JPH0529603B2 - - Google Patents

Info

Publication number
JPH0529603B2
JPH0529603B2 JP22294284A JP22294284A JPH0529603B2 JP H0529603 B2 JPH0529603 B2 JP H0529603B2 JP 22294284 A JP22294284 A JP 22294284A JP 22294284 A JP22294284 A JP 22294284A JP H0529603 B2 JPH0529603 B2 JP H0529603B2
Authority
JP
Japan
Prior art keywords
zeolite
type
lithium
ions
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22294284A
Other languages
Japanese (ja)
Other versions
JPS61101412A (en
Inventor
Hiroyuki Kashiwase
Makoto Minami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP22294284A priority Critical patent/JPS61101412A/en
Publication of JPS61101412A publication Critical patent/JPS61101412A/en
Publication of JPH0529603B2 publication Critical patent/JPH0529603B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、熱安定性の優れたK−A型ゼオライ
ト組成物に関する。 更に云えば、本発明にかかるゼオライト組成物
は、水分の吸着剤にとくにすぐれ、特に水の吸着
後加熱処理により再生利用するに当り、再生劣化
に抵抗性のある熱安定性K−A型ゼオライト組成
物に関するものである。 <従来の技術> K−A型ゼオライトの再生劣化の防止を目的と
した従来技術としては、二価のアルカリ土類金属
でカリウムイオンの一部をイオン交換する方法の
特公昭48−3956号及び特公昭52−1816号、ゼオラ
イト成形の際にアルカリ土類金属の酸化物・水酸
化物・ケイ酸塩・塩化物を添加して成形する方法
の特開昭57−196720号が挙げられる。 <発明が解決しようとする問題点> 一般にA型ゼオライトは、 M2/nO・Al2O3・2.0±0.5SiO2・yH2O (式中Mはイオン交換可能陽イオンで一般的に
はアルカリ金属、アルカリ土類金属などの一価又
は二価陽イオン、yは6以下の数値) で表わされ、MがNaである場合有効細孔径が約
4A、Caの場合は約5A、Kでは約3Aであり、こ
の細孔の大きさと、吸着特性の相違を利用して、
種々の物質の吸着分離に利用されており、これら
の中で特にK−A型ゼオライト(MがKであるも
の)は、有効細孔径が約3Aと小さく、水分子以
外はほとんど吸着しない為、有機溶媒の脱水、気
体の乾燥用として多用されている。 しかしながら、この水分を吸着したK−A型ゼ
オライトは、通常200〜400℃に加熱して再生する
ため、この吸着−加熱(再生)サイクルの繰り返
し中に、ゼオライトの吸着能力が低下すること
は、以前より知られている。この吸着能力の再生
劣化の原因は、再生中の水熱作用により、ゼオラ
イトの結晶構造
<Industrial Application Field> The present invention relates to a K-A type zeolite composition with excellent thermal stability. Furthermore, the zeolite composition according to the present invention is a thermally stable K-A type zeolite that is particularly excellent as a moisture adsorbent and is resistant to regeneration deterioration when recycled by heat treatment after water adsorption. The present invention relates to a composition. <Prior art> Conventional technologies aimed at preventing regeneration deterioration of K-A type zeolite include Japanese Patent Publication No. 48-3956 and a method of ion-exchanging a part of potassium ions with divalent alkaline earth metals. Examples include Japanese Patent Publication No. 52-1816 and Japanese Patent Application Laid-open No. 196720 (1982), which describes a method of forming zeolite by adding alkaline earth metal oxides, hydroxides, silicates, and chlorides. <Problems to be solved by the invention> In general, type A zeolite is M 2 /nO・Al 2 O 3・2.0±0.5SiO 2・yH 2 O (in the formula, M is an ion-exchangeable cation and generally (monovalent or divalent cations such as alkali metals and alkaline earth metals, y is a value of 6 or less), and when M is Na, the effective pore diameter is approximately
4A, about 5A for Ca, and about 3A for K. Taking advantage of the difference in pore size and adsorption characteristics,
It is used for the adsorption separation of various substances, and among these, K-A type zeolite (where M is K) has a small effective pore diameter of about 3A and hardly adsorbs anything other than water molecules. It is widely used for dehydrating organic solvents and drying gases. However, the K-A type zeolite that has adsorbed this water is usually regenerated by heating to 200 to 400°C, so the adsorption capacity of the zeolite decreases during the repetition of this adsorption-heating (regeneration) cycle. It has been known for a long time. The cause of this regeneration deterioration of the adsorption capacity is that the crystal structure of the zeolite is affected by the hydrothermal action during regeneration.

【式】中のSi− Al結合が切断することが原因であるといわれて
いるが、従来のものは、この吸着能力の低下をお
さえることが困難であつた。 <問題点を解決するための手段> 発明者らは、K−A型ゼオライトの水熱安定性
を改善する目的で種々の方法を検討し、同族の一
価アルカリ金属であるリチウムをK−A型ゼオラ
イトに導入することにより、水熱安定性が格段に
向上することを見い出し、本発明を完成するに到
つた。 すなわち、本願発明は 一般式 〔aK2O・bLiO2・xM2/nO〕・Al2O3・2.0±
0.5 SiO2・yH2O(式中、Mはn価の陽イオン、
a=0.333〜0.833、b=0.167〜0.667、a+b+
x=1±0.1 y6を示す)で表わされることを
特徴とする熱安定性K−A型ゼオライト組成物 である。従つて本発明において、K−A型ゼオラ
イト組成物というのは、上記一般式で表わされゼ
オライトおよびこれを有効成分として含有するも
のをいう。 本発明における一般式のK−A型ゼオライト組
成物は、イオン交換可能陽イオンの一部をリチウ
ムイオンに置換したA型ゼオライト組成物であ
り、リチウムイオンがイオン交換可能陽イオンの
16.7〜66.7mol%かつカリウムイオンがイオン交
換可能陽イオンの33.3〜83.3mol%の範囲にある
ことが必要である。 その理由はリチウムイオンが16.7mol%以下で
は、本発明における水熱安定性の向上が認められ
ず、66.7mol%以上ではカリウムイオンが必然的
に33.3mol%以下となり、K−A型ゼオライトの
有効細孔径約3Aより、細孔径が増加し、K−A
型ゼオライトの特性を示めされないためである。 又、リチウムイオンに置換された残部のイオン
交換可能部分は、ナトリウム、カルシウム、マグ
ネシウム等の一価または2日の金属のイオンによ
つて占められる。 本発明に係わる上記一般式のK−A型ゼオライ
ト組成物の製造法としては、Na−A型ゼオライ
トのスラリーに塩化カリウム、硫酸カリウム等の
可溶性カリウム化合物を加えて混合処理すること
によりイオン交換してK−A型ゼオライトを生成
せしめた後、塩化リチウム、硫酸リチウム、硝酸
リチウム等の可溶性リチウム化合物を加えて同様
にリチウムイオンを1部置換させる方法、Na−
A型ゼオライトのスラリーに可溶性リチウム化合
物を先に加えてリチウムイオンを先づナトリウム
イオンとイオン交換により置換させてから、可溶
性カリウム化合物を加えて、次いでカリウムイオ
ンを置換する方法、あるいはNa−A型ゼオライ
トのスラリーにリチウム化合物とカリウム化合物
を同時に加えてリチウムイオンとカリウムイオン
をナトリウムイオンとイオン交換により置換させ
る方法がある。 これらのイオン交換処理は特に限定はなく所望
の方法で行えばよいがイオン交換後に上記一般式
の組成になるようにすることが必要である。 なお、この時使用する原料のNa−A型ゼオラ
イトは特に制限はなく、例えば 1 珪酸ソーダ、アルミン酸ソーダを原料として
造られるA型ゼオライト。 2 メタカオリンをアルカリ中で加熱変成して造
られるA型ゼオライト。 3 酸性白土の酸洗で得られる珪酸ゲルとアルミ
ン酸ソーダから製造されるA型ゼオライト。 等が挙げられる。 本発明にかかるK−A型ゼオライト組成物は水
の選択的吸着にすぐれ、その吸着剤として好適に
使用できるものであるが、使用態様により粉末状
又は所望の成形体として用いられる。 成形方法としては、特に限定はなく多くの場合
公知の方法がとられる。 例えば、カオリン粘土、スメクタイト族粘土シ
リカゾル、珪酸アルカリ等をバインダーとして、
又はバインダーを用いずに成形乾燥後、焼成して
得ることが出来る。成形体の形状、大きさは特に
限定はない。 なお、成形体は前記のイオン交換処理により直
接製造することも可能である。 例えば、Na−A型ゼオライトの成形体にリチ
ウムおよびカリウム等のイオンでナトリウムイオ
ンと置換して上記一般式のK−A型ゼオライトの
成形体の組成物を得ることができる。 <効 果> 本発明にかかるK−A型ゼオライト組成物は新
規なものであり、選択的な水吸着剤としてすぐれ
ている。特に、熱安定性がよいので、水の吸着
後、加熱により再生利用が吸着能の実質的な劣化
を生ずることなくできるので、長期間使用できそ
の工業的価値は大きい。 <実施例> 実施例 1 3号珪酸ソーダ(Na2O9.22%、SiO228.68%)
230重量部に水770重量部を加えて、80℃に加温、
又別途にアルシン酸ソーダ溶液(Na2O15.75%、
Al2O35.59%)1000重量部を調製し80℃に加温す
る。両液を、スタテイツクミキサーを介して迅速
に混合し、シリカ・アルミナゲルを得る。 このシリカ・アルミナゲルの組成を下に示す。 Γ SiO2/Al2O3=2.00 Γ Na2O/SiO2=2.64 Γ H2O/Na2O=33 このシリカ・アルミナゲルを、85℃で4時間加
熱し、Na−A型ゼオライトとした。このゼオラ
イトをロ過水洗し、その一部を乾燥してX線回折
を行ないA型ゼオライトであることを確認した。 元のロ過ケーキに再び水を加えて、全量で2000
重量部とし、塩化カリウム100重量部を加え、カ
リウムイオン交換を行ない、ロ過水洗乾燥を行な
つた試料について分析を行なつた結果 (0.59K2O・0.40Na2O)Al2O3・1.98SiO2
2.80H2O なる組成であつた。 前記K−A型ゼオライト200重量部(有姿)に
水1800重量部を加えて、10%スラリーとして塩化
リチウム48重量部(無水物換算)を加えてリチウ
ムイオン交換を行ない、ロ過水洗、乾燥して分析
を行なつた結果 (0.48K2O・0.24Li2O・0.28Na2O)・Al2O3
1.98SiO2・3.21H2O なる組成のA型ゼオライトが得られた。 上記で調製したK−A型ゼオライト80重量部
(無水物換算)にカオリン粘土20重量部、適量の
水を加えて、混練後押し出し成形機を用いてφ3.0
mmのペレツトを調製し、乾燥後650℃で焼成して、
ゼオライト成形体を調製した。 実施例 2 塩化リチウム146重量部(無水物換算)を加え
てリチウムイオンの交換を行つた他は、実施例
1と同様の操作を行なつた結果 (0.37K2O・0.51Li2O・0.12Na2O)・Al2O3
2SiO2・3.10H2O なる組成のA型ゼオライトが得られた。 以下実施例1と同様な方法で成形体を調製し
た。 実施例 3 塩化リチウム15重量部(無水物換算)及び塩化
カルシウム6.2重量部(無水物換算)を加えて
リチウム及びカルシウムイオンの交換を同時に
行つた他は実施例1と同様の操作を行なつた結
果 (0.47K2O・0.12Li2O・0.08CaO・0.33Na2O)
Al2O3・1.98SiO2・3.11H2O なる組成のA型ゼオライトが得られた。 このゼオライト80重量部(無水換算)を、以下
実施例1に示した方法と同様の方法で成形体を調
製した。 比較例 1 塩化リチウムを加えない他は実施例1と同様の
操作を行なつた結果 (0.59K2O・0.40Na2O)・Al2O3・1.98SiO2
2.80H2O なるA型ゼオライトを得た。 以下、実施例1と同様の操作で成形体を調製し
た。 比較例 2 塩化リチウム12重量部(無水物換算)を加えて
リチウムイオン交換を行なつた他は実施例1と
同様の操作を行なつた結果 (0.50K2O・0.11Li2O・0.39Na2O)・Al2O3
1.98SiO2・3.05H2O なる組成のA型ゼオライトが得られた。 このゼオライト80重量部(無水換算)を、カオ
リン粘土20重量部、以下適量の水を加えて実施例
1と同様の方法で成形体を調製した。 <加熱再生試験> 実施例1〜3及び比較例1〜2で製造した各々
のK−A型ゼオライトを下記の条件で吸湿−加熱
再生する操作を繰り返した。結果を第1表に示
す。 条件:吸湿 相対湿度80% 24時間 再生 300℃ 2時間 第1表から明かなようにリチウムイオンの置換
率が11%では全く効果が認られず、24%の場合効
果が認められた。又、リチウムイオンと、二価金
属イオンを含有するゼオライトにおいては、両イ
オンの総和が16.7を越えた場合、同様な水熱安定
効果が認められた。
It is said that this is caused by the breakage of the Si-Al bond in [Formula], but with conventional products, it has been difficult to suppress this decrease in adsorption ability. <Means for solving the problem> The inventors investigated various methods for the purpose of improving the hydrothermal stability of K-A type zeolite, and found that lithium, which is a homologous monovalent alkali metal, was converted into K-A type zeolite. The present inventors have discovered that the hydrothermal stability can be significantly improved by introducing it into a type of zeolite, and have completed the present invention. That is, the present invention has the general formula [aK 2 O・bLiO 2・xM 2 /nO]・Al 2 O 3・2.0±
0.5 SiO 2 yH 2 O (where M is an n-valent cation,
a=0.333~0.833, b=0.167~0.667, a+b+
It is a thermostable K-A type zeolite composition characterized by being represented by x=1±0.1 y6). Therefore, in the present invention, the K-A type zeolite composition refers to a zeolite represented by the above general formula and containing it as an active ingredient. The K-A type zeolite composition of the general formula in the present invention is a type A zeolite composition in which a part of the ion-exchangeable cations is replaced with lithium ions, and the lithium ions are the ion-exchangeable cations.
It is necessary that the potassium ions be in the range of 16.7 to 66.7 mol% and 33.3 to 83.3 mol% of the ion exchangeable cations. The reason for this is that if the lithium ion content is less than 16.7 mol%, no improvement in hydrothermal stability is observed in the present invention, and if the lithium ion content is more than 66.7 mol%, the potassium ion content will necessarily be less than 33.3 mol%. The pore diameter increases from about 3A to K-A.
This is because the characteristics of type zeolite cannot be demonstrated. The remaining ion-exchangeable portion replaced by lithium ions is occupied by ions of monovalent or divalent metals such as sodium, calcium, and magnesium. The method for producing the K-A type zeolite composition of the above general formula according to the present invention involves ion exchange by adding soluble potassium compounds such as potassium chloride and potassium sulfate to a slurry of Na-A type zeolite and mixing the mixture. After producing K-A type zeolite, a method in which soluble lithium compounds such as lithium chloride, lithium sulfate, and lithium nitrate are added to partially replace lithium ions, Na-
A method in which a soluble lithium compound is first added to a slurry of type A zeolite and the lithium ions are first replaced with sodium ions by ion exchange, and then a soluble potassium compound is added and then the potassium ions are replaced, or the Na-A type There is a method of adding a lithium compound and a potassium compound to a zeolite slurry at the same time and replacing the lithium ions and potassium ions with sodium ions by ion exchange. These ion exchange treatments are not particularly limited and may be carried out in any desired manner, but it is necessary to obtain a composition according to the above general formula after ion exchange. The raw material Na-A zeolite used at this time is not particularly limited, and for example, A-type zeolite made from sodium silicate or sodium aluminate. 2 A type zeolite made by heating and denaturing metakaolin in an alkali. 3 Type A zeolite manufactured from silicic acid gel obtained by pickling acid clay and sodium aluminate. etc. The K-A type zeolite composition according to the present invention has excellent selective adsorption of water and can be suitably used as an adsorbent for water, but depending on the mode of use, it can be used in the form of a powder or a desired molded body. The molding method is not particularly limited, and in most cases, known methods are used. For example, using kaolin clay, smectite clay silica sol, alkali silicate, etc. as a binder,
Alternatively, it can be obtained by molding, drying, and then firing without using a binder. The shape and size of the molded body are not particularly limited. Note that the molded body can also be directly produced by the above-mentioned ion exchange treatment. For example, a composition of a molded body of K-A type zeolite having the above general formula can be obtained by replacing sodium ions in a molded body of Na-A type zeolite with ions such as lithium and potassium. <Effects> The K-A type zeolite composition according to the present invention is novel and excellent as a selective water adsorbent. In particular, since it has good thermal stability, it can be recycled by heating after water adsorption without causing any substantial deterioration of the adsorption capacity, so it can be used for a long period of time and has great industrial value. <Example> Example 1 No. 3 sodium silicate (Na 2 O 9.22%, SiO 2 28.68%)
Add 770 parts by weight of water to 230 parts by weight and heat to 80°C.
Separately, a sodium arsinate solution (Na 2 O 15.75%,
Prepare 1000 parts by weight of Al 2 O 3 (5.59%) and heat to 80°C. Both solutions are rapidly mixed using a static mixer to obtain a silica-alumina gel. The composition of this silica-alumina gel is shown below. Γ SiO 2 /Al 2 O 3 = 2.00 Γ Na 2 O / SiO 2 = 2.64 Γ H 2 O / Na 2 O = 33 This silica-alumina gel was heated at 85°C for 4 hours to form Na-A type zeolite. did. This zeolite was filtered and washed with water, and a part of it was dried and subjected to X-ray diffraction to confirm that it was a type A zeolite. Add water again to the original filter cake to make a total of 2000
parts by weight, 100 parts by weight of potassium chloride was added, potassium ion exchange was performed, and the sample was filtered, washed with water, and dried.The results were (0.59K 2 O・0.40Na 2 O)Al 2 O 31.98SiO2
The composition was 2.80H 2 O. Add 1,800 parts by weight of water to 200 parts by weight of the K-A type zeolite (in form), add 48 parts by weight of lithium chloride (anhydrous equivalent) to form a 10% slurry, perform lithium ion exchange, filter, wash with water, and dry. The result of analysis was (0.48K 2 O・0.24Li 2 O・0.28Na 2 O)・Al 2 O 3
A type A zeolite having a composition of 1.98SiO 2 .3.21H 2 O was obtained. Add 20 parts by weight of kaolin clay and an appropriate amount of water to 80 parts by weight of the K-A type zeolite prepared above (calculated as anhydride), and use a kneading push-pull molding machine to form a φ3.0
mm pellets were prepared, dried and calcined at 650℃,
A zeolite molded body was prepared. Example 2 The same operation as in Example 1 was performed except that 146 parts by weight of lithium chloride (calculated as anhydride) was added to exchange lithium ions (0.37K 2 O・0.51Li 2 O・0.12 Na 2 O)・Al 2 O 3
A type A zeolite having a composition of 2SiO 2 .3.10H 2 O was obtained. A molded article was prepared in the same manner as in Example 1. Example 3 The same operation as in Example 1 was carried out, except that 15 parts by weight of lithium chloride (calculated as anhydrous) and 6.2 parts by weight of calcium chloride (calculated as anhydrous) were added to exchange lithium and calcium ions at the same time. Result (0.47K 2 O・0.12Li 2 O・0.08CaO・0.33Na 2 O)
A type A zeolite having a composition of Al 2 O 3 .1.98SiO 2 .3.11H 2 O was obtained. A molded article was prepared from 80 parts by weight (anhydrous equivalent) of this zeolite in the same manner as described in Example 1 below. Comparative Example 1 The same operation as in Example 1 was performed except that lithium chloride was not added. (0.59K 2 O・0.40Na 2 O)・Al 2 O 3・1.98SiO 2
A type A zeolite of 2.80H 2 O was obtained. Thereafter, a molded body was prepared in the same manner as in Example 1. Comparative Example 2 The same operation as in Example 1 was performed except that 12 parts by weight of lithium chloride (anhydride equivalent) was added and lithium ion exchange was performed (0.50K 2 O・0.11Li 2 O・0.39Na 2 O)・Al 2 O 3
A type A zeolite having a composition of 1.98SiO 2 .3.05H 2 O was obtained. A molded body was prepared in the same manner as in Example 1 by adding 80 parts by weight of this zeolite (calculated as anhydrous), 20 parts by weight of kaolin clay, and an appropriate amount of water. <Heating regeneration test> The KA type zeolites produced in Examples 1 to 3 and Comparative Examples 1 to 2 were repeatedly subjected to moisture absorption and heating regeneration under the following conditions. The results are shown in Table 1. Conditions: Moisture absorption 80% relative humidity 24 hours Regeneration 300°C 2 hours As is clear from Table 1, no effect was observed at 11% lithium ion substitution rate, and an effect was observed at 24%. Furthermore, in zeolite containing lithium ions and divalent metal ions, a similar hydrothermal stabilizing effect was observed when the sum of both ions exceeded 16.7.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式 〔aK2O・bLiO2・xM2/nO〕・Al2O3・2.0±
0.5 SiO2・yH2O(式中、Mはn価の陽イオン、
a=0.333〜0.833、b=0.167〜0.667、a+b+
x=1±0.1 y6を示す)で表わされることを
特徴とする熱安定性K−A型ゼオライト組成物。 2 Mがナトリウム、カルシウム又はマグネシウ
ムから選ばれた1種以上であることを特徴とする
特許請求の範囲第1項記載の熱安定性K−A型ゼ
オライト組成物。 3 K−A型ゼオライト組成物が成形体である特
許請求の範囲第1項又は第2項記載の熱安定性K
−A型ゼオライト組成物。
[Claims] 1 General formula [aK 2 O・bLiO 2・xM 2 /nO]・Al 2 O 3・2.0±
0.5 SiO 2 yH 2 O (where M is an n-valent cation,
a=0.333~0.833, b=0.167~0.667, a+b+
A thermostable K-A type zeolite composition, characterized in that it is represented by x=1±0.1 y6. 2. The thermostable K-A type zeolite composition according to claim 1, wherein 2M is one or more selected from sodium, calcium, and magnesium. 3. Thermal stability K according to claim 1 or 2, wherein the K-A zeolite composition is a molded article.
- Type A zeolite composition.
JP22294284A 1984-10-25 1984-10-25 Thermally stabilized k-a type zeolite composition Granted JPS61101412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22294284A JPS61101412A (en) 1984-10-25 1984-10-25 Thermally stabilized k-a type zeolite composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22294284A JPS61101412A (en) 1984-10-25 1984-10-25 Thermally stabilized k-a type zeolite composition

Publications (2)

Publication Number Publication Date
JPS61101412A JPS61101412A (en) 1986-05-20
JPH0529603B2 true JPH0529603B2 (en) 1993-05-06

Family

ID=16790283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22294284A Granted JPS61101412A (en) 1984-10-25 1984-10-25 Thermally stabilized k-a type zeolite composition

Country Status (1)

Country Link
JP (1) JPS61101412A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9600871A (en) * 1995-03-02 1997-12-30 Praxair Technology Inc Process for the production of an adsorbent with mixed cation exchange and process for obtaining a zeolite product with mixed cation exchange
JP2013253943A (en) * 2012-06-08 2013-12-19 Central Research Institute Of Electric Power Industry Manufacturing method of zeolite for absorbing fission product

Also Published As

Publication number Publication date
JPS61101412A (en) 1986-05-20

Similar Documents

Publication Publication Date Title
US3933983A (en) Method of increasing the thermal stability of crystalline zeolites
JPS6410445B2 (en)
JPS5860612A (en) Manufacture of synthetic zeolite and zeolite thereby
US4526880A (en) Hydrothermal zeolite activation
JP2719971B2 (en) Zeolite particles containing zeolite binder
GB2085861A (en) Thermally-stabilised/aluminium- exchanged type Y zeolite
JP2827168B2 (en) Method for producing catalyst composition for catalytic cracking of hydrocarbons
JPS6351969B2 (en)
JPH0529603B2 (en)
US3384602A (en) Bonded molecular sieve catalysts and preparation of the same
JPH07165418A (en) Production of zeolite
JPH03295805A (en) X-type zeolite molded body and its production
US3405074A (en) Magnesium-containing crystalline zeolites
JPS6227038A (en) A type zeolite adsorbent and its production
US3798311A (en) Direct synthesis of faujasite zeolites containing sodium and lithium
JPH0521026B2 (en)
US4665043A (en) Hydrothermal zeolite activation
JP3528269B2 (en) High heat resistant mordenite type zeolite and method for producing the same
JPS5852925B2 (en) Natural zeolite modification treatment method
JPS5841715A (en) Boroaluminosilicates having zeolite structure, manufacture and use
JPH0815556B2 (en) Control method of catalytic activity of zeolite
SU738655A1 (en) Oil feedstock cracking catalyst
JPH0547484B2 (en)
JPS636488B2 (en)
JPS6245167B2 (en)