JPH05296735A - High precision non-contact strain measurement method and device therefor - Google Patents

High precision non-contact strain measurement method and device therefor

Info

Publication number
JPH05296735A
JPH05296735A JP4121188A JP12118892A JPH05296735A JP H05296735 A JPH05296735 A JP H05296735A JP 4121188 A JP4121188 A JP 4121188A JP 12118892 A JP12118892 A JP 12118892A JP H05296735 A JPH05296735 A JP H05296735A
Authority
JP
Japan
Prior art keywords
measuring
mark
measurement
strain
marks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4121188A
Other languages
Japanese (ja)
Other versions
JP2644652B2 (en
Inventor
Osami Nomura
修身 野村
Kotaro Tanaka
耕太郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4121188A priority Critical patent/JP2644652B2/en
Publication of JPH05296735A publication Critical patent/JPH05296735A/en
Application granted granted Critical
Publication of JP2644652B2 publication Critical patent/JP2644652B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To measure strain by saving a distance between points for measurement on a measurement object, enlarging and photographing the vicinity of the measurement points, applying temperature and/or pressure to the object and then measuring the change of the measurement points on an enlarged pickup image. CONSTITUTION:A distance between two marks (a) and (b) on the surface of an accumulator 2 is accurately measured, and saved in an arithmetic processing device 6. The marks (a) and (b) are first illuminated with a lighting device 3. As a result, visual fields A and B are respectively incident on magnifying glass via the reflector of an optical device 4, and further incident on an image pickup device 5. In this device 5, enlarged photographing visual fields A' and B' become available from the visual fields A and B. After the accumulator 2 is heated up to high temperature, visual fields A and B near the marks (a) and (b) are similarly enlarged through the optical device 4 and then photographed. The positions of the marks (a) and (b) available from the photographed image are read, and a mark shift distance is obtained from a relationship between an original mark position and a mark position after a change. Then, generated strain is obtained from the mark shift distance and a distance between the marks (a) and (b). The magnifying power of the optical device 4 is taken at approximately at 25, and the resolution of the image pickup device is taken at 1/493. As a result, strain can be measured with accuracy of about 1/10000.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば宇宙用熱機関
発電システムにおける蓄熱器のように、測定対象体が真
空容器に収容され、運転中は1000℃以上の高温で、強く
発光しているようなものでも高精度で、連続的に測定す
ることができるような非接触歪測定法法とその装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, such as a heat accumulator in a space heat engine power generation system, has a measurement object housed in a vacuum container and emits strong light at a high temperature of 1000 ° C. or higher during operation. The present invention relates to a non-contact strain measuring method and an apparatus therefor capable of continuously measuring with high accuracy even in such a case.

【0002】[0002]

【従来の技術】人工衛星には太陽光を熱源とする宇宙用
熱機関発電システムが搭載されているが、低高度を飛行
する人工衛星においては地球の影の部分に入った時には
太陽光の入射が途絶えるため、発電システムを連続的に
運転するためには蓄熱器を搭載して人工衛星が地球の影
の部分に入った時にはこれより高温流体をガスタービン
に供給して発電を継続させる必要がある。
2. Description of the Related Art Artificial satellites are equipped with a space heat engine power generation system that uses sunlight as a heat source. However, in artificial satellites that fly at low altitudes, sunlight enters when they enter the shadow of the earth. Therefore, in order to operate the power generation system continuously, it is necessary to install a heat storage device and supply a higher temperature fluid to the gas turbine to continue power generation when the satellite enters the shadow of the earth. is there.

【0003】このような目的に使用する蓄熱器の性能は
発電システムの性能を決定する重要な要素となってい
る。原理的には蓄熱器は蓄熱温度が高いほど、システム
の性能が良くなるが、実用上は少なくとも1000℃以上の
蓄熱温度が必要とされている。
The performance of the heat accumulator used for such purposes is an important factor that determines the performance of the power generation system. In principle, the higher the heat storage temperature of the regenerator, the better the system performance, but in practice, a heat storage temperature of at least 1000 ° C or higher is required.

【0004】しかし、これらの蓄熱器においては人工衛
星が太陽光の当たる部分を断続的に通過するため、外部
表面が断続的に加熱される。このため、熱歪が発生し易
く、設計、製作に充分考慮を払わないと、この熱歪に伴
う応力により蓄熱器が破壊されることもある。
However, in these heat accumulators, since the artificial satellites intermittently pass through the portion exposed to sunlight, the outer surface is intermittently heated. For this reason, thermal strain is likely to occur, and unless sufficient consideration is given to design and manufacturing, the heat accumulator may be destroyed by the stress associated with this thermal strain.

【0005】この熱歪に伴う応力により、破壊されない
ように蓄熱器の設計、製作が適切になされることが重要
であるが、設計、製作が適切であることを検証するため
に蓄熱器の運転条件下において蓄熱器の熱歪を十分な精
度で測定する必要がある。
It is important to properly design and manufacture the regenerator so as not to be destroyed by the stress caused by the thermal strain. However, in order to verify that the design and manufacture are appropriate, the operation of the regenerator is performed. Under the conditions, it is necessary to measure the thermal strain of the regenerator with sufficient accuracy.

【0006】しかし、蓄熱器は真空容器中に納められて
いるので、測定途中では歪測定の校正ができず、しかも
運転中は1000℃以上の高温で加熱され、その表面が強く
発光状態にある中で、十分な精度で、且つ数十時間連続
して計測しても測定精度が変わらないような測定を行な
うのは従来の歪測定方法では極めて困難である。
However, since the heat accumulator is housed in a vacuum container, the strain measurement cannot be calibrated during measurement, and moreover, it is heated at a high temperature of 1000 ° C. or more during operation, and its surface is in a strong light emitting state. In particular, it is extremely difficult to perform the measurement with the conventional strain measurement method with sufficient accuracy and such that the measurement accuracy does not change even if the measurement is continuously performed for several tens of hours.

【0007】高温の熱歪測定装置の一例として、高温度
に耐える材質の歪ゲージを測定対象体に接着して、その
電気抵抗の変化により、測定対象体の歪を推定する方法
がある。
As an example of a high temperature thermal strain measuring device, there is a method of adhering a strain gauge made of a material capable of withstanding high temperature to a measuring object and estimating the strain of the measuring object by the change of its electric resistance.

【0008】また、光を用いた歪の非接触測定方法の一
例では、測定対象体の二点を一つの光学測定装置で捕ら
えて、その間の距離を測定し、対象体の大きさと比較し
て、歪を計算する方法がある。
Further, in an example of a non-contact measurement method of strain using light, two points of a measuring object are captured by one optical measuring device, the distance between them is measured, and the measured value is compared with the size of the object. , There is a way to calculate the distortion.

【0009】その他、光の干渉を利用して測定点の変位
を測定し、それを歪に換算することで、目的を達成する
方法もある。
In addition, there is a method of achieving the object by measuring the displacement of a measuring point by utilizing the interference of light and converting the displacement into a strain.

【0010】[0010]

【発明が解決しようとする課題】しかし、上述の高温の
熱歪測定装置を使用した方法では、歪ゲージの特性が温
度と共に変化し、しかもその変化状態は個々の歪ゲージ
で異なり、またこの歪ゲージは経年変化するため、測定
の都度補償の調整をする必要がある。
However, in the method using the above-mentioned high temperature thermal strain measuring device, the characteristics of the strain gauge change with temperature, and the change state varies depending on the individual strain gauge. Since the gauge changes over time, it is necessary to adjust compensation for each measurement.

【0011】特に、1000℃以上の高温度においては、多
くの場合測定中に歪ゲージに無視できないほどの特性変
化が起こるので、精度の信頼性に乏しい。
In particular, at a high temperature of 1000 ° C. or higher, in many cases, the strain gauge undergoes a non-negligible change in characteristics during measurement, so that the reliability of accuracy is poor.

【0012】また上記の利用分野に示されるように、測
定対象体が真空容器中に封じ込まれているような場合に
は、特に調整が困難で、実用は殆ど不可能である。
Further, as shown in the above-mentioned field of use, when the object to be measured is enclosed in a vacuum container, adjustment is particularly difficult and practically impossible.

【0013】一方、上述の光を用いた歪の非接触測定方
法では、対象体の全体を撮影装置に一度に捕らえるた
め、撮影装置の分解性能以上に歪めの測定精度を上げら
れず、現在のところその分解能は1/1000の程度であり、
この分解能を一桁上げるのは極めて困難である。
On the other hand, in the above-described non-contact strain measurement method using light, since the entire object is captured by the photographing device at one time, it is not possible to improve the distortion measurement accuracy beyond the disassembling performance of the photographing device. However, its resolution is about 1/1000,
It is extremely difficult to increase this resolution by one digit.

【0014】また、上述の光の干渉を利用する方法にお
いては、干渉光がその通路の影響を敏感に受け、上述の
真空容器内に収容された蓄熱器の歪測定においては、容
器内外の温度差やのぞき窓の材質等による影響が、干渉
状態に極めて大きな影響を及ぼし、事実上、測定が不可
能である。
Further, in the above-mentioned method utilizing the interference of light, the interference light is sensitive to the influence of the passage, and in the strain measurement of the heat accumulator housed in the above-mentioned vacuum container, the temperature inside and outside the container is measured. The influence of the difference and the material of the peep window has a great influence on the interference state, and the measurement is practically impossible.

【0015】そこで、この発明は宇宙用熱機関発電シス
テムの蓄熱器のように、測定対象体が容器内に収容さ
れ、測定途中で校正が出来ない状況下にあっても、十分
な精度で、しかも数十時間連続して計測しても測定精度
が変わらないような非接触歪測定方法を開発することを
目的とする。
Therefore, according to the present invention, even when the object to be measured is housed in a container and the calibration cannot be performed during the measurement, such as the heat accumulator of the space heat engine power generation system, the present invention has sufficient accuracy. Moreover, it is an object of the present invention to develop a non-contact strain measurement method that does not change the measurement accuracy even when continuously measuring for several tens of hours.

【0016】[0016]

【課題を解決するための手段】そこで、この発明におい
ては容器内に収容された測定対象体の歪を容器外より測
定する非接触歪測定方法において、測定対象体上に定め
られた二箇所の測定点をマークし、上記測定点間の距離
を演算処理装置に記憶させるとともに、先ず上記マーク
された測定点付近をそれぞれ拡大して撮影し、撮影面上
よりそれぞれのマークの最初の位置を演算処理装置に記
憶し、次に上記測定対象体に温度及び/又は圧力を与え
たときのマークされた測定点付近を上記同様に拡大して
撮影し、演算処理装置に記憶されているマークの最初の
位置と、この撮影面上のマークの位置より拡大された撮
影面上でのそれぞれのマークの位置の変化を測定し、こ
のマーク位置の変化に基づいて演算処理装置で温度及び
/又は圧力を与えた後の測定点間の距離の移動を測定し
て歪測定を行なう非接触歪測定方法を提案するものであ
る。
Therefore, in the present invention, in the non-contact strain measuring method for measuring the strain of the measuring object housed in the container from the outside of the container, the two points defined on the measuring object are measured. Mark the measurement points, store the distance between the measurement points in the arithmetic processing unit, first magnify and photograph the vicinity of each of the marked measurement points, and calculate the first position of each mark from the photographing surface. The first mark of the mark stored in the processor is stored in the processing device, and then the vicinity of the marked measurement point when the temperature and / or pressure is applied to the measurement object is magnified and photographed in the same manner as above. And the change in the position of each mark on the shooting surface enlarged from the position of the mark on the shooting surface, and based on the change in the mark position, the temperature and / or pressure is calculated by the arithmetic processing unit. Giving It proposes a non-contact strain measurement method for performing a strain measurement distance movement measured by the between time points after.

【0017】更に、この発明においてはこの発明の測定
方法を行なう装置として、測定対象体上に定められた二
箇所の測定点をマークする所定領域の波長の光を反射す
る測定用マークと、上記所定領域の波長の光をのぞき窓
を通して入射する照明装置と、測定点からの映像をそれ
ぞれ拡大する機能を持った光学装置と、この光学装置を
通して送られた映像を撮影する撮影装置と、それぞれの
測定点の移動距離から歪を計算する演算処理装置とから
構成される非接触歪装置を提案するものである。
Further, in the present invention, as a device for carrying out the measuring method of the present invention, a measuring mark for reflecting light of a wavelength in a predetermined region for marking two measuring points defined on the object to be measured, An illumination device that allows light of a wavelength in a predetermined region to enter through a viewing window, an optical device that has the function of magnifying the image from the measurement point, and a photographing device that captures the image sent through this optical device. The present invention proposes a non-contact strain device including a calculation processing device that calculates strain from the moving distance of a measurement point.

【0018】[0018]

【作用】即ち、この発明においては測定を開始する前
に、測定対象体につけられた二箇所のマークの距離を正
確に計り、演算処理装置に記憶しておく。
That is, in the present invention, before the measurement is started, the distances between the two marks on the object to be measured are accurately measured and stored in the arithmetic processing unit.

【0019】そして、先ず照明装置により所定領域の波
長の光を、それぞれのマークに照明するとともに、それ
ぞれのマークではこの光を反射させ、のぞき窓を通し
て、それぞれのマーク付近の視野を引き出し、この視野
を光学装置を通して拡大して撮影し、この撮影面上より
得られるそれぞれのマークの最初の位置を演算処理装置
に記憶しておく。
Then, first, each mark is illuminated with light having a wavelength in a predetermined region by an illuminating device, each mark reflects this light, and a field of view in the vicinity of each mark is drawn out through a viewing window. Is magnified and photographed through an optical device, and the initial position of each mark obtained from this photographing surface is stored in the arithmetic processing unit.

【0020】なお、照明装置としては、加熱された測定
対象体から発生する例えば可視光の低波長領域の光と区
別するために、可視光の高波長領域の光を発生する超高
圧水銀灯が使用される。
As the illuminating device, an ultra-high pressure mercury lamp that emits light in the high wavelength region of visible light is used to distinguish it from, for example, light in the low wavelength region of visible light emitted from a heated object to be measured. To be done.

【0021】次に、高温加熱等の物理的変化を与えた後
に同様にしてそれぞれのマーク付近の視野を光学装置を
通して拡大して撮影し、この撮影面上より得られるそれ
ぞれのマークの位置を演算処理装置で読み取り、最初に
記憶したそれぞれのマークの位置と、変化した後のマー
クの位置との関係から、演算処理装置の処理プログラム
を使って、それぞれのマークの移動距離を求め、求めた
移動距離から、演算処理装置の処理プログラムにより、
二箇所のマークの間の距離の変化を計算する。この距離
の変化と最初に記憶したマークの間の距離から演算処理
装置の処理プログラムを使って、生じた歪を計算して求
める。
Next, after giving a physical change such as high temperature heating, the field of view near each mark is similarly enlarged and photographed through an optical device, and the position of each mark obtained from this photographing surface is calculated. From the relationship between each mark position that was read by the processing device and initially stored and the changed mark position, use the processing program of the arithmetic processing device to find the moving distance of each mark From the distance, by the processing program of the arithmetic processing unit,
Calculate the change in the distance between two marks. From the change in the distance and the distance between the marks initially stored, the generated distortion is calculated and obtained using the processing program of the arithmetic processing unit.

