JPH05296411A - Nitrogen oxide reducing burner - Google Patents

Nitrogen oxide reducing burner

Info

Publication number
JPH05296411A
JPH05296411A JP10301892A JP10301892A JPH05296411A JP H05296411 A JPH05296411 A JP H05296411A JP 10301892 A JP10301892 A JP 10301892A JP 10301892 A JP10301892 A JP 10301892A JP H05296411 A JPH05296411 A JP H05296411A
Authority
JP
Japan
Prior art keywords
air
combustion
primary
burner
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10301892A
Other languages
Japanese (ja)
Other versions
JP2759306B2 (en
Inventor
Koichi Matsui
孝一 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP4103018A priority Critical patent/JP2759306B2/en
Publication of JPH05296411A publication Critical patent/JPH05296411A/en
Application granted granted Critical
Publication of JP2759306B2 publication Critical patent/JP2759306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gas Burners (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)

Abstract

PURPOSE:To enable an effective restriction of occurrence of NOx, soot dust and CO to be carried out. CONSTITUTION:Primary air 12 of which volume is lower than a theoretical combustion air volume is supplied from a burner throat 4 into a combustion chamber 2 while being circulated. Secondary air 18 of which volume is higher than that of the primary air is supplied from a plurality of air injection nozzles 16 arranged at a side part of the burner throat 4 into the combustion chamber 2. The air injection nozzles 16 are spaced apart by a predetermined amount at a circumferential annular region of the burner throat 4 in such a manner that the secondary air 18 is injected toward a center of a downstream side of a primary combustion part 14 with the primary air 12 and further that injection air flows 18' from the air injection nozzles 16 may not interfere from each other at their upstream side and further inclined by about 10 deg. to 30 deg. in respect to an axis of the combustion chamber 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として比較的小型の
ボイラにおいて好適に使用される窒素酸化物低減バーナ
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a nitrogen oxide reduction burner preferably used in a relatively small boiler.

【0002】[0002]

【従来の技術】従来のバーナにおいては、窒素酸化物
(NOx)の低減対策として、排ガス循環燃焼,水添燃
焼,水蒸気噴射燃焼等の方式が採用されている。
2. Description of the Related Art In conventional burners, methods such as exhaust gas circulation combustion, hydrogenated combustion, and steam injection combustion are adopted as measures for reducing nitrogen oxides (NOx).

【0003】すなわち、排ガス循環燃焼方式は、排ガス
の一部をバーナ部に再循環して酸素分圧を下げることに
よって低NOx化を図るものであり、また水添燃焼,水
蒸気噴射燃焼方式は、燃焼室に水,水蒸気を吹き込んで
火炎温度を下げることによって低NOx化を図るもので
ある。
That is, the exhaust gas recirculation combustion system is intended to reduce NOx by recirculating a part of exhaust gas to the burner section to lower the oxygen partial pressure, and the hydrogenated combustion and steam injection combustion systems are NOx is reduced by blowing water and steam into the combustion chamber to lower the flame temperature.

【0004】[0004]

【発明が解決しようとする課題】しかし、排ガス循環燃
焼方式では、燃焼用送風機により排ガスを強制循環させ
る場合、火炎の不安定や燃焼用空気系の汚れ等を避ける
ために、排ガス再循環量を或る程度以上増大させること
ができず、充分な低NOx化を図り得ない。また排ガス
を自己循環させる場合、低負荷条件下では排ガスの再循
環率が低下するために、効果的な低NOx化を図り得な
い。さらに、何れの場合にも送風機能力を必要以上に高
くしておく必要があり、コスト面での問題もある。
However, in the exhaust gas recirculation combustion system, when the exhaust gas is forcedly circulated by the combustion blower, the exhaust gas recirculation amount is set in order to avoid instability of the flame and contamination of the combustion air system. It cannot be increased to a certain extent or more, and NOx reduction cannot be sufficiently achieved. Further, when the exhaust gas is self-circulated, under low load conditions, the recirculation rate of the exhaust gas is reduced, and thus effective NOx reduction cannot be achieved. Further, in any case, it is necessary to raise the blowing function more than necessary, which causes a problem in cost.

【0005】また、水添燃焼,水蒸気噴射燃焼方式で
は、方式では、水の吹き込みにより缶体腐食が生じる虞
れがあり、ボイラ効率も低下する。さらに、ポンプ等の
水吹き込み装置が別途必要となり、コスト面でも問題が
ある。一方、水蒸気噴射燃焼方式では、ボイラの発生蒸
気を利用すると、ボイラ効率が低下し、ボイラの発生蒸
気を利用しない場合或いは利用できない場合には、蒸気
発生装置等が別途必要となり、大幅なコストアップとな
る。
In addition, in the hydrogenated combustion and steam injection combustion methods, there is a risk that can body corrosion may occur due to the blowing of water, and the boiler efficiency also decreases. Further, a water blowing device such as a pump is additionally required, which causes a problem in cost. On the other hand, in the steam injection combustion method, if the steam generated by the boiler is used, the boiler efficiency decreases, and if the steam generated by the boiler is not used or cannot be used, a steam generator or the like is required separately, resulting in a significant cost increase. Becomes

【0006】本発明は、かかるボイラ機能上,コスト上
での問題を生じることなく、NOxの発生を大幅に低減
することができ、しかも煤塵,COの発生も効果的に抑
制しうる極めて実用的なバーナを提供することを目的と
する。
The present invention is extremely practical in that it is possible to significantly reduce the generation of NOx without causing such a problem in terms of boiler function and cost and to effectively suppress the generation of soot and CO. The purpose is to provide a good burner.

【0007】[0007]

【課題を解決するための手段】この課題を解決した本発
明の窒素酸化物低減バーナは、バーナスロートから燃焼
室内に理論燃焼空気量より少ない一次空気を旋回流をな
して供給する一次燃焼用空気供給機構と、バーナスロー
トの側方に設けた複数の空気噴出ノズルから燃焼室内に
一次空気量より多い二次空気を供給する二次燃焼用空気
供給機構とを具備するものであり、特に、空気噴出ノズ
ルを、バーナスロートの周辺環状領域に、二次空気を一
次空気による一次燃焼部の下流側中心に向けて噴出させ
るべく且つ空気噴出ノズルからの噴出空気流がその上流
側においては相互に干渉しないように、燃焼室の軸線に
対して傾斜された状態で所定間隔を隔てて配置しておく
ことを提案するものである。
A nitrogen oxide reduction burner of the present invention which has solved this problem is a primary combustion air for supplying primary air in a swirling flow from a burner throat into a combustion chamber in a smaller amount than the theoretical combustion air amount. A supply mechanism and a secondary combustion air supply mechanism for supplying secondary air in an amount larger than the primary air amount into the combustion chamber from a plurality of air ejection nozzles provided on the side of the burner throat, and particularly, air The jet nozzle jets secondary air toward the annular area around the burner throat toward the center of the downstream side of the primary combustion section by the primary air, and the jet air flows from the air jet nozzle interfere with each other on the upstream side. In order not to do so, it is proposed to arrange them at a predetermined interval in a state of being inclined with respect to the axis of the combustion chamber.

【0008】[0008]

【作用】一次空気,二次空気の供給により二段燃焼が行
われ、酸化炎と還元炎との混合,拡散作用により、NO
x,CO,煤塵の発生が効果的に抑制されることにな
る。かかる抑制効果は、特に、空気噴出ノズルを上記し
た傾斜状態で環状領域上に並列配置しておくことによっ
て奏せられるものである。すなわち、このように配置し
て、二次空気の噴出空気流が拡散することなく干渉しな
い上流側領域において、図3に示す如く、還元炎の周囲
に噴出空気流による酸化炎が部分的に食い込んで両炎の
境界面積が大きくなるようにしておくことによって、N
Ox等の効果的な抑制が達成されるのであり、図10に
示す如く両炎の境界領域が小さい場合にはNOx等の抑
制は不充分となる。
[Operation] Two-stage combustion is performed by the supply of primary air and secondary air, and NO is produced by the mixing and diffusion of the oxidizing flame and the reducing flame.
The generation of x, CO, and dust is effectively suppressed. Such a suppressing effect is particularly exhibited by arranging the air ejection nozzles in parallel on the annular region in the above-described inclined state. That is, in such an arrangement, as shown in FIG. 3, in the upstream region where the jet air flow of the secondary air does not interfere without being diffused, the oxidizing flame due to the jet air flow partially encroaches around the reducing flame. By setting the boundary area of both flames to be large,
Since effective suppression of Ox and the like is achieved, suppression of NOx and the like becomes insufficient when the boundary region between both flames is small as shown in FIG.

【0009】[0009]

【実施例】以下、本発明の構成を図1及び図2に示す実
施例に基づいて具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described in detail below with reference to the embodiments shown in FIGS.

【0010】この実施例は、螺旋状水管壁で囲繞形成さ
れる燃焼室を有する貫流ボイラ(蒸気ボイラ等)であっ
て、特に、NOx低減が困難とされる比較的小容量(油
量30〜150Kg/h)のボイラに装備されたバーナ
に、本発明を適用した例に係る。
This embodiment is a once-through boiler (steam boiler or the like) having a combustion chamber surrounded by a spiral water pipe wall, and particularly has a relatively small capacity (oil amount of 30) which makes it difficult to reduce NOx. The present invention is applied to a burner installed in a boiler of up to 150 kg / h).

【0011】この実施例のバーナ1は、図1に示す如
く、燃焼室2(径565mm,軸線方向長さ1150m
m)の端部炉壁2aに装着されており、炉壁2aの中心
部に設けたバーナスロート4(バーナスロートリング径
109mm)に燃料噴霧ノズル5及び点火電極6を設け
且つその近傍直下位に配してディフューザ(保炎板)7
(径100mm)を設けると共に、次のような一次燃焼
用空気供給機構8及び二次燃焼用空気供給機構9を設け
てなる。
As shown in FIG. 1, the burner 1 of this embodiment has a combustion chamber 2 (diameter 565 mm, axial length 1150 m).
m) is attached to the end furnace wall 2a, the fuel spray nozzle 5 and the ignition electrode 6 are provided in the burner throat 4 (burner throat ring diameter 109 mm) provided in the center of the furnace wall 2a, and immediately below it. Distribute and diffuser 7
(Diameter 100 mm) and the following primary combustion air supply mechanism 8 and secondary combustion air supply mechanism 9 are provided.

【0012】すなわち、一次燃焼用空気供給機構8は、
図1及び図2に示す如く、炉壁2a上に、バーナスロー
ト4に連通する一次空気用ウインドボックス10を配設
してなる。ウインドボックス10内には旋回ベーン11
…が設けられていて、一次空気12を旋回させながらバ
ーナスロート4から燃焼室2内に供給しうるようになっ
ている。一次空気12のスワール数Sはバーナスロート
4の径,旋回ベーン11の形状等によって決定される
が、通常、旋回流のスワール数Sが0.3〜0.6とな
るように設計しておくことが好ましい。けだし、スワー
ル数Sが0.3未満であると、火炎が長大になって、燃
焼室2が大型化し、0.6を超えると、ノズル5からの
噴霧燃料(この実施例では灯油)が燃焼室2の周壁2b
に衝突して、カーボン化する虞れがあるからである。な
お、スワール数とはS=Gφ/(Gx/(d/2))で
定義される旋回の度合をいう(Gφ:噴流内の角運動
量,Gx:噴流内の軸線方向運動量,d:バーナスロー
トの直径)。また、ウインドボックス10の入口部10
aには風量制御ダンパ13が配設されていて、バーナス
ロート4からの一次空気供給量を理論燃焼空気量以下に
調整しうるようになっており、通常、理論燃焼空気量に
対して0.1〜0.6に設定される。
That is, the primary combustion air supply mechanism 8 is
As shown in FIGS. 1 and 2, a primary air wind box 10 communicating with the burner throat 4 is disposed on the furnace wall 2a. Swivel vanes 11 in the wind box 10
Are provided so that the primary air 12 can be supplied to the combustion chamber 2 from the burner throat 4 while being swirled. The swirl number S of the primary air 12 is determined by the diameter of the burner throat 4, the shape of the swirling vane 11, etc., but normally, the swirl number S of the swirling flow is designed to be 0.3 to 0.6. Preferably. If the swirl number S is less than 0.3, the flame becomes long and the combustion chamber 2 becomes large, and if it exceeds 0.6, the fuel sprayed from the nozzle 5 (kerosene in this embodiment) burns. Peripheral wall 2b of chamber 2
This is because there is a risk of collision with carbon and carbonization. The swirl number means the degree of swirl defined by S = Gφ / (Gx / (d / 2)) (Gφ: angular momentum in jet, Gx: axial momentum in jet, d: burner throat Diameter). In addition, the entrance portion 10 of the wind box 10
An air flow rate control damper 13 is provided at a so that the primary air supply amount from the burner throat 4 can be adjusted to be equal to or less than the theoretical combustion air amount. It is set to 1 to 0.6.

【0013】かかる一次燃焼空気供給機構8によれば、
空気12を理論燃焼空気量より少ない状態で燃焼室2に
供給させるから、点火電極6の放電により燃料噴霧ノズ
ル5からの噴霧油に着火させると、還元燃焼且つ気化燃
焼をなす一次燃焼部14が形成されることになる。そし
て、この一次燃焼部14においては、一次空気12が旋
回流をなして供給されることから、ディフューザ5によ
る負圧部の形成と相俟って、生成した還元ガスたる燃焼
ガス12´が再循環せしめられて、滞留時間の増大,噴
霧油の気化促進が図られ、安定した燃焼が継続されるこ
とになる。
According to such a primary combustion air supply mechanism 8,
Since the air 12 is supplied to the combustion chamber 2 in a state less than the theoretical combustion air amount, when the spray oil from the fuel spray nozzle 5 is ignited by the discharge of the ignition electrode 6, the primary combustion section 14 that performs reduction combustion and vaporization combustion is generated. Will be formed. In the primary combustion section 14, since the primary air 12 is supplied in a swirling flow, the combustion gas 12 ′, which is the reducing gas generated, is regenerated together with the formation of the negative pressure section by the diffuser 5. By being circulated, the residence time is increased, vaporization of the spray oil is promoted, and stable combustion is continued.

【0014】また、二次燃焼用空気供給機構9は、図1
及び図2に示す如く、炉壁2aに、複数の空気噴出ノズ
ル16…を設けると共に、前記ウインドボックス8を囲
繞して噴出ノズル16…に連通する二次空気用ウインド
ボックス17を設けてなり、二次空気18を各ノズル1
6から燃焼室2内に噴出させるように構成されている。
ノズル16…は、バーナスロート4の周囲環状領域に所
定間隔を隔てて並列配置されており、二次空気18を一
次燃焼部14の下流側中心に向けて噴出させるべく、燃
焼室2の軸線に対して所定角度θをなす傾斜姿勢とされ
ている。また、ウインドボックス17の入口部17aに
は風量制御ダンパ19が配設されていて、全ノズル16
…からの二次空気噴出量を一次空気供給量に応じて調整
しうるようになっている。この二次空気噴出量は、一次
空気供給量より多く、所定の必要空気量から一次空気供
給量を差し引いた量に設定される(例えば、必要な燃焼
空気比を1.2として、一次空気比が0.3であるとき
は、二次空気比は0.9とされる)。なお、バーナ1は
3位置制御,オン・オフ制御,比例制御されるが、この
実施例では3位置制御されており、一次空気12及び二
次空気18の供給量(風量制御ダンパ13,19の開
度)がボイラ負荷に応じて自動的に制御されるようにな
っている。
The secondary combustion air supply mechanism 9 is shown in FIG.
As shown in FIG. 2, the furnace wall 2a is provided with a plurality of air ejection nozzles 16 ... And a secondary air window box 17 surrounding the wind box 8 and communicating with the ejection nozzles 16. Secondary air 18 for each nozzle 1
It is configured so as to be ejected from 6 into the combustion chamber 2.
The nozzles 16 are arranged in parallel in the peripheral annular region of the burner throat 4 at a predetermined interval, and are arranged along the axis of the combustion chamber 2 to eject the secondary air 18 toward the downstream center of the primary combustion section 14. On the other hand, the tilted posture is a predetermined angle θ. Further, an air volume control damper 19 is provided at the inlet portion 17a of the wind box 17, and all the nozzles 16
The amount of secondary air jetted from ... can be adjusted according to the amount of primary air supply. This secondary air ejection amount is larger than the primary air supply amount and is set to an amount obtained by subtracting the primary air supply amount from the predetermined required air amount (for example, assuming that the required combustion air ratio is 1.2, the primary air ratio is 1.2). Is 0.3, the secondary air ratio is 0.9). The burner 1 is three-position controlled, on / off controlled, and proportionally controlled. In this embodiment, the burner 1 is three-position controlled, and the supply amount of the primary air 12 and the secondary air 18 (air amount control dampers 13 and 19). The opening degree) is automatically controlled according to the boiler load.

【0015】ところで、各ノズル16からの噴出空気流
18´は下流側に向かうに従って漸次拡散されていく
が、ノズル16…の相互間隔,本数及び傾斜角度θは、
噴出空気流18´…が上流側においては相互に干渉せ
ず、下流側において拡散,相互干渉して、一次燃焼ガス
12´の再循環領域の下方に入り込む(以下「適正二次
空気供給形態」という)ように、一次燃焼ガス14の再
循環力,燃焼室2の形状等に応じて適宜に設定される。
一般には、4,5本のノズル16…を10〜30°の傾
斜姿勢で等間隔配置しておくのが好ましく、この実施例
では、4本のノズル(口径35.6mm)16…を20
°の傾斜姿勢で等間隔配置してある。なお、二次空気1
2の噴出速度も、上記した適正二次空気供給形態を確保
するために必要な条件であり、一般には、当該ボイラに
おける最低の負荷条件下において15m/s以上となる
ように設定しておくことが好ましく、この実施例では1
5m/sとしてある。
By the way, the air flow 18 'ejected from each nozzle 16 is gradually diffused toward the downstream side, but the mutual intervals, the number of nozzles 16 and the inclination angle θ are as follows.
The jet air streams 18 '... Do not interfere with each other on the upstream side, diffuse and interact with each other on the downstream side, and enter below the recirculation region of the primary combustion gas 12' (hereinafter referred to as "proper secondary air supply mode"). As described above, it is appropriately set according to the recirculation force of the primary combustion gas 14, the shape of the combustion chamber 2, and the like.
In general, it is preferable to arrange four or five nozzles 16 ... In an inclined posture of 10 to 30 ° at equal intervals, and in this embodiment, four nozzles (bore diameter 35.6 mm) 16 ...
They are arranged at equal intervals in a tilted posture of °. The secondary air 1
The jet speed of 2 is also a condition necessary to secure the above-mentioned proper secondary air supply form, and generally, it should be set to 15 m / s or more under the minimum load condition in the boiler. Is preferred, in this example 1
It is set to 5 m / s.

【0016】かかる二次燃焼用空気供給機構9によれ
ば、二次空気18を上記した適正二次空気供給形態で吹
き込むから、一次燃焼ガス12´の再循環領域の下流側
において拡散燃焼による二次燃焼部20が形成され、燃
焼室2内での完全燃焼が達成されることになる。すなわ
ち、噴出空気流18´…が下流側においては拡散混合し
て、均一な緩慢燃焼が行われ、噴出空気流18´…の上
流側では空気が拡散しないで顕著な酸化燃焼が行われ
る。したがって、噴出空気流18´…の拡散することな
く相互に干渉しない上流側部分においては、図3に示す
如く、還元炎(輝炎)21の周囲に酸化炎(目視透明)
22が部分的に食い込んだ炎形態(以下「適正炎形態」
という)を呈するのであり、ノズル16…直下の環状領
域において還元炎21と酸化炎22とが明瞭に区別され
て混在し、両炎21,22の境界面積が大きくなってい
る。
According to the secondary combustion air supply mechanism 9, since the secondary air 18 is blown in the above-mentioned proper secondary air supply mode, the secondary combustion air is diffused at the downstream side of the recirculation region of the primary combustion gas 12 '. The secondary combustion section 20 is formed, and complete combustion in the combustion chamber 2 is achieved. That is, the jet air streams 18 '... Diffusely mix on the downstream side to perform uniform slow combustion, and the upstream side of the jet air streams 18' ... do not diffuse the air to perform remarkable oxidative combustion. Therefore, as shown in FIG. 3, an oxidizing flame (transparently visible) is present around the reducing flame (bright flame) 21 in the upstream portion where the jet air streams 18 '... Do not diffuse and do not interfere with each other.
The flame form that 22 has partially penetrated (hereinafter referred to as “appropriate flame form”).
That is, the reducing flame 21 and the oxidizing flame 22 are clearly distinguished and mixed in the annular region immediately below the nozzle 16, and the boundary area between the two flames 21 and 22 is large.

