JPH052956A - Vacuum circuit breaker - Google Patents
Vacuum circuit breakerInfo
- Publication number
- JPH052956A JPH052956A JP19286791A JP19286791A JPH052956A JP H052956 A JPH052956 A JP H052956A JP 19286791 A JP19286791 A JP 19286791A JP 19286791 A JP19286791 A JP 19286791A JP H052956 A JPH052956 A JP H052956A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- circuit breaker
- vacuum container
- metal
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/60—Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
- H01H33/66—Vacuum switches
- H01H33/662—Housings or protective screens
- H01H33/66261—Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
- H01H2033/66292—Details relating to the use of multiple screens in vacuum switches
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/60—Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
- H01H33/66—Vacuum switches
- H01H33/662—Housings or protective screens
- H01H33/66207—Specific housing details, e.g. sealing, soldering or brazing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/60—Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
- H01H33/66—Vacuum switches
- H01H33/662—Housings or protective screens
- H01H33/66261—Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
Landscapes
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Abstract
Description
【産業上の利用分野】本発明は真空遮断器の真空容器に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum container for a vacuum circuit breaker.
【従来の技術】従来の真空遮断器は、内部を真空にした
真空容器内に一対の電極を配置し、一対の電極間を開放
すると、電極間にアークを発生する。アークからの金属
蒸気が真空容器の内壁に付着するのを防ぐために、電極
と真空容器との間に金属シールドを設けている。真空容
器の部材はセラミック,ガラス等の絶縁性部材を使用し
ている。高電圧を印加した状態で電極間を開放すると、
金属シールドから放出された電子が真空容器に衝突す
る。真空容器から2次電子が放出される。2次電子は真
空容器の絶縁性部材内で電荷を帯電する。この電荷はプ
ラスとマイナスとを有し、プラス電荷と電子とは結合し
て消滅する。しかし、マイナス電荷は真空容器内面に帯
電した状態にあり、高電位状態を維持している。一方、
電極及び金属シールド端部と真空容器との間に高電圧に
よる電界等電位線が分布しているので、金属シールド端
部に電界集中を生じる。このため、金属シールド端部と
真空容器との間に絶縁破壊を生じる恐れがあった。この
対策として、絶縁部材内面の二次電子放出効率δが1よ
り小さな物質、例えば、特開昭60−93721 号公報により
酸化クロム(Cr2O3)をコーテングすることが提案さ
れている。2. Description of the Related Art In a conventional vacuum circuit breaker, an arc is generated between electrodes when a pair of electrodes is placed in a vacuum container whose inside is evacuated and the pair of electrodes is opened. A metal shield is provided between the electrode and the vacuum vessel to prevent metal vapor from the arc from adhering to the inner wall of the vacuum vessel. As the member of the vacuum container, an insulating member such as ceramic or glass is used. If the electrodes are opened with a high voltage applied,
The electrons emitted from the metal shield collide with the vacuum container. Secondary electrons are emitted from the vacuum container. The secondary electrons are charged in the insulating member of the vacuum container. This charge has a plus and a minus, and the plus charge and the electron are combined to disappear. However, the negative charge is charged on the inner surface of the vacuum container and maintains a high potential state. on the other hand,
Since the electric field equipotential lines due to the high voltage are distributed between the electrode and the end of the metal shield and the vacuum container, electric field concentration occurs at the end of the metal shield. Therefore, there is a possibility that dielectric breakdown may occur between the metal shield end and the vacuum container. As a countermeasure against this, it has been proposed to coat a material having a secondary electron emission efficiency δ of less than 1 on the inner surface of the insulating member, for example, chromium oxide (Cr 2 O 3 ) according to JP-A-60-93721.
【発明が解決しようとする課題】しかしながら、酸化ク
ロムの常温での抵抗率は103 オーム・センチのオーダ
であり、金属シールド部材と対向する絶縁筒体の内面に
0.1 〜5マイクロメータの厚さでコーテイングする
と、コーテイングの電気抵抗は一般に10マイクロオー
ム以下となる。電圧印加時、金属シールド端部からの電
子は酸化クロム層表面に衝突し、酸化クロム層の表面温
度を上昇させる。酸化クロムは温度上昇により抵抗率の
下がる負特性をもっており、電圧の印加された使用状態
では電子衝突により表面温度が上昇し、電気抵抗はさら
に低下する。このため、長時間電圧の印加されている真
空遮断器の電極に過電圧が加わると、初期の状態ではフ
ラッシュオーバしないが、酸化クロム層と金属シールド
端部との間でフラッシュオーバ事故にいたる。また、酸
化クロムのコーテイングを蒸着やスパッタリングで行う
と装置内部に多量の不純物が発生し、蒸着やスパッタリ
ング装置の寿命を極端に低下させてしまう。さらに、酸
化クロムの融点は2320℃とかなり高く、蒸着やスパ
ッタリングでコーテイングするには比較的長時間を必要
とする。このように、酸化クロムのコーテイングには種
々の問題がある。本発明の一つの目的は、沿面耐電圧を
向上させて小型化した真空遮断器を提供することであ
る。本発明の他の目的は、側面によれば金属粒子の粒径
を最大10マイクロメータとし付着された粒子あるいは
粒子群と隣接する粒子あるいは粒子群との間の距離を1
0〜100マイクロメータとする真空遮断器を提供する
ことにある。However, the resistivity of chromium oxide at room temperature is on the order of 10 3 ohm · cm, and the inner surface of the insulating cylinder facing the metal shield member has a resistivity of 0.1 to 5 μm. When coated with thickness, the electrical resistance of the coating is generally below 10 micro-ohms. When a voltage is applied, the electrons from the end of the metal shield collide with the surface of the chromium oxide layer and raise the surface temperature of the chromium oxide layer. Chromium oxide has a negative characteristic that its resistivity decreases with an increase in temperature, and in a usage state in which a voltage is applied, the surface temperature rises due to electron collision, and the electrical resistance further decreases. Therefore, when an overvoltage is applied to the electrodes of the vacuum circuit breaker to which a voltage is applied for a long time, flashover does not occur in the initial state, but a flashover accident occurs between the chromium oxide layer and the metal shield end. Further, when the coating of chromium oxide is performed by vapor deposition or sputtering, a large amount of impurities are generated inside the device, which extremely shortens the life of the vapor deposition or sputtering device. Further, the melting point of chromium oxide is as high as 2320 ° C., and a relatively long time is required for coating by vapor deposition or sputtering. As described above, there are various problems in coating chromium oxide. An object of the present invention is to provide a vacuum circuit breaker having a creeping withstand voltage improved and downsized. Another object of the present invention is to provide a metal particle having a maximum particle size of 10 micrometers and a distance between the attached particle or particle group and an adjacent particle or particle group being 1 μm.
It is to provide a vacuum circuit breaker having a size of 0 to 100 micrometers.
【課題を解決するための手段】真空容器内に配置された
接離自在な固定および可動電極と、前記真空容器内に支
持された前記両電極を包囲する金属シールド部材と、を
備え、前記真空容器を絶縁筒で構成し、前記絶縁筒に生
じる残留電荷を中和する金属部材を分散して設けること
を特徴とする真空遮断器。According to the present invention, there is provided a fixed and movable electrode which is arranged in a vacuum container and which can be freely contacted and separated, and a metal shield member which surrounds the both electrodes supported in the vacuum container. A vacuum circuit breaker, characterized in that the container is constituted by an insulating cylinder, and metal members for neutralizing residual charges generated in the insulating cylinder are dispersedly provided.
【作用】絶縁筒内面に帯電性しているマイナス電荷は中
和金属部材により遮断され、真空容器内面は高電位にな
らず、金属シールドと真空容器内面との間を広く取る必
要がなく、このぶん真空遮断器を小型化出来る。The negative charge charged on the inner surface of the insulating cylinder is blocked by the neutralizing metal member, the inner surface of the vacuum container does not have a high potential, and it is not necessary to widen the space between the metal shield and the inner surface of the vacuum container. The vacuum circuit breaker can be downsized.
【実施例】以下、本発明の一実施例として示した図1の
真空遮断器の側断面図により説明する。真空容器1は電
気的絶縁性材料例えば図3に示した縦軸に2次電子放出
を、横軸に1次電子エネルギーをとり、その特性を有す
るセラミクの第1及び第2の絶縁筒2,3とこの両端に
金具2A,2B,3A,3Bを取りけ、外側金具2A,
3Aに端板4を取付け、内側金具2B,3B間に金属部
材より成る中間シールド5を溶接、ロー付け等により一
体に取付けている。中間シールド5は真空容器内に配置
されていると共に、中間シールド5は一対の固定および
可動電極6,7を包囲しいる。また第1及び第2の端部
シールド8,9は端板4に取付けられ、固定および可動
電極5,6の方向に延びて外側の金具2A,3Aを遮蔽
している。シールドは金属部材より形成されている。固
定および可動電極6,7はこの裏面より真空容器外に延
びるロッド10,11を設けている。一方のロッド10
と端板4との間にベーロズ12を取付けている。ベーロ
ズ12は、一方のロッド10に設けた操作機構を操作し
て、一方のロッド10を他方のロッド11より可動する
働きをしているので、可動電極6は固定電極7に接離す
ることが出来る。第1及び第2の端部シールド8,9は
端板4に取付けられ、固定および可動電極6,7の方向
に延びる第1及び第2の絶縁筒2,3に支持された外側
金具2A,3Aを遮蔽している。第1及び第2の絶縁筒
2,3の内面の少なくとも一部には金属粒子13を付着
している。好ましくは、中間シールド5の両端、端部シ
ールド8,9と中間シールド5と対向する絶縁筒2,3
内面の少なくとも一部に正電荷を有する金属粒子13を
散在付着させる。次に、可動電極6を固定電極7より離
し、ロッド10,11間に高電圧を印加した状態で、図
2に示すように、第1端部シールド8より放出される電
子eの一部14は矢印で示すように、直接、絶縁筒2に
衝突し、絶縁筒2より二次電子の放出する。このため、
絶縁筒体内面および表面には正電荷と負電荷とが帯電す
る。正電荷は電子eと結合して消滅する。残った負電荷
つまり残留電荷は金属粒子13の正電荷により遮断さ
れ、見掛け上絶縁筒表面は殆ど帯電しない。絶縁筒内面
は高電位にならず、第1端部シールド8と絶縁筒内面と
の間を広く取る必要がなく、このぶん真空遮断器を小型
化出来る。このことは、中間シールド5,端部シールド
9についても言えることは勿論である。また、金属粒子
13は分散付着させてあるため、金属粒子13間は絶縁
状態であり絶縁筒2,3の沿面絶縁抵抗を低下させるこ
とがない。沿面絶縁抵抗値の確保及び帯電防止等から、
金属粒子13の粒径は0.5 〜10マイクロメータある
いは粒子群と隣接する粒子あるいは粒子群との間の距離
は10〜100マイクロメータが最も効果があることが
わかった。金属粒子13の付着は例えばスパッタリング
で行うことができる。スパッタリングにより粒子と絶縁
筒2,3の内面に付着させるには、付着された粒子が成
長し、その一部は粒子群を形成する。絶縁筒2,3の内
面上の粒子あるいは粒子群は、全体として導体層を形成
しないように、好ましくは絶縁筒2,3の抵抗が1011
オーム以上とする。このためには、上述の粒子径及び粒
子/粒子群と隣接する粒子/粒子群との間の距離をもつ
ようにする。図4は、中間シールド5および端シールド
8,9には部分シールド5A,8A,9A端シールド
8,9を溶接により一体に取付けたものである。部分シ
ールド5A,8A,9Aと対応する絶縁筒2,3の内面
表面に高周波グロー放電されることにより集中して銅粒
子を付着して、各シールド部材端部付近の高電界部と絶
縁筒表面とで絶縁破壊を生じるのを防止した。図5は、
本発明の一実施例によって銅粒子をスパッタリングによ
り内面に付着させたセラミックの絶縁筒を備える真空容
器および金属粒子を付着させないサラミックの絶縁筒を
備える真空容器についての直流放電特性の図である。曲
線IVは本発明の一実施例による真空容器の、曲線Vは従
来の真空容器の特性を表す。図5から分かるように、本
発明の一実施例を代表する曲線IVにおいては電極間に2
55kVを印加しても放電しなかった。これに対して従
来品を代表する曲線Vにおいては、初め、90kVで放
電し、その後、16回の放電を起こした後でも放電電圧
は150kVまでしか増加しなかった。更に、付着させ
る金属粒子に無酸素銅を使用することによりスパッタリ
ング時にガスの放出が生じないため、真空容器の真空度
を低下させることがなく、電極の絶縁耐力の向上が図れ
る。また、銅金属粒子を散在付着させるだけでよいた
め、スパッタリング時間は導体層の形成より短いので経
済的に高耐電圧の真空遮断器を提供することができる。
更に、金属粒子を散在付着させるだけでよいためスパッ
タリング時間は導体層の形成より短いので経済的で高耐
電圧の真空遮断器を提供することができる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A vacuum circuit breaker of FIG. 1 shown as an embodiment of the present invention will be described below with reference to a sectional side view. The vacuum container 1 has an electrically insulating material, for example, the secondary electron emission on the vertical axis and the primary electron energy on the horizontal axis shown in FIG. 3 and the metal fittings 2A, 2B, 3A, 3B can be attached to both ends thereof, and the outer metal fitting 2A,
An end plate 4 is attached to 3A, and an intermediate shield 5 made of a metal member is integrally attached between the inner metal fittings 2B and 3B by welding, brazing or the like. The intermediate shield 5 is arranged in the vacuum container, and the intermediate shield 5 surrounds the pair of fixed and movable electrodes 6, 7. The first and second end shields 8 and 9 are attached to the end plate 4 and extend in the direction of the fixed and movable electrodes 5 and 6 to shield the outer metal fittings 2A and 3A. The shield is made of a metal member. The fixed and movable electrodes 6 and 7 are provided with rods 10 and 11 extending from the back surface to the outside of the vacuum container. One rod 10
The bezel 12 is attached between the end plate 4 and the end plate 4. Since the beros 12 operates the operating mechanism provided on one rod 10 to move one rod 10 from the other rod 11, the movable electrode 6 can be brought into contact with and separated from the fixed electrode 7. I can. The first and second end shields 8 and 9 are attached to the end plate 4, and are supported by the first and second insulating cylinders 2 and 3 extending in the directions of the fixed and movable electrodes 6 and 7, and the outer metal fittings 2A and 2A, respectively. Shields 3A. Metal particles 13 are attached to at least a part of the inner surfaces of the first and second insulating cylinders 2 and 3. Preferably, both ends of the intermediate shield 5, the end shields 8 and 9 and the insulating cylinders 2 and 3 facing the intermediate shield 5
Metal particles 13 having a positive charge are scattered and attached to at least a part of the inner surface. Next, with the movable electrode 6 separated from the fixed electrode 7 and a high voltage applied between the rods 10 and 11, as shown in FIG. 2, a part 14 of the electrons e emitted from the first end shield 8 is emitted. As shown by the arrow, collides with the insulating cylinder 2 directly, and secondary electrons are emitted from the insulating cylinder 2. For this reason,
Positive and negative charges are charged on the inner surface and the inner surface of the insulating cylinder. The positive charge combines with the electron e and disappears. The remaining negative charges, that is, residual charges are blocked by the positive charges of the metal particles 13, and the surface of the insulating cylinder is apparently hardly charged. The inner surface of the insulating cylinder does not have a high potential, and it is not necessary to widen the space between the first end shield 8 and the inner surface of the insulating cylinder, and thus the vacuum circuit breaker can be downsized. Of course, the same can be said for the intermediate shield 5 and the end shield 9. Further, since the metal particles 13 are dispersed and adhered, the space between the metal particles 13 is in an insulating state and the creeping insulation resistance of the insulating cylinders 2 and 3 is not reduced. In order to secure the surface insulation resistance value and prevent static electricity,
It was found that the particle size of the metal particles 13 is 0.5 to 10 μm or the distance between the particle group and the adjacent particle or particle group is 10 to 100 μm. The metal particles 13 can be attached by, for example, sputtering. In order to attach the particles to the inner surfaces of the insulating cylinders 2 and 3 by sputtering, the attached particles grow, and a part of the particles form a particle group. The particles or particle groups on the inner surfaces of the insulating cylinders 2 and 3 preferably have a resistance of 10 11 so that the conductor layers are not formed as a whole.
Over ohms. For this purpose, the above-mentioned particle diameter and the distance between the particle / particle group and the adjacent particle / particle group are provided. In FIG. 4, partial shields 5A, 8A and 9A end shields 8 and 9 are integrally attached to the intermediate shield 5 and the end shields 8 and 9 by welding. High-frequency glow discharge concentrates copper particles on the inner surfaces of the insulating cylinders 2 and 3 corresponding to the partial shields 5A, 8A, and 9A, thereby depositing copper particles, and the high electric field portions near the ends of each shield member and the insulating cylinder surface. Prevented from causing dielectric breakdown. Figure 5
FIG. 3 is a diagram of DC discharge characteristics of a vacuum container having a ceramic insulating cylinder having copper particles attached to the inner surface by sputtering according to an embodiment of the present invention and a vacuum container having a salamic insulating cylinder having no metal particles attached thereto. Curve IV represents the characteristics of the vacuum container according to the embodiment of the present invention, and curve V represents the characteristics of the conventional vacuum container. As can be seen from FIG. 5, in the curved line IV that represents one embodiment of the present invention, the distance between the electrodes is 2
No discharge occurred even when 55 kV was applied. On the other hand, in the curve V that represents the conventional product, the discharge voltage first increased to 90 kV, and then the discharge voltage increased to only 150 kV after 16 times of discharge. Furthermore, since oxygen-free copper is used as the metal particles to be attached, no gas is released during sputtering, so that the vacuum degree of the vacuum container is not lowered and the dielectric strength of the electrode can be improved. Further, since it is only necessary to disperse and deposit the copper metal particles, the sputtering time is shorter than the formation of the conductor layer, so that it is possible to economically provide a vacuum circuit breaker having a high withstand voltage.
Furthermore, since the sputtering time is shorter than the formation of the conductor layer because only the metal particles need to be scattered and deposited, it is possible to provide an economical vacuum breaker having a high withstand voltage.
【発明の効果】このように、本発明によれば、絶縁筒体
の帯電を防止できるため、沿面耐電圧を向上することが
できる絶縁筒内面は高電位にならず、真空遮断器を小型
化出来る。また、金属粒子を散在付着させるため絶縁性
筒体の沿面絶縁抵抗を低下させない。特に、付着させる
金属粒子に無酸素銅を使用することによりスパッタリン
グ時にガスの放出が生じないため、真空容器の真空度を
低下させることがなく従って、接点構造体の絶縁耐力の
向上が図れる。更に、金属粒子を散在付着させるだけで
よいためスパッタリング時間は導体層の形成より短いの
で経済的で高耐電圧の真空遮断器を提供することができ
る。As described above, according to the present invention, since the insulating cylinder can be prevented from being charged, the inner surface of the insulating cylinder that can improve the withstand voltage of the surface does not have a high potential, and the vacuum circuit breaker can be downsized. I can. Further, since the metal particles are scattered and adhered, the creeping insulation resistance of the insulating cylinder does not decrease. In particular, when oxygen-free copper is used as the metal particles to be attached, no gas is released during sputtering, so that the vacuum degree of the vacuum container is not lowered, and therefore the dielectric strength of the contact structure can be improved. Furthermore, since the sputtering time is shorter than the formation of the conductor layer because only the metal particles need to be scattered and deposited, it is possible to provide an economical vacuum breaker having a high withstand voltage.
【図1】本発明の一実施例による真空遮断器の縦断面を
示す図である。FIG. 1 is a view showing a vertical cross section of a vacuum circuit breaker according to an embodiment of the present invention.
【図2】本発明の一実施例による真空遮断器の内部の部
分拡大図である。FIG. 2 is a partially enlarged view of the inside of a vacuum circuit breaker according to an embodiment of the present invention.
【図3】Al2O3セラミック,ガラス,金属の二次電子
放出特性図である。FIG. 3 is a secondary electron emission characteristic diagram of Al 2 O 3 ceramic, glass, and metal.
【図4】本発明の他の一実施例による真空遮断器の縦断
面を示す図である。FIG. 4 is a vertical sectional view of a vacuum circuit breaker according to another embodiment of the present invention.
【図5】本発明の一実施例による真空遮断器の放電特性
図である。FIG. 5 is a discharge characteristic diagram of a vacuum circuit breaker according to an embodiment of the present invention.
1…真空容器、2,3…絶縁筒、5,8,9…シール
ド、13…金属粒子。1 ... Vacuum container, 2, 3 ... Insulating cylinder, 5, 8, 9 ... Shield, 13 ... Metal particles.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒沢 幸夫 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Yukio Kurosawa 4026 Kujimachi, Hitachi City, Ibaraki Japan Tachi Works Hitachi Research Laboratory
Claims (7)
記真空容器内に封入された固定および可動電極と、前記
固定および可動電極を前記真空容器内において取り囲ん
でいるシールドと、前記真空容器の内面の少なくとも一
部に付着された金属粒子と、を有する真空遮断器。1. A vacuum vessel made of an electrically insulating material, a fixed and movable electrode enclosed in the vacuum vessel, a shield surrounding the fixed and movable electrode in the vacuum vessel, and the vacuum. A vacuum circuit breaker comprising: metal particles adhered to at least a part of an inner surface of the container.
る、真空遮断器。2. The vacuum circuit breaker according to claim 1, wherein the metal is copper.
である、真空遮断器。3. The vacuum circuit breaker according to claim 1, wherein the metal is oxygen free copper.
r,Fe、あるいはステンレス鋼である、真空遮断器。4. The metal according to claim 1, wherein the metal is Al or C.
Vacuum circuit breaker made of r, Fe, or stainless steel.
くとも一部に付着された粒子は、実質的に0.5 〜10
マイクロメータの範囲の粒径をもち、それぞれ分離し
て、および(あるいは)粒子群として分布し、前記分布
した粒子および粒子群は、隣接する粒子および粒子群と
は実質的に10〜100マイクロメータの範囲の距離隔
てられている、真空遮断器。5. The particle adhered to at least a part of the inner surface of the vacuum container according to claim 1, wherein the particle is substantially 0.5 to 10.
Have a particle size in the range of micrometers, and are distributed separately and / or as a group of particles, said distributed particles and groups of particles being substantially 10-100 micrometers from adjacent particles and groups of particles. A vacuum circuit breaker, separated by a distance in the range of.
から成る第一及び第二の絶縁性筒体および前記第一およ
び第二の絶縁性筒体の相互に結合されない方の端部と結
合する第一および第二の端板を含む真空容器と、前記真
空容器内に配置された固定および可動電極と、前記固定
および可動電極より前記真空容器外に延びる通電軸と、
前記固定および可動電極を包囲し前記真空容器に支持さ
れた中間シールド部材と、前記第一及び第二の端板に設
けられた前記真空容器内の前記通電軸の一部を包囲する
第一及び第二の端部シールド部材とを備え、前記真空容
器内の前記第一及び第二の絶縁性筒体のそれぞれの内面
の少なくとも一部に付着された金属の粒子とを有する、
真空遮断器。6. A first and a second insulating cylinder made of an electrically insulating material having one ends bonded to each other, and an end of the first and the second insulating cylinders which is not bonded to each other. A vacuum container including first and second end plates coupled with, a fixed and movable electrode arranged in the vacuum container, and a current-carrying shaft extending outside the vacuum container from the fixed and movable electrodes,
An intermediate shield member which surrounds the fixed and movable electrodes and is supported by the vacuum container, and a first and a part which surrounds a part of the current-carrying shaft in the vacuum container provided in the first and second end plates. With a second end shield member, and having metal particles attached to at least a portion of the inner surface of each of the first and second insulating cylinders in the vacuum container,
Vacuum circuit breaker.
よび可動電極と、前記真空容器内に支持された前記両電
極を包囲するシールド部材と、を備え、前記真空容器の
少なくとも一部を絶縁筒で構成し、前記絶縁筒に金属部
材を分散して設けることを特徴とする真空遮断器。7. A vacuum container, comprising: a fixed and movable electrode which is disposed in a vacuum container and which can be freely contacted and separated; and a shield member which surrounds both electrodes supported in the vacuum container, and at least a part of the vacuum container. A vacuum circuit breaker, characterized in that: is an insulating cylinder, and the insulating cylinder is provided with metal members dispersed therein.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19286791A JPH052956A (en) | 1990-08-03 | 1991-08-01 | Vacuum circuit breaker |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2-205014 | 1990-08-03 | ||
JP20501490 | 1990-08-03 | ||
JP19286791A JPH052956A (en) | 1990-08-03 | 1991-08-01 | Vacuum circuit breaker |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH052956A true JPH052956A (en) | 1993-01-08 |
Family
ID=26507566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19286791A Pending JPH052956A (en) | 1990-08-03 | 1991-08-01 | Vacuum circuit breaker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH052956A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100223890B1 (en) * | 1996-12-31 | 1999-10-15 | 구본준 | Semiconductor memory device and manufacturing method thereof |
JP2010073460A (en) * | 2008-09-18 | 2010-04-02 | Toshiba Corp | Vacuum bulb |
JP2019110010A (en) * | 2017-12-18 | 2019-07-04 | 株式会社東芝 | Vacuum valve |
JP2021089828A (en) * | 2019-12-03 | 2021-06-10 | 株式会社東芝 | Vacuum valve |
-
1991
- 1991-08-01 JP JP19286791A patent/JPH052956A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100223890B1 (en) * | 1996-12-31 | 1999-10-15 | 구본준 | Semiconductor memory device and manufacturing method thereof |
JP2010073460A (en) * | 2008-09-18 | 2010-04-02 | Toshiba Corp | Vacuum bulb |
JP2019110010A (en) * | 2017-12-18 | 2019-07-04 | 株式会社東芝 | Vacuum valve |
JP2021089828A (en) * | 2019-12-03 | 2021-06-10 | 株式会社東芝 | Vacuum valve |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3295008A (en) | Electron discharge device with current surge attenuating resistance | |
CN106704133A (en) | Non-trigger type vacuum arc micro thruster using gas storage electrodes | |
US10685797B2 (en) | Insulator arrangement for a high-voltage or medium-voltage switchgear assembly | |
US3679474A (en) | Periodic electrode structure for vacuum gap devices | |
CA1145384A (en) | Crt with means for suppressing arcing therein | |
US4267415A (en) | Current limiter vacuum envelope | |
JPH05205651A (en) | Cathode-ray tube | |
JPH052956A (en) | Vacuum circuit breaker | |
US3670129A (en) | Electrical contact members | |
JPH0622436A (en) | Insulator for glass insulated appliance | |
JPS5855609B2 (en) | Vacuum cutter | |
US4216360A (en) | Low voltage vacuum switch with internal arcing shield | |
US5189270A (en) | Contact structure for vacuum circuit breaker | |
JPH0279711A (en) | Gas insulation vessel | |
JP4291013B2 (en) | Vacuum valve | |
JPS6330727B2 (en) | ||
US6495786B1 (en) | Vacuum exhaust element of vacuum switch | |
US3471734A (en) | Periodic electrode structure for vacuum gap devices | |
EP0264814B1 (en) | Vacuum circuit interrupter | |
WO2022030086A1 (en) | Vacuum valve | |
RU28283U1 (en) | VACUUM INTERCESSION CAMERA | |
RU198751U1 (en) | CONTROLLED VACUUM PROTECTION ARRESTER | |
JPS598274Y2 (en) | Vacuum cutter | |
US4276455A (en) | Vacuum envelope for current limiter | |
JP2638835B2 (en) | Electron gun for cathode ray tube |