【0022】測定精度は、原理的には、撮影装置の分解
能を光学装置の倍率で除した値になる。例えば、撮影装
置の分解能が1/1000であり、光学装置の倍率が100 なら
ば、1/100000という高精度の歪測定ができる。
The measurement accuracy is, in principle, a value obtained by dividing the resolution of the photographing device by the magnification of the optical device. For example, if the resolution of the imaging device is 1/1000 and the magnification of the optical device is 100, strain measurement with high accuracy of 1/10000 can be performed.

【0023】[0023]

【実施例】以下、この発明を図示の実施例に基づいて説
明する。この実施例は宇宙用熱機関発電のエネルギー貯
蔵システムの試験装置において、蓄熱器の歪を長時間に
わたり連続して測定した例を示すものであり、図1にお
いて1は真空容器であり、真空容器1はのぞき窓1aを有
し、内部には測定対象体である蓄熱器2が収容されてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on the illustrated embodiments. This example shows an example in which the strain of the heat accumulator is continuously measured for a long time in a test device of an energy storage system for heat engine power generation for space use. In FIG. 1, 1 is a vacuum container, and a vacuum container. 1 has a peephole 1a, and a heat storage device 2 as a measurement object is housed inside.

【0024】蓄熱器1は、外壁がインコネル製で、その
厚さは1mm であり、蓄熱器の内部にはフッ化リチウムを
充填してあり、稼動時には蓄熱器の最高温度は約1000℃
に上昇する。この蓄熱器2の表面にはのぞき窓1aに臨む
位置に、二箇所の測定点を定め、この測定点にマークa
とbが付される。
The outer wall of the regenerator 1 is made of Inconel, the thickness is 1 mm, the inside of the regenerator is filled with lithium fluoride, and the maximum temperature of the regenerator is about 1000 ° C. during operation.
Rise to. Two measurement points are defined on the surface of the heat storage device 2 at a position facing the observation window 1a, and the mark a is set at this measurement point.
And b are added.

【0025】3は、測定に必要な光を上記二箇所の測定
点に照射する照明装置で、照明装置3としては超高圧水
銀灯が使用される。4は視野を拡大する機能を有する光
学装置で、光学装置4の前には測定点より発せられた光
のみを通過させるための光学フィルタ4aが設けられてお
り、光学装置4は反射鏡4b…及び拡大鏡4cから構成され
る。
Reference numeral 3 denotes an illuminating device for irradiating the above-mentioned two measuring points with light necessary for measurement. As the illuminating device 3, an ultrahigh pressure mercury lamp is used. Reference numeral 4 denotes an optical device having a function of enlarging the field of view. In front of the optical device 4, an optical filter 4a for passing only the light emitted from the measurement point is provided, and the optical device 4 has a reflecting mirror 4b ... And a magnifying glass 4c.

【0026】更に、5は光学装置4で拡大されたマーク
付近の視野を撮影する撮影装置、6は演算処理装置であ
る。
Further, 5 is a photographing device for photographing the field of view near the mark enlarged by the optical device 4, and 6 is an arithmetic processing device.

【0027】なお、照明装置3からの光がのぞき窓1aで
反射して光学装置4に入光しないように、照明装置3、
のぞき窓1a、光学装置4にはコーティング処理がなされ
ている。
In order to prevent the light from the illuminating device 3 from being reflected by the observation window 1a and entering the optical device 4, the illuminating device 3,
The peep window 1a and the optical device 4 are coated.

【0028】この装置を使用して行なう歪の測定は、蓄
熱器2の表面につけられた二箇所のマークaとbの距離
を正確に計り、演算処理装置6に記憶しておく。
In the measurement of strain using this apparatus, the distance between the two marks a and b on the surface of the heat accumulator 2 is accurately measured and stored in the arithmetic processing unit 6.

【0029】そして、先ず照明装置3により、それぞれ
のマークa、bを照明し、のぞき窓を通して、マークa
付近の視野Aとマークb付近の視野Bを引き出し、この
視野A、Bはそれぞれ光学装置4の反射鏡4b…を通って
拡大鏡4cに入射され、更に撮影装置5に入射され、ここ
で視野A、Bの拡大された撮影視野A´、B´を得る
(図2参照)。このマークaとbの最初の位置は演算処
理装置6に記憶される。
First, the illuminating device 3 illuminates the respective marks a and b, and the marks a and b are passed through the observation window.
A visual field A in the vicinity and a visual field B in the vicinity of the mark b are drawn out, and these visual fields A and B are made incident on the magnifying mirror 4c through the reflecting mirrors 4b ... Enlarged photographic fields A ′ and B ′ of A and B are obtained (see FIG. 2). The initial positions of the marks a and b are stored in the arithmetic processing unit 6.

【0030】次に、蓄熱器2が高温加熱された後に同様
にしてマークaとb付近の視野AとBを光学装置4を通
して拡大して撮影し、この撮影面上より得られるそれぞ
れのマークaとbの位置を演算処理装置6で読み取り、
最初に記憶したそれぞれのマークの位置と、変化した後
のマークの位置との関係から、演算処理装置6の処理プ
ログラムを使って、それぞれのマークの移動距離を求
め、求めた移動距離から、演算処理装置の処理プログラ
ムにより、二箇所のマークの間の距離の変化を計算す
る。この距離の変化と最初に記憶したマークの間の距離
から演算処理装置の処理プログラムを使って、生じた歪
を計算して求めた。
Next, after the heat accumulator 2 is heated to a high temperature, the visual fields A and B near the marks a and b are similarly enlarged and photographed through the optical device 4, and the respective marks a obtained from this photographing surface are obtained. The positions of b and b are read by the arithmetic processing unit 6,
The moving distance of each mark is obtained from the relationship between the initially stored position of each mark and the changed position of the mark using the processing program of the arithmetic processing unit 6, and the calculated moving distance is used to calculate The processing program of the processing device calculates the change in the distance between the two marks. The generated distortion was calculated from the change in the distance and the distance between the marks initially stored by using the processing program of the arithmetic processing unit.

【0031】この場合、光学装置4の倍率を約25倍、撮
影装置5の分解能を1/493 とした結果、約1/10000 の精
度で、歪を測定できた。
In this case, as a result of setting the magnification of the optical device 4 to about 25 times and the resolution of the photographing device 5 to 1/493, the distortion could be measured with an accuracy of about 1/10000.

【0032】[0032]

【発明の効果】この発明によれば、1000℃以上の高温雰
囲気にあり従来極めて測定が困難であった宇宙用熱機関
発電システムのにおける蓄熱器の熱歪を、1/10000 以上
の高精度をもって測定することができる。
According to the present invention, the thermal strain of the regenerator in the space heat engine power generation system, which has been extremely difficult to measure in the high temperature atmosphere of 1000 ° C. or higher, is highly accurate to 1/10000 or more. Can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明のシステム概念図FIG. 1 is a system conceptual diagram of the present invention.

【図2】この発明の測定原理を示す図FIG. 2 is a diagram showing the measurement principle of the present invention.

【図3】この発明における、測定点付近において二つの
測定点をそれぞれ拡大する方法の原理を示す図
FIG. 3 is a diagram showing the principle of a method of enlarging two measurement points in the vicinity of the measurement point according to the present invention.

【符号の説明】[Explanation of symbols]

1 真空容器 2 蓄熱器 3 照明装置 4 光学装置 5 撮影装置 6 演算処理装置 aとb 測定点のマーク AとB マークaとb付近の視野 A´とB´ 視野AとBの拡大撮影視野 1 Vacuum container 2 Heat storage device 3 Illumination device 4 Optical device 5 Imaging device 6 Arithmetic processing device a and b Marks of measurement points A and B Field of view near marks a and b Fields A'and B'fields of view A and B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 容器内に収容された測定対象体の歪を容
器外より測定する非接触歪測定方法において、測定対象
体上に定められた二箇所の測定点をマークし、上記測定
点間の距離を演算処理装置に記憶させるとともに、先ず
上記マークされた測定点付近をそれぞれ拡大して撮影
し、撮影面上よりそれぞれのマークの最初の位置を演算
処理装置に記憶し、次に上記測定対象体に温度及び/又
は圧力を与えたときのマークされた測定点付近を上記同
様に拡大して撮影し、演算処理装置に記憶されているマ
ークの最初の位置と、この撮影面上のマークの位置より
拡大された撮影面上でのそれぞれのマークの位置の変化
を測定し、このマーク位置の変化に基づいて演算処理装
置で温度及び/又は圧力を与えた後の測定点間の距離の
移動を測定して歪測定を行なうことを特徴とする非接触
歪測定方法。
1. A non-contact strain measuring method for measuring the strain of a measuring object housed in a container from outside the container, by marking two measuring points defined on the measuring object, and between the measuring points. The distances of the marks are stored in the arithmetic processing unit, and first, the vicinity of the marked measurement points are magnified and photographed, and the first position of each mark on the photographing surface is stored in the arithmetic processing unit, and then the measurement is performed. The vicinity of the marked measurement point when temperature and / or pressure is applied to the object is magnified and photographed in the same manner as above, and the first position of the mark stored in the arithmetic processing unit and the mark on this photographing surface are recorded. The change in the position of each mark on the shooting surface enlarged from the position of is measured, and the distance between the measurement points after the temperature and / or pressure is applied by the arithmetic processing unit based on the change in the mark position is measured. Distortion by measuring movement A non-contact strain measuring method characterized by performing.
【請求項2】 測定対象体が宇宙用熱機関発電システム
における蓄熱器である特許請求の範囲第1項記載の方
法。
2. The method according to claim 1, wherein the measuring object is a heat accumulator in a space heat engine power generation system.
【請求項3】 容器内に収容された測定対象体の歪を容
器に設けられたのぞき窓を通して測定する非接触歪測定
装置において、測定対象体上に定められた二箇所の測定
点をマークする所定領域の波長の光を反射する測定用マ
ークと、上記所定領域の波長の光をのぞき窓を通して入
射する照明装置と、測定点からの映像をそれぞれ拡大す
る機能を持った光学装置と、この光学装置を通して送ら
れた映像を撮影する撮影装置と、それぞれの測定点の移
動距離から歪を計算する演算処理装置とから構成される
ことを特徴とする非接触歪装置。
3. A non-contact strain measuring device for measuring strain of a measuring object housed in a container through a peep window provided in the container, wherein two measuring points defined on the measuring object are marked. A measuring mark for reflecting light of a wavelength in a predetermined region, an illuminating device for injecting light of a wavelength in the predetermined region through a viewing window, an optical device having a function of enlarging an image from a measuring point, and this optical device. A non-contact distortion device comprising: a photographing device for photographing an image sent through the device and an arithmetic processing device for calculating distortion from a moving distance of each measurement point.
JP4121188A 1992-04-15 1992-04-15 High-precision non-contact thermal strain measurement method and device Expired - Lifetime JP2644652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4121188A JP2644652B2 (en) 1992-04-15 1992-04-15 High-precision non-contact thermal strain measurement method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4121188A JP2644652B2 (en) 1992-04-15 1992-04-15 High-precision non-contact thermal strain measurement method and device

Publications (2)

Publication Number Publication Date
JPH05296735A true JPH05296735A (en) 1993-11-09
JP2644652B2 JP2644652B2 (en) 1997-08-25

Family

ID=14805040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4121188A Expired - Lifetime JP2644652B2 (en) 1992-04-15 1992-04-15 High-precision non-contact thermal strain measurement method and device

Country Status (1)

Country Link
JP (1) JP2644652B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020052868A (en) * 2000-12-26 2002-07-04 이구택 Method of measuring strain by the image processing technique during high temperature deformation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5099355A (en) * 1973-12-28 1975-08-07
JPS58158508A (en) * 1982-03-16 1983-09-20 Mitsubishi Heavy Ind Ltd High temperature strain measuring method
JPS6179109A (en) * 1984-09-27 1986-04-22 Toshiba Glass Co Ltd Reflection type glass strain inspecting device
JPS63135841A (en) * 1986-11-27 1988-06-08 Toyo Seiki Seisakusho:Kk Marked line tracking of colored sample for tension test and sample
JPH01250006A (en) * 1988-03-30 1989-10-05 Yokohama Rubber Co Ltd:The Tension testing device
JPH03226612A (en) * 1990-01-31 1991-10-07 Shimadzu Corp Camera for optical extensometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5099355A (en) * 1973-12-28 1975-08-07
JPS58158508A (en) * 1982-03-16 1983-09-20 Mitsubishi Heavy Ind Ltd High temperature strain measuring method
JPS6179109A (en) * 1984-09-27 1986-04-22 Toshiba Glass Co Ltd Reflection type glass strain inspecting device
JPS63135841A (en) * 1986-11-27 1988-06-08 Toyo Seiki Seisakusho:Kk Marked line tracking of colored sample for tension test and sample
JPH01250006A (en) * 1988-03-30 1989-10-05 Yokohama Rubber Co Ltd:The Tension testing device
JPH03226612A (en) * 1990-01-31 1991-10-07 Shimadzu Corp Camera for optical extensometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020052868A (en) * 2000-12-26 2002-07-04 이구택 Method of measuring strain by the image processing technique during high temperature deformation

Also Published As

Publication number Publication date
JP2644652B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
KR101236551B1 (en) Radiometry using an uncooled microbolometer detector and infra-red camera using thereof
CN107401977B (en) The imaging compensating method of refraction deviation is considered in the measurement of high temperature binocular stereo vision
CN112067147B (en) Method and device for synchronously measuring temperature and deformation
CN111829896A (en) Ultra-high temperature strain field-temperature field synchronous measurement system and measurement method based on ultraviolet imaging
CN113566986A (en) Method and device for synchronously testing strain field and temperature field of non-contact solid surface
WO1982000351A1 (en) Radiation heat loss detector
WO2002039055A1 (en) Integrated alignment and calibration of optical system
Thelen et al. A high-resolution optical measurement system for rapid acquisition of radiation flux density maps
Nix et al. An Interferometric‐Dilatometer with Photographic Recording
JPH05296735A (en) High precision non-contact strain measurement method and device therefor
JPH10115557A (en) Method and apparatus for temperature correction of infrared sensor as well as infrared thermography using two-dimensional infrared sensor
CN109751955A (en) Non-contact object displacement measuring device and the measurement method for using it
Male A photographic pyrometer
CN116539102B (en) Three-dimensional deformation-temperature combined measurement system and method for narrow observation window
JPH04132944A (en) Device for measuring thermal coefficient of expansion
Londeree Jr Photographic pyrometry
Kompan et al. Measurement of the Thermal Expansion Coefficient for Ultra-High Temperatures up to 3000 K
Lanen et al. Phase-stepping holographic interferometry in studying transparent density fields around 2-D objects of arbitrary shape
Ruffino et al. New opto-electronic dilatometer
Beckel et al. Photogrammetry as an aid to spacecraft testing
JPS61172041A (en) Apparatus for measuring hot displacement of ceramic
CN115420385A (en) Infrared thermal imaging temperature measurement compensation method based on distance
JP2006029983A (en) Displacement measuring device
CN118209580A (en) High-throughput testing method and device for thermal expansion coefficient
JPS63284425A (en) Light intensity distribution measuring instrument

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term