【0017】したがって、以上のような一次空気12及
び二次空気18の供給により、上流側においては還元炎
21と酸化炎22とが明瞭に区別されて混在し、下流側
に至るに従って両炎21,22が徐々に拡散,混合して
いく状態で二段燃焼されることから、NOx低減が困難
とされる高負荷燃焼で比較的小容量型の油焚きボイラに
おいても、NOxを大幅に低減することができ、CO,
煤塵の発生も良好に抑制することができる。
Therefore, by the supply of the primary air 12 and the secondary air 18 as described above, the reducing flame 21 and the oxidizing flame 22 are clearly distinguished and mixed on the upstream side, and both flames 21 are advanced toward the downstream side. , 22 is gradually diffused and mixed, and is subjected to two-stage combustion, so that NOx can be significantly reduced even in a relatively small-capacity oil-fired boiler with high-load combustion, which makes it difficult to reduce NOx. CO,
Generation of soot and dust can also be satisfactorily suppressed.

【0018】上記実施例の構成のものにおいて、負荷1
00%,50%の条件下で燃焼実験を行ったところ、上
記適正炎形態(図3)が確認され、図4〜図6に示す如
く、NOx発生量(ppm(O2 =0%換算、以下にお
いて同じ)),CO発生量(ppm),スモールスケー
ルNo.(煤塵発生度の主たる指標)についてはこれら
が著しく低減されることが確認された。なお、図4〜図
6において、実線は100%負荷の場合を示し、鎖線は
50%負荷の場合を示す。このような灯油を燃料とした
燃焼実験の結果からも明らかなように、本発明に係るバ
ーナ1によれば、都道府県自治体のうち最も厳しい東京
都の規制(油焚きでNOx<80ppm,ガス焚きでN
Ox<60ppm)をも充分クリアすることができ、し
かも、将来、油焚きについてもガス焚き並みの規制が行
われるような場合にも、これに充分対処することができ
る。
In the configuration of the above embodiment, the load 1
When a combustion experiment was carried out under the conditions of 00% and 50%, the proper flame form (FIG. 3) was confirmed, and as shown in FIGS. 4 to 6, the NOx generation amount (ppm (O 2 = 0% conversion, The same shall apply hereinafter)), CO generation amount (ppm), small scale No. It was confirmed that these (main indicators of the dust generation rate) were significantly reduced. 4 to 6, the solid line shows the case of 100% load, and the chain line shows the case of 50% load. As is clear from the results of the burning experiment using such kerosene as fuel, according to the burner 1 of the present invention, the strictest regulations of Tokyo among prefectures (NOx <80 ppm for oil burning, gas burning) And N
Ox <60 ppm) can be sufficiently cleared, and even in the case where oil burning will be regulated at the same level as gas burning in the future, this can be sufficiently dealt with.

【0019】また、比較例として、空気噴出ノズル16
…の数を上記実施例の2倍の8本に増やして、同一条件
で実験してみたところ、図11〜図13に示す如く、N
Ox,CO,煤塵の低減率が大幅に低下した。この実験
においては、ノズル数が2倍となったため、上流側にお
いても噴出空気流18´…が相互に干渉して、図10に
示す如く、空気流18´…による酸化炎22が還元炎2
1を囲繞する環状形状に形成されることになり、図3の
場合に比して環状炎21と酸化炎22との境界面積が大
幅に小さくなった。なお、図11〜図13において、実
線は100%負荷の場合を示し、鎖線は50%負荷の場
合を示す。
Further, as a comparative example, the air ejection nozzle 16
When the number of ... Is increased to eight, which is twice the number in the above-mentioned embodiment, and an experiment is conducted under the same conditions, as shown in FIGS.
The reduction rate of Ox, CO, and soot was significantly reduced. In this experiment, since the number of nozzles was doubled, the jetted air streams 18 '... also interfered with each other even on the upstream side, and as shown in FIG.
Therefore, the boundary area between the annular flame 21 and the oxidative flame 22 is significantly smaller than that in the case of FIG. 11 to 13, the solid line shows the case of 100% load, and the chain line shows the case of 50% load.

【0020】また、他の比較例として、ノズル傾斜角度
θを0°とした場合においても実験したが、適正炎形態
が得られず、NOx等の低減率は上記比較例における場
合より更に低下した。さらに、混合不良により、スモー
ルスケールNo.も高く、CO発生量も増加した。
Further, as another comparative example, an experiment was carried out also when the nozzle inclination angle θ was set to 0 °, but an appropriate flame form was not obtained, and the reduction rate of NOx and the like was further reduced as compared with the case of the above comparative example. .. Further, due to poor mixing, the small scale No. It was also high, and the amount of CO generated also increased.

【0021】かかる比較実験の結果から、NOx等の低
減効果は、特に、二次空気18を前記した適正二次空気
供給形態で吹き込み且つ上記した適正炎形態が得られる
ことによって達成されるものと推測される。したがっ
て、空気噴出ノズル16…の数及び傾斜角度θ等は、燃
焼条件等に応じて、適正二次空気供給形態及び適正炎形
態が得られるように設定しておくことが必要である。
From the results of such comparative experiments, the effect of reducing NOx and the like is achieved especially by injecting the secondary air 18 in the above-mentioned appropriate secondary air supply form and obtaining the above-mentioned appropriate flame form. Guessed. Therefore, it is necessary to set the number of the air ejection nozzles 16 ... and the inclination angle θ so that a proper secondary air supply mode and a proper flame mode can be obtained according to the combustion conditions and the like.

【0022】なお、本発明は上記実施例に限定されるも
のではなく、本発明の基本原理を逸脱しない範囲におい
て適宜に改良・変更することができる。
The present invention is not limited to the above-mentioned embodiments, and can be appropriately improved and changed without departing from the basic principle of the present invention.

【0023】例えば、図7に示す如く、ディフューザ7
に代えてコーン23を設け、一次空気12をコーン23
の内外に分流12a,12bしてバーナスロート4から
燃焼室2に供給させるようにしてもよい。この場合、コ
ーン23の内側を通過する分流空気12aにも旋回ベー
ン11aにより旋回を与えるようにする。この分流空気
量12aは、通常、一次空気12の全供給量の1/3程
度となるように設定される。また、図8に示す如く、上
部炉壁2aのキャスタ部をフラットとせず、凹部2cと
してもよい。さらに、本発明は燃焼室2が横向き,倒立
状態となるボイラにも適用できることはいうまでもな
い。
For example, as shown in FIG. 7, the diffuser 7
In place of the cone 23, the primary air 12 is supplied to the cone 23.
It is also possible to divide into the inside and outside of the chamber 12a and 12b to supply the combustion chamber 2 from the burner throat 4. In this case, the swirl vane 11a also swirls the split air 12a passing inside the cone 23. The divided air amount 12a is usually set to be about 1/3 of the total supply amount of the primary air 12. Further, as shown in FIG. 8, the caster portion of the upper furnace wall 2a may not be flat but may be the recess 2c. Further, it goes without saying that the present invention can also be applied to a boiler in which the combustion chamber 2 faces sideways and is in an inverted state.

【0024】また、空気噴出ノズル16…の数、傾斜角
度θ、相互間隔、ノズル口径は、前記した適正二次空気
供給形態及び適正炎形態が得られる範囲内において、燃
焼条件,燃焼室形状等に応じて適宜に変更することがで
きる。例えば、燃焼室2の径が大きい場合、前記した如
くNOx低減率が低いとされた8本でもよい場合がある
と思われる。ただ、本発明が特に対象とする小型ボイラ
にあっては、一般に、4,5本程度が最適であろう。ま
た、ノズル16…の傾斜角度θ,相互間隔,ノズル口径
は同一でなくともよい。例えば、図9に示す如く、上下
ヘッダ間を環状に並列する水管24a…,25a…から
なる水管壁24,25で連結し、内側水管壁24の水管
間に形成された燃焼ガス出口26…から水管壁24,2
5間に形成される燃焼ガス通路27へと燃焼ガスを排出
するように構成された多管式の貫流ボイラにあっては、
未燃焼ガスが燃焼ガス出口26から燃焼ガス通路27へ
と侵入して、煤を発生し易いが、かかる場合にあって
は、出口26直上位のノズル16´の口径を他のノズル
16…よりも大きくして、その噴出量を多くしておくこ
とによって、未燃ガスの通路27への侵入を阻止するこ
とができる。
Further, the number of the air jet nozzles 16 ..., the inclination angle θ, the mutual interval, and the nozzle aperture are within the range in which the proper secondary air supply mode and the proper flame mode are obtained, the combustion conditions, the combustion chamber shape, etc. It can be changed as appropriate. For example, when the diameter of the combustion chamber 2 is large, it may be possible that the number of NOx reduction rate is eight as described above. However, in the case of a small-sized boiler to which the present invention is particularly targeted, generally, about 4 or 5 will be optimal. Further, the inclination angles θ of the nozzles 16, ..., The mutual intervals, and the nozzle apertures may not be the same. For example, as shown in FIG. 9, the upper and lower headers are connected by water pipe walls 24 and 25 formed of water pipes 24 a, ..., 25 a that are arranged in parallel in an annular shape, and a combustion gas outlet 26 formed between the water pipes of the inner water pipe wall 24. … From the water pipe wall 24, 2
In the multi-tube once-through boiler configured to discharge the combustion gas to the combustion gas passage 27 formed between the five,
Although unburned gas easily enters the combustion gas passage 27 from the combustion gas outlet 26 to generate soot, in such a case, the diameter of the nozzle 16 'immediately above the outlet 26 is set to be smaller than that of the other nozzles 16 ... It is possible to prevent the unburned gas from invading the passage 27 by increasing the injection amount and increasing the injection amount.

