble matter in marine engine oil according to claim 1 , wherein an extinction coefficient at 0 cm -1 is measured.
【請求項3】 舶用エンジン使用油と新油を別々のセル
に注入して、各々の透過率を測定し、新油の透過率をも
とに使用油の透過率を補正することを特徴とする請求項
1又は2記載の舶用エンジン油中の不溶分測定方法。
3. The marine engine oil used and the new oil are injected into separate cells, the respective transmittances are measured, and the used oil transmittance is corrected based on the new oil transmittance. The method for measuring insoluble matter in marine engine oil according to claim 1 or 2.
【請求項4】使用油と新油とのセル間の厚さの差を自動
補正することを特徴とする請求項3記載の舶用エンジン
油中の不溶分測定方法。
4. The method for measuring insoluble matter in marine engine oil according to claim 3, wherein the difference in thickness between the cells of the used oil and the fresh oil is automatically corrected.
【請求項5】 オートサンプラーを付属させた自動シス
テムによる赤外吸収スペクトル分光光度計を用いること
を特徴とする請求項1又は2記載の舶用エンジン油中の
不溶分測定方法。
5. The method for measuring insoluble matter in marine engine oil according to claim 1, wherein an infrared absorption spectrophotometer by an automatic system equipped with an autosampler is used.
JP12290092A 1992-04-17 1992-04-17 Method for measuring insolubles in marine engine oil Expired - Fee Related JP3192209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12290092A JP3192209B2 (en) 1992-04-17 1992-04-17 Method for measuring insolubles in marine engine oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12290092A JP3192209B2 (en) 1992-04-17 1992-04-17 Method for measuring insolubles in marine engine oil

Publications (2)

Publication Number Publication Date
JPH05296926A true JPH05296926A (en) 1993-11-12
JP3192209B2 JP3192209B2 (en) 2001-07-23

Family

ID=14847402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12290092A Expired - Fee Related JP3192209B2 (en) 1992-04-17 1992-04-17 Method for measuring insolubles in marine engine oil

Country Status (1)

Country Link
JP (1) JP3192209B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100427870B1 (en) * 2000-12-19 2004-04-30 기아자동차주식회사 Device for detecting engine oil condition
WO2005033575A1 (en) * 2003-10-06 2005-04-14 Sumimoto Scientific Institute Co., Ltd. Method of suppressing wear in two object friction system
US7442936B2 (en) 2006-03-31 2008-10-28 Exxonmobil Research And Engineering Company Infrared spectroscopy method for measuring the base number of overbased lubricants

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100427870B1 (en) * 2000-12-19 2004-04-30 기아자동차주식회사 Device for detecting engine oil condition
WO2005033575A1 (en) * 2003-10-06 2005-04-14 Sumimoto Scientific Institute Co., Ltd. Method of suppressing wear in two object friction system
US7819226B2 (en) 2003-10-06 2010-10-26 Sumimoto Scientific Institute Co., Ltd. Suppressing method of wear in friction system between two objects
US7442936B2 (en) 2006-03-31 2008-10-28 Exxonmobil Research And Engineering Company Infrared spectroscopy method for measuring the base number of overbased lubricants

Also Published As

Publication number Publication date
JP3192209B2 (en) 2001-07-23

Similar Documents

Publication Publication Date Title
JP5317087B2 (en) Method for quantitative analysis of engine oil, method for determining dyed engine oil and dye content
Trejos et al. Analysis and comparison of glass fragments by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and ICP-MS
Drinovec et al. The filter-loading effect by ambient aerosols in filter absorption photometers depends on the coating of the sampled particles
Khajeh Response surface modelling of lead pre-concentration from food samples by miniaturised homogenous liquid–liquid solvent extraction: Box–Behnken design
Murillo et al. Use of emulsion systems for the determination of sulfur, nickel and vanadium in heavy crude oil samples by inductively coupled plasma atomic emission spectrometry
JP2005512053A (en) Method for measuring residual fuel oil and insoluble contaminants in marine engine lubricating oils using UV-visible spectroscopy and chemometrics
CN113155809A (en) Novel spectral detection method for ore classification and real-time quantitative analysis
Moschos et al. Source-specific light absorption by carbonaceous components in the complex aerosol matrix from yearly filter-based measurements
JPH05296926A (en) Measuring method for insoluble component contained in engine oil for ship
Prange et al. Microanalysis in forensic science: Characterization of single textile fibers by total reflection x-ray fluorescence
Razmislevicien et al. Determination of Cr (VI) by dispersive liquid-liquid microextraction and dried-droplet laser ablation ICP-MS
DE69118904T2 (en) METHOD FOR DETECTING LUBRICANT OIL DILUTION WITH NAVY FUEL OIL
Barbooti et al. Use of silica gel in the preparation of used lubricating oil samples for the determination of wear metals by flame atomic absorption spectrometry
Costantini et al. Applicability of anodic-stripping voltammetry and graphite furnace atomic-absorption spectrometry to the determination of antimony in biological matrices: a comparative study
Long et al. Lead analysis of ambient air particulates: interlaboratory evaluation of EPA lead reference method
Ibrahim et al. A review of soot particle measurement in lubricating oil
Sajdak et al. Selection of mineralised methods to analyse different types of matrices. Applying the Box-Cox transformation to chemometrics study the coexistence of heavy metals in natural samples
Thompson et al. Communication. Enhanced sensitivity in the determination of mercury by inductively coupled plasma atomic-emission spectrometry
Vassileva et al. Discussion of parameters associated with the determination of arsenic by electrothermal atomic absorption spectrometry in slurried environmental samples
Ham et al. Metals in oils; their determination by spectrographic methods and the errors involved
Fischer et al. An evaluation of emulsions in wear-metal-in-oil analyses
Maijgren et al. Determination of organic sulphur in raw and chemically cleaned coals by scanning electron microscopy and energy dispersive X-ray spectrometry
CN115931828B (en) Component analysis and prediction method, unit and system suitable for complex soil matrix
US8374455B2 (en) Method of analyzing an image of hydrides in a metal alloy, notably in a nuclear fuel cladding alloy
US20230168237A1 (en) Method for the assessment of the dispersing capacity of new or used lubricating compositions and of additives for lubricating compositions

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees