JPH0529605B2 - - Google Patents

Info

Publication number
JPH0529605B2
JPH0529605B2 JP22827585A JP22827585A JPH0529605B2 JP H0529605 B2 JPH0529605 B2 JP H0529605B2 JP 22827585 A JP22827585 A JP 22827585A JP 22827585 A JP22827585 A JP 22827585A JP H0529605 B2 JPH0529605 B2 JP H0529605B2
Authority
JP
Japan
Prior art keywords
chlorate
carbon
saline
reaction
naclo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22827585A
Other languages
Japanese (ja)
Other versions
JPS6287411A (en
Inventor
Kenji Okada
Suehiro Hanaoka
Yoshitaka Ookubo
Isao Yoshida
Masaki Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP22827585A priority Critical patent/JPS6287411A/en
Publication of JPS6287411A publication Critical patent/JPS6287411A/en
Publication of JPH0529605B2 publication Critical patent/JPH0529605B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は食塩水中に含まれる塩素酸塩の分解方
法に関する。さらに詳しくは食塩水を電解して苛
性ソーダを製造する際、循環使用する食塩水中に
含まれる塩素酸塩を効率良く分解する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for decomposing chlorate contained in saline water. More specifically, the present invention relates to a method for efficiently decomposing chlorate contained in recycled saline when saline is electrolyzed to produce caustic soda.

〔従来の技術および問題点〕[Conventional technology and problems]

現在、苛性ソーダは隔膜法又はイオン交換膜法
により食塩水を電解して製造されているが、陽極
室に於いては Cl2+2NaOH→NaClO+NaCl+H2O 3NaClO→NaClO3+2NaCl 等の副反応により塩素酸塩が副生する。その為食
塩水を循環使用するイオン交換膜法電解に於いて
は、食塩水中に塩素酸塩が蓄積するために食塩の
溶解度の低下或いはイオン交換膜の劣化促進等の
悪影響が生ずる。
Currently, caustic soda is produced by electrolyzing salt water using the diaphragm method or the ion exchange membrane method, but in the anode chamber, chlorate is produced through side reactions such as Cl 2 + 2NaOH → NaClO + NaCl + H 2 O 3NaClO → NaClO 3 + 2NaCl. is a byproduct. Therefore, in ion-exchange membrane electrolysis in which saline is used repeatedly, chlorate accumulates in the saline, resulting in adverse effects such as a decrease in the solubility of the saline and accelerated deterioration of the ion-exchange membrane.

従つて、食塩水を循環使用するためには食塩水
中の塩素酸ナトリウム濃度を一定レベル以下にす
るか若しくは完全に除去する必要がある。このた
め食塩水の一部放棄、或いは塩素酸塩の分解のた
めに種々の方法が実施されている。
Therefore, in order to reuse saline, it is necessary to reduce the concentration of sodium chlorate in the saline to a certain level or to remove it completely. For this reason, various methods have been implemented to partially discard saline water or to decompose chlorate.

従来から行われている分解方法としては(1)還元
剤を添加する方法及び(2)強酸を添加する方法があ
るが、いずれも充分な分解方法であるとはいえな
い。
Conventional decomposition methods include (1) adding a reducing agent and (2) adding a strong acid, but neither of them can be said to be a sufficient decomposition method.

即ち(1)の方法は亜硫酸ソーダの様な還元剤を添
加するのであるが、還元剤が比較的高価な上に使
用量が多くなるという欠点があり、さらに NaClO3+3Na2SO3→3Na2SO4+NaCl の反応式で示される通りSO4イオンが生成してし
まい、電解槽の陽極劣化及びイオン交換膜劣化を
促進するために、二次的にSO4イオンの除去操作
が必要になる。
That is, method (1) involves adding a reducing agent such as sodium sulfite, but it has the drawback that the reducing agent is relatively expensive and the amount used is large . As shown in the reaction formula of SO 4 + NaCl, SO 4 ions are generated, and a secondary SO 4 ion removal operation is required to promote deterioration of the anode and ion exchange membrane of the electrolytic cell.

また(2)の方法は、例えば NaClO3+6HCl→3Cl2+NaCl+3H2O の反応式で示される通り、強酸として塩酸を使用
し塩素酸塩を分解する方法であるが、塩水のPHが
1程度或いはそれ以下という強酸域でないと十分
な分解速度が得られないため、通常含有されてい
る塩素酸塩に対してモル比で10〜20倍の塩酸を添
加する必要がある。このため塩素酸塩を分解した
後、過剰分の塩酸を中和するべくアルカリを添加
する必要がある上に、上式の他に次式の反応によ
つて通常数パーセントの二酸化塩素が副生する。
In addition, method (2) is a method of decomposing chlorate using hydrochloric acid as a strong acid, as shown by the reaction formula, for example, NaClO 3 +6HCl→3Cl 2 +NaCl+3H 2 O. However, if the pH of the salt water is around 1 or Since a sufficient decomposition rate cannot be obtained unless the acid is in the strong acid range, it is necessary to add 10 to 20 times the molar ratio of hydrochloric acid to the normally contained chlorate. For this reason, after decomposing the chlorate, it is necessary to add alkali to neutralize the excess hydrochloric acid, and in addition to the above equation, several percent of chlorine dioxide is usually produced as a by-product through the reaction of the following equation. do.

2NaCl3+4HCl→2ClO2+Cl2+2NaCl+O2 この二酸化塩素は自己爆発性である上に、塩素
中に混入することにより塩素使用設備側で反応不
良を生じさせる場合がある。
2NaCl 3 +4HCl→2ClO 2 +Cl 2 +2NaCl+O 2Not only is this chlorine dioxide self-explosive, but if it is mixed into chlorine, it may cause a reaction failure in the chlorine-using equipment.

本発明の目的は上記従来法の欠点を解消し、操
作が簡単である上に効率が良く、しかも二次的処
理の必要がない塩素酸塩の分解方法を提供するこ
とにある。
An object of the present invention is to provide a method for decomposing chlorate, which eliminates the drawbacks of the conventional methods, is simple and efficient in operation, and does not require secondary treatment.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は、塩素酸塩を含有する酸性又は
中性の食塩水を炭素と接触させることを特徴とす
る塩素酸塩の分解方法であり、 2NaClO3+3C→3CO2+2NaCl の反応式で示される通り、炭素により塩素酸塩を
二酸化炭素と食塩に分解する方法である。
That is, the present invention is a method for decomposing chlorate, which is characterized by bringing acidic or neutral saline containing chlorate into contact with carbon, and is represented by the reaction formula: 2NaClO 3 +3C→3CO 2 +2NaCl. As described above, this method uses carbon to decompose chlorate into carbon dioxide and salt.

発明者等らはさらに、系にわずかの塩素を溶存
させる事により本反応が容易に開始する事を発見
した。すなわち溶存するCl2により生成する
NaClO、さらには加水分解により生成するHClO
が炭素に初期吸着し、さらに反応してCO2を生ず
る。
The inventors further discovered that this reaction can be easily initiated by dissolving a small amount of chlorine in the system. i.e. produced by dissolved Cl 2
NaClO and even HClO produced by hydrolysis
is initially adsorbed on carbon and further reacts to produce CO 2 .

NaClO+HCl→HClO+NaCl Cl2+H2O→HClO+HCl 2HClO+C→CO2+2HCl この際に生成するHClによつて、中性液がPH値
で3以下になつていると推定され、塩素酸塩と炭
素との反応が促進されて、ほとんど副反応を生ず
る事なく二酸化炭素と食塩に分解する事が判つ
た。
NaClO + HCl → HClO + NaCl Cl 2 + H 2 O → HClO + HCl 2HClO + C → CO 2 + 2HCl Due to the HCl generated at this time, it is estimated that the pH value of the neutral liquid is 3 or less, and the reaction between chlorate and carbon occurs. was found to be accelerated and decomposed into carbon dioxide and salt with almost no side reactions.

本発明で使用する炭素としては活性炭、木炭等
いずれでも良いが、特に好ましいのは活性炭であ
り、例えばキヤタラ工業(株)製WA−4/8メツシ
ユが挙げられる。
The carbon used in the present invention may be activated carbon, charcoal, or the like, but activated carbon is particularly preferred, such as WA-4/8 mesh manufactured by Kyatara Kogyo Co., Ltd.

食塩水は中性又は酸性であれば良いが、反応速
度を考慮した場合PH3以下が好ましく、また塩素
を溶存させると反応は一層促進される。さらに食
塩水と炭素を接触させる際の温度は60°〜130℃、
接触時間は5〜120分であることが好ましい。接
触時間が5分より短い場合は塩素酸塩の分解が不
充分になり、120分より長い場合は、特に不都合
は生じないが、経済性を考慮した場合120分以下
で充分である。
The saline solution may be neutral or acidic, but in consideration of the reaction rate, it is preferably PH3 or less, and the reaction will be further promoted if chlorine is dissolved therein. Furthermore, the temperature when bringing salt water into contact with carbon is 60° to 130°C,
Preferably, the contact time is 5 to 120 minutes. If the contact time is shorter than 5 minutes, the decomposition of the chlorate will be insufficient, and if it is longer than 120 minutes, no particular inconvenience will occur, but from economical considerations, 120 minutes or less is sufficient.

また温度を130℃より高くすると反応は更に促
進されるが、高耐圧の反応槽が必要となり、加熱
の為に大量のエネルギーが必要となる等の不都合
が生じる。
In addition, if the temperature is raised above 130° C., the reaction is further promoted, but a reaction tank with high pressure resistance is required, which causes disadvantages such as a large amount of energy being required for heating.

〔実施例〕〔Example〕

以下実施例及び比較例により本発明の作用、効
果をさらに詳しく説明する。
The functions and effects of the present invention will be explained in more detail below using Examples and Comparative Examples.

実施例 1 NaClO3として21g/の塩素酸塩を含むPH2.2
の食塩水300mlに活性炭(キヤタラ工業(株)WA−
4/8メツシユ)150mlを加えて85℃に加熱維持
し、塩素酸塩の濃度変化を測定したところ以下の
通りであつた。
Example 1 PH2.2 containing 21g/chlorate as NaClO3
Add activated charcoal (Kiyatara Industries Co., Ltd. WA−) to 300 ml of saline solution.
After adding 150 ml of 4/8 mesh and maintaining the temperature at 85°C, changes in the concentration of chlorate were measured, and the results were as follows.

時間 NaCl3(g/) 0 21 1時間後 14.5 2 〃 10.5 5 〃 4 実施例 2 NaClO3として45g/の塩素酸塩を含むPH2.3
の食塩水300mlに活性炭(キヤタラ工業(株)製WA
−8/32メツシユ)150mlを加えて103℃に加熱維
持し、塩素酸塩の濃度変化を測定したところ以下
の通りであつた。
Time NaCl 3 (g/) 0 21 After 1 hour 14.5 2 〃 10.5 5 〃 4 Example 2 PH2.3 containing 45 g/chlorate as NaClO 3
Add activated charcoal (WA made by KITARA INDUSTRIAL CO., LTD.) to 300 ml of saline solution.
- 8/32 mesh) was added and heated and maintained at 103°C, and changes in chlorate concentration were measured, and the results were as follows.

時間 NaClO3(g/) 0 45 1時間後 26 2 〃 16.5 5 〃 1.5 実施例 3 活性炭(キヤタラ工業(株)製WA−4/8メツシ
ユ)15を充填したカラム(内径150mm、高さ
1300mm)に、NaClO3として30g/の塩素酸塩
を含むPH2.3の食塩水を80℃、30/hで240時間
連続通液した。流出液中の塩素酸塩濃度は
NaClO3として平均27g/であつた。
Time NaClO 3 (g/) 0 45 1 hour later 26 2 〃 16.5 5 〃 1.5 Example 3 Column (inner diameter 150 mm, height
1300 mm), a saline solution of pH 2.3 containing 30 g of chlorate as NaClO 3 was continuously passed through the tube at 80° C. and at 30/h for 240 hours. The chlorate concentration in the effluent is
The average amount was 27 g/ NaClO3 .

実施例 4 NaClO3として45g/の塩素酸塩、及びCl2
して0.20g/の有効塩素を含むPH6.5の食塩水
300mlに活性炭(キヤタラ工業(株)製WA−4/8
メツシユ)150mlを加えて80℃に加熱維持したと
ころ、1時間後の塩素酸塩濃度は27g/であつ
た。
Example 4 Saline solution with pH 6.5 containing 45 g/chlorate as NaClO 3 and 0.20 g/available chlorine as Cl 2
300ml of activated carbon (WA-4/8 manufactured by KITARA INDUSTRIAL CO., LTD.)
When 150 ml of methane was added and maintained at 80°C, the chlorate concentration after 1 hour was 27 g/.

実施例 5 NaClO3として37g/の塩素酸塩を含むPH2.6
の食塩水300mlに、活性炭(キヤタラ工業(株)製
WA−4/8メツシユ)200mlを加えて、耐圧容
器に充填し、加圧下に130℃に加熱維持したとこ
ろ、1時間後の塩素酸塩濃度はNaClO3として0.5
g/であつた。
Example 5 PH2.6 with 37g/chlorate as NaClO3
To 300 ml of saline solution, add activated charcoal (manufactured by Quitara Industries Co., Ltd.).
When 200ml of WA-4/8 mesh was added, the mixture was filled into a pressure-resistant container, and heated and maintained at 130°C under pressure, the chlorate concentration after 1 hour was 0.5 as NaClO3 .
It was g/.

比較例 1 NaClO3として45g/の塩素酸塩を含むPH2.1
の食塩水300mlを85℃に加熱維持したところ、3
時間後の塩素酸塩濃度はNaClO3として44.5g/
であつた。
Comparative Example 1 PH2.1 containing 45g/chlorate as NaClO3
When 300ml of saline solution was heated and maintained at 85℃, 3
The chlorate concentration after hours was 44.5g/ as NaClO3 .
It was hot.

比較例 2 NaClO3として31g/の塩素酸塩を含むPH8.1
の食塩水300mlに、活性炭(キヤタラ工業(株)製
WA−4/8メツシユ)150mlを加えて90℃に加
熱維持したところ、3時間後の塩素酸塩濃度は
NaClO3として31g/であつた。
Comparative Example 2 PH8.1 containing 31g/chlorate as NaClO3
To 300 ml of saline solution, add activated charcoal (manufactured by Quitara Industries Co., Ltd.).
When 150ml of WA-4/8 mesh was added and maintained at 90℃, the chlorate concentration after 3 hours was
It was 31g/as NaClO3 .

Claims (1)

【特許請求の範囲】 1 塩素酸塩を含有する酸性又は中性の食塩水を
炭素と接触させることを特徴とする塩素酸塩の分
解方法。 2 接触温度が60〜130℃である特許請求の範囲
第1項記載の方法。 3 炭素が活性炭、木炭より選ばれた1種以上で
ある特許請求の範囲第1項記載の方法。 4 塩素の存在により反応を促進させる特許請求
の範囲第1項記載の方法。
[Scope of Claims] 1. A method for decomposing chlorate, which comprises bringing acidic or neutral saline containing chlorate into contact with carbon. 2. The method according to claim 1, wherein the contact temperature is 60 to 130°C. 3. The method according to claim 1, wherein the carbon is one or more selected from activated carbon and charcoal. 4. The method according to claim 1, wherein the reaction is accelerated by the presence of chlorine.
JP22827585A 1985-10-14 1985-10-14 Method of decomposing chlorate Granted JPS6287411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22827585A JPS6287411A (en) 1985-10-14 1985-10-14 Method of decomposing chlorate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22827585A JPS6287411A (en) 1985-10-14 1985-10-14 Method of decomposing chlorate

Publications (2)

Publication Number Publication Date
JPS6287411A JPS6287411A (en) 1987-04-21
JPH0529605B2 true JPH0529605B2 (en) 1993-05-06

Family

ID=16873924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22827585A Granted JPS6287411A (en) 1985-10-14 1985-10-14 Method of decomposing chlorate

Country Status (1)

Country Link
JP (1) JPS6287411A (en)

Also Published As

Publication number Publication date
JPS6287411A (en) 1987-04-21

Similar Documents

Publication Publication Date Title
US6306281B1 (en) Electrolytic process for the generation of stable solutions of chlorine dioxide
US9650721B2 (en) Highly efficient sodium hypochlorite generation apparatus capable of decreasing disinfection by-products
US5965004A (en) Chlorine dioxide generation for water treatment
US4169773A (en) Removal of chlorate from electrolytic cell anolyte
US5938916A (en) Electrolytic treatment of aqueous salt solutions
WO2010027825A2 (en) Methods for producing sodium hypochlorite with a three-comportment apparatus containing an acidic anolyte
CA1214429A (en) Removal of chlorate from electrolyte cell brine
US4470891A (en) Process for removing available halogen from anolyte brine
US20130101499A1 (en) METHODS FOR ELECTROCHEMICAL DECHLORINATION OF ANOLYTE BRINE FROM NaCl ELECTROLYSIS
CA2085682A1 (en) Integrated procedure for high yield production of chlorine dioxide
US5419818A (en) Process for the production of alkali metal chlorate
US8216443B2 (en) Process for producing alkali metal chlorate
US5074975A (en) Electrochemical cogeneration of alkali metal halate and alkaline peroxide solutions
US4510026A (en) Process for electrolysis of sea water
US4159929A (en) Chemical and electro-chemical process for production of alkali metal chlorates
JPH0529605B2 (en)
US4277447A (en) Process for reducing calcium ion concentrations in alkaline alkali metal chloride brines
JP2757537B2 (en) How to remove chlorate in salt water
US3823225A (en) Removal of available chlorine from alkali metal chlorate-chloride solution and production of chlorine dioxide from said solution
CA2429908C (en) An electrolytic process for the generation of stable solutions of chlorine dioxide
CA2821309A1 (en) Electrolytic process
JP3568294B2 (en) How to prevent chlorate from increasing in salt water
AU2003239065B2 (en) Process for producing alkali metal chlorate
JP2673518B2 (en) How to remove chlorate in salt water
JPH03153890A (en) Method for removing chlorate ion from aqueous solution of alkali metal chloride

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term