【0025】[0025]

【発明の効果】以上の説明からも明らかなように、本発
明によれば、NOx,CO,煤塵の発生を大幅に抑制す
ることができ、近時の低NOx燃焼の要請を充分満足さ
せることができる。特に、高負荷燃焼の小容量ボイラに
おいても、油焚きであると否とに拘わらず、現在最も厳
しい東京都のガス焚き規制枠内に収めることが可能とな
り、将来、益々規制が厳格になるであろう低NOx燃焼
化の要請に充分応えることができる。しかも、必要以上
の高能力送風機や水,蒸気の吹き込み装置等を必要せ
ず、ボイラの大幅なコンパクト化を図ることができ、コ
スト的にも極めて有利となる。
As is apparent from the above description, according to the present invention, the generation of NOx, CO, and dust can be significantly suppressed, and the recent demand for low NOx combustion can be sufficiently satisfied. You can In particular, even for small-capacity boilers with high-load combustion, regardless of whether they are oil-fired or not, it is possible to stay within the strictest gas-fired regulation frame in Tokyo at present, and the regulations will become stricter in the future. It can fully meet the demand for low NOx combustion. In addition, it is not necessary to use an unnecessarily high-capacity blower or a device for blowing water or steam, so that the boiler can be made significantly compact, which is extremely advantageous in terms of cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るバーナの一実施例を示す縦断側面
図である。
FIG. 1 is a vertical sectional side view showing an embodiment of a burner according to the present invention.

【図2】図1のII−II線に沿う横断平面図である。FIG. 2 is a cross-sectional plan view taken along the line II-II of FIG.

【図3】図1のIII−III線に沿う横断平面図である。3 is a cross-sectional plan view taken along the line III-III in FIG.

【図4】NOx発生量についての測定結果を示すグラフ
である。
FIG. 4 is a graph showing a measurement result of NOx generation amount.

【図5】CO発生量についての測定結果を示すグラフで
ある。
FIG. 5 is a graph showing the measurement results of CO generation amount.

【図6】スモールスケールNO.についての測定結果を
示すグラフである。
FIG. 6 Small scale NO. 5 is a graph showing the measurement results of the.

【図7】他の実施例を示す縦断側面図である。FIG. 7 is a vertical sectional side view showing another embodiment.

【図8】更に他の実施例を示す縦断側面図である。FIG. 8 is a vertical sectional side view showing still another embodiment.

【図9】更に他の実施例を示す横断平面図である。FIG. 9 is a cross-sectional plan view showing still another embodiment.

【図10】比較例における図3相当の横断平面図であ
る。
10 is a transverse plan view corresponding to FIG. 3 in a comparative example.

【図11】比較例におけるNOx発生量についての測定
結果を示すグラフである。
FIG. 11 is a graph showing measurement results of NOx generation amount in a comparative example.

【図12】比較例におけるCO発生量についての測定結
果を示すグラフである。
FIG. 12 is a graph showing the measurement results of CO generation amount in a comparative example.

【図13】比較例におけるスモールスケールNO.につ
いての測定結果を示すグラフである。
13 is a small scale NO. 5 is a graph showing the measurement results of the.

【符号の説明】[Explanation of symbols]

1…バーナ、2…燃焼室、4…バーナスロート、9…一
次燃焼用空気供給機構、10…二次燃焼用空気供給機
構、10,17…ウインドボックス、11,11a…旋
回ベーン、12,12a,12b…一次空気、12´…
再循環燃焼ガス、14…一次燃焼部、16,16´…空
気噴出ノズル、18…二次空気、18´…噴出空気流、
20…二次燃焼部、21…還元炎、22…酸化炎。
DESCRIPTION OF SYMBOLS 1 ... Burner, 2 ... Combustion chamber, 4 ... Burner throat, 9 ... Primary combustion air supply mechanism, 10 ... Secondary combustion air supply mechanism, 10, 17 ... Wind box, 11, 11a ... Swirl vane, 12, 12a , 12b ... Primary air, 12 '...
Recirculation combustion gas, 14 ... Primary combustion part, 16, 16 '... Air jet nozzle, 18 ... Secondary air, 18' ... Jet air flow,
20 ... Secondary combustion part, 21 ... Reduction flame, 22 ... Oxidizing flame.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 バーナスロートから燃焼室内に理論燃焼
空気量より少ない一次空気を旋回流をなして供給する一
次燃焼用空気供給機構と、バーナスロートの側方に設け
た複数の空気噴出ノズルから燃焼室内に一次空気量より
多い二次空気を供給する二次燃焼用空気供給機構とを具
備し、空気噴出ノズルは、バーナスロートの周辺環状領
域に、二次空気を一次空気による一次燃焼部の下流側中
心に向けて噴出させるべく且つ空気噴出ノズルからの噴
出空気流がその上流側においては相互に干渉しないよう
に、燃焼室の軸線に対して傾斜された状態で所定間隔を
隔てて配置されているものであることを特徴とする窒素
酸化物低減バーナ。
1. A primary combustion air supply mechanism for supplying primary air in a swirling flow from the burner throat into the combustion chamber in an amount less than the theoretical combustion air amount, and combustion from a plurality of air ejection nozzles provided on the side of the burner throat. An air supply mechanism for secondary combustion that supplies a larger amount of secondary air to the room, and the air ejection nozzle has secondary air in the peripheral annular region of the burner throat, downstream of the primary combustion section using the primary air. In order to eject the air toward the center of the side and prevent the air streams ejected from the air ejection nozzles from interfering with each other on the upstream side, they are arranged at predetermined intervals in a state inclined with respect to the axis of the combustion chamber. A burner for reducing nitrogen oxide, which is characterized in that
JP4103018A 1992-04-22 1992-04-22 Nitrogen oxide reduction burner Expired - Fee Related JP2759306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4103018A JP2759306B2 (en) 1992-04-22 1992-04-22 Nitrogen oxide reduction burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4103018A JP2759306B2 (en) 1992-04-22 1992-04-22 Nitrogen oxide reduction burner

Publications (2)

Publication Number Publication Date
JPH05296411A true JPH05296411A (en) 1993-11-09
JP2759306B2 JP2759306B2 (en) 1998-05-28

Family

ID=14342912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4103018A Expired - Fee Related JP2759306B2 (en) 1992-04-22 1992-04-22 Nitrogen oxide reduction burner

Country Status (1)

Country Link
JP (1) JP2759306B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175453A (en) * 2007-01-18 2008-07-31 Miura Co Ltd Burner and boiler
JPWO2013099483A1 (en) * 2011-12-27 2015-04-30 日本碍子株式会社 Combustion apparatus and heating furnace using the same
JP2015124941A (en) * 2013-12-26 2015-07-06 三菱日立パワーシステムズ株式会社 Heavy oil burning boiler combustion method and heavy oil firing boiler

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005229668B2 (en) 2004-11-04 2008-03-06 Babcock-Hitachi K.K. Overfiring air port, method for manufacturing air port, boiler, boiler facility, method for operating boiler facility and method for improving boiler facility

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226024A (en) * 1975-08-23 1977-02-26 Chugai Ro Kogyo Kaisha Ltd Two-stage combustion process and its equipments
JPS6078208A (en) * 1984-09-03 1985-05-02 Kawasaki Heavy Ind Ltd Low nox burner
JPS6346311A (en) * 1986-08-12 1988-02-27 Nepon Kk Method for shortening flames of gun type burner and its device
JPH04110508A (en) * 1990-08-29 1992-04-13 Nippon Furnace Kogyo Kaisha Ltd Low-nox combustion method and burner therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226024A (en) * 1975-08-23 1977-02-26 Chugai Ro Kogyo Kaisha Ltd Two-stage combustion process and its equipments
JPS6078208A (en) * 1984-09-03 1985-05-02 Kawasaki Heavy Ind Ltd Low nox burner
JPS6346311A (en) * 1986-08-12 1988-02-27 Nepon Kk Method for shortening flames of gun type burner and its device
JPH04110508A (en) * 1990-08-29 1992-04-13 Nippon Furnace Kogyo Kaisha Ltd Low-nox combustion method and burner therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175453A (en) * 2007-01-18 2008-07-31 Miura Co Ltd Burner and boiler
JPWO2013099483A1 (en) * 2011-12-27 2015-04-30 日本碍子株式会社 Combustion apparatus and heating furnace using the same
US10551125B2 (en) 2011-12-27 2020-02-04 Ngk Insulators, Ltd. Combustion apparatus, and heating furnace using same
JP2015124941A (en) * 2013-12-26 2015-07-06 三菱日立パワーシステムズ株式会社 Heavy oil burning boiler combustion method and heavy oil firing boiler

Also Published As

Publication number Publication date
JP2759306B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
JPS63210508A (en) Super low nox combustion device
US5460514A (en) Burner for burning liquid fuel
KR19990068227A (en) Pulverized coal combustion burner and combustion method thereby
JP3176004B2 (en) Low NOx gas fired burner
JP2759306B2 (en) Nitrogen oxide reduction burner
JP3434096B2 (en) Gas fired burner
JPH0474603B2 (en)
JP3835957B2 (en) 3-position burner
JPH07310903A (en) Combustion for pulverized coal and pulverized coal burner
JPH11211010A (en) Method for combustion in pulverized coal-fired boiler
JP2582266Y2 (en) Boiler having a two-stage combustion type combustion chamber with a burner located below the water level of the can
JP3171147B2 (en) Combustion equipment
CS327791A3 (en) System for the supply of combustion air and method for nox generation control
JPH0116886Y2 (en)
JPS5941085B2 (en) Combustion burner with exhaust circulation method for suppressing nitrogen oxides
JP2761962B2 (en) Low NO lower x boiler burner, low NO lower x boiler and operating method thereof
JP2742150B2 (en) Combustors and combustion equipment
JPH0351613Y2 (en)
JPS6021607Y2 (en) Premix combustion burner
JPH0861613A (en) Low nox burner
KR20240026163A (en) Burner and boiler equipment including the same
JPS6218804Y2 (en)
JP2023152455A (en) Gas/oiling switching mono-fuel combustion burner
JPS60218505A (en) Burner
JPH033843B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080320

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090320

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100320

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110320

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110320

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees