JPH05295552A - Plasma treating device - Google Patents

Plasma treating device

Info

Publication number
JPH05295552A
JPH05295552A JP9764692A JP9764692A JPH05295552A JP H05295552 A JPH05295552 A JP H05295552A JP 9764692 A JP9764692 A JP 9764692A JP 9764692 A JP9764692 A JP 9764692A JP H05295552 A JPH05295552 A JP H05295552A
Authority
JP
Japan
Prior art keywords
plasma
electrode
substrate
magnetic disk
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9764692A
Other languages
Japanese (ja)
Inventor
Hiroshi Inaba
宏 稲葉
Yuichi Kokado
雄一 小角
Shigehiko Fujimaki
成彦 藤巻
Makoto Kito
諒 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9764692A priority Critical patent/JPH05295552A/en
Publication of JPH05295552A publication Critical patent/JPH05295552A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

PURPOSE:To eliminate plasma leakage and to increase the energy of the ions jumping to a substrate surface so as to speed up film forming or etching by using a vacuum chamber formed to a shape of enclosing a space where plasma is formed as an electrode for plasma generation. CONSTITUTION:This plasma treatment device is formed of a discharge means 6, the electrode and voltage supplying means for generating the plasma in a vacuum vessel, a means 8 for supplying gas to a plasma generating section, etc. This vacuum vessel is formed to the shape of enclosing the plasma space. The vacuum vessel is connected to the above-mentioned voltage supplying means 7 without grounding the vacuum vessel and is used as the electrode vacuum chamber 1 to generate the plasma. The grounding member in the vacuum vessel is formed of a substrate 2 and a mounting member. Further, an earth cover 3 is disposed in the atm. outside the vacuum vessel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラズマを使用した成
膜処理装置およびエッチング処理装置等のプラズマ処理
装置に係り、特に被処理基板を間欠的に搬送し、静止し
ている間に順次プラズマ処理を行う連続処理型プラズマ
処理装置に好適なプラズマ処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus such as a film forming processing apparatus and an etching processing apparatus using plasma, and in particular, a substrate to be processed is intermittently transported and sequentially plasma-processed while the substrate is stationary. The present invention relates to a plasma processing apparatus suitable for a continuous processing type plasma processing apparatus that performs processing.

【0002】[0002]

【従来の技術】周知のように被処理基材をそのまま、あ
るいはホルダーなどに搭載したものを順次反応容器に送
り込み、プラズマを発生させて被処理基材の表面を改
質、またはエッチングしたり、被処理基材表面に薄膜を
形成した後、基材を送り出すステップを繰り返すことに
よって連続的に多数の基材をプラズマ処理する装置は、
工業的に広く用いられている。この例として、例えば特
開昭62−502846号公報にあるような磁気ディス
クや光ディスクの多層膜を順次形成するスパッタ成膜装
置などが知られている。
2. Description of the Related Art As is well known, a substrate to be treated as it is or one mounted on a holder or the like is sequentially fed into a reaction vessel to generate plasma to modify or etch the surface of the substrate to be treated, After forming a thin film on the surface of the substrate to be treated, the apparatus for continuously plasma-treating a large number of substrates by repeating the step of feeding the substrate,
Widely used in industry. As an example of this, there is known a sputtering film forming apparatus for sequentially forming a multilayer film of a magnetic disk or an optical disk as disclosed in JP-A-62-502846.

【0003】一方、高周波プラズマ処理方法として、電
極面積の非対称性によって生ずる自己バイアス効果を利
用して高エネルギーイオンによるエッチングやイオンア
シスト成膜を行う方法も良く知られており、例えばリア
クティブイオンエッチングや高硬度カーボン膜の成膜等
が行われている。これらの処理では通常、高周波を印加
する側の電極上で処理が行われるが、例えば特開昭62
−83471号公報に開示されているように、高周波電
極の面積を大きくすることによって接地側基板上でも同
様の処理を行うと、工業的に大きな効果がある。すなわ
ち、前記のような連続多数枚処理を考えると、基板を接
地電位のままにできることは、例えば搬送装置を構成す
る上で非常に有利であった。
On the other hand, as a high-frequency plasma processing method, a method of performing etching with high-energy ions or ion-assisted film formation by utilizing the self-bias effect caused by the asymmetry of the electrode area is well known, for example, reactive ion etching. A high hardness carbon film is formed. In these treatments, the treatment is usually performed on the electrode on which the high frequency is applied.
As disclosed in Japanese Laid-Open Patent Publication No.-83471, if the same processing is performed on the ground side substrate by increasing the area of the high frequency electrode, a great industrial effect is obtained. That is, in consideration of the above-mentioned continuous multi-layer processing, it was very advantageous to be able to keep the substrate at the ground potential, for example, in constructing a transfer device.

【0004】図8は、被処理ディスク基板にプラズマ処
理する従来の代表的なプラズマ処理装置の構成例を示し
た断面図である。同図において、16はアースされた真
空槽であり、この中にプラズマを発生させる電極真空槽
17が絶縁体5を介して配設されている。この電極真空
槽17の外周部には、真空槽16に接続されたアースカ
バー3が所定の間隔をおいて設けられ、電極真空槽17
をアースシールドしている。さらに電極真空槽17は、
真空槽16内に開口し、その開口部には接地された基板
ホルダー19上に搭載された被処理ディスク基板2が保
持されている。電極真空槽17および真空槽16は、バ
ルブ4を介して接続された排気機構により真空に排気さ
れる。また、7は高周波電圧印加装置であり、電極真空
槽17に接続されている。8はガス導入機構であり、プ
ラズマ処理に必要なガスが電極真空槽17内に供給され
る。
FIG. 8 is a sectional view showing a structural example of a conventional typical plasma processing apparatus for performing plasma processing on a disk substrate to be processed. In the figure, 16 is a grounded vacuum chamber in which an electrode vacuum chamber 17 for generating plasma is arranged via an insulator 5. The earth cover 3 connected to the vacuum chamber 16 is provided at a predetermined interval on the outer periphery of the electrode vacuum chamber 17,
Has a ground shield. Furthermore, the electrode vacuum chamber 17
An opening is formed in the vacuum chamber 16, and the processing target disk substrate 2 mounted on a grounded substrate holder 19 is held in the opening. The electrode vacuum tank 17 and the vacuum tank 16 are evacuated to a vacuum by an exhaust mechanism connected via the valve 4. Further, 7 is a high-frequency voltage applying device, which is connected to the electrode vacuum chamber 17. Reference numeral 8 denotes a gas introduction mechanism, which supplies a gas necessary for plasma processing into the electrode vacuum chamber 17.

【0005】[0005]

【発明が解決しようとする課題】上記従来の技術を用い
た連続プラズマ処理装置において、基板2を接地電位と
した場合に発生する自己バイアス電圧、成膜速度は、基
板2を高周波側電極上で処理するときに発生するそれ等
の値に比較して1/3程度であり、成膜速度は最大0.
5nm/s程度となる。また、成膜処理の代わりにエッ
チング処理を行なった場合にも同様でエッチング速度が
遅い。従って、連続多数枚処理を行う場合、成膜もしく
はエッチングに要する時間がネックとなり希望とする時
間内でのプラズマ処理ができず、生産効率が悪いという
問題があった。
In the continuous plasma processing apparatus using the above-mentioned conventional technique, the self-bias voltage generated when the substrate 2 is set to the ground potential and the film forming speed are as follows. Compared to those values generated during processing, it is about ⅓, and the film formation rate is at most 0.
It is about 5 nm / s. Further, the etching rate is also slow when the etching process is performed instead of the film forming process. Therefore, when performing a large number of continuous treatments, there is a problem that the time required for film formation or etching becomes a bottleneck and the plasma treatment cannot be performed within the desired time, resulting in poor production efficiency.

【0006】この原因は、接地された基板2の被処理面
と、電圧供給源側に接続されたプラズマが生成される空
間を取り囲み得る形状の電極部材(電極真空槽17)に
対して、主に並列で生じる、電圧供給源側に接続された
電極部材と接地した部材間スペ−サによって発生する電
気容量(以下、浮遊電気容量と呼ぶ)に律速されること
にあった。即ち、プラズマ発生時のシ−スの電気容量に
対して浮遊電気容量値が大きいからである。
[0006] This is mainly due to the grounded substrate 2 surface to be processed and the electrode member (electrode vacuum chamber 17) which is connected to the voltage supply source side and which can surround the space where plasma is generated. It is to be limited by the electric capacity (hereinafter referred to as the floating electric capacity) generated in parallel by the electrode member connected to the voltage supply source side and the spacer between the members grounded. That is, the floating capacitance value is larger than the capacitance of the sheath when plasma is generated.

【0007】したがって、この発明が解決しようとする
課題は、プラズマ処理において、プラズマ発生時のシ−
スの電気容量に対して浮遊電気容量値を小さくすること
ができる電極構造を有した改良されたプラズマ処理装置
を提供することにある。
Therefore, the problem to be solved by the present invention is to solve the problem of plasma generation during plasma processing.
An object of the present invention is to provide an improved plasma processing apparatus having an electrode structure capable of reducing the floating electric capacitance value with respect to the electric capacitance of the plasma.

【0008】[0008]

【課題を解決するための手段】以上の課題を解決するた
め、本発明に関わるプラズマ処理装置は、接地された基
板の被処理面上の空間を取り囲み得る真空槽そのもの
が、供給電源側(電圧供給手段)に接続された電極とす
ることで、従来の問題として指摘した真空槽内に電源側
部材、接地部材間による浮遊電気容量を極力発生させな
い構造としたものである。
In order to solve the above problems, in the plasma processing apparatus according to the present invention, the vacuum chamber itself that can surround the space above the surface to be processed of the grounded substrate is the power supply side (voltage By using the electrode connected to the supply means), the structure in which the stray capacitance between the power source side member and the grounding member is not generated in the vacuum chamber, which has been pointed out as a conventional problem, is generated as much as possible.

【0009】すなわち、その代表的構成は、真空容器
と、真空容器中の圧力を大気圧より低い状態に保持する
排気手段と、真空容器中にプラズマを発生させるための
電極と、電極に電圧を印加するための電圧供給手段と、
プラズマ発生部にガス状物質を供給する手段とを具備し
て成るプラズマ処理装置において、前記真空容器を、プ
ラズマが生成される空間を取り囲み得る形状の真空槽と
すると共に、これを接地せずに電圧供給手段に接続して
前記プラズマを発生させる電極とする電極真空槽で構成
して成り、前記真空容器内の接地部材を基板とその取り
付け部材で構成して成るプラズマ処理装置としたもので
ある。
That is, a typical structure thereof is a vacuum container, an exhaust means for maintaining the pressure in the vacuum container at a pressure lower than the atmospheric pressure, an electrode for generating plasma in the vacuum container, and a voltage for the electrode. Voltage supply means for applying,
In a plasma processing apparatus comprising a means for supplying a gaseous substance to a plasma generating part, the vacuum container is a vacuum chamber having a shape capable of surrounding a space where plasma is generated, and the vacuum container is not grounded. A plasma processing apparatus comprising an electrode vacuum chamber which is connected to a voltage supply means and serves as an electrode for generating the plasma, and a ground member in the vacuum container is composed of a substrate and a mounting member thereof. ..

【0010】一般に、プラズマ処理が行われるガス圧は
0.01〜0.1Torr程度であり、このようなガス
圧の場合、基板上に発生するシ−ス距離は、5〜10m
mである。一方、真空槽中において電極部材と、それを
取り囲むア−スシ−ルド間距離は、不必要なプラズマが
発生しないように通常、その間隔を3mm以下としなけ
ればならない。また、正のバイアス電極においてはその
電極比が、供給電源側:接地電極側(基板側)=2:1
以上必要である。ここで電気容量について考えるとき、
電極断面積をA(m2)、電極距離L(m)、真空の誘
電率ε0(F・m~1)、比誘電率εsとしたとき次式(1)
で表される。
Generally, the gas pressure for plasma treatment is about 0.01 to 0.1 Torr, and in such a gas pressure, the sheath distance generated on the substrate is 5 to 10 m.
m. On the other hand, in the vacuum chamber, the distance between the electrode member and the ace shield surrounding the electrode member must be usually 3 mm or less so that unnecessary plasma is not generated. Further, in the positive bias electrode, the electrode ratio is as follows: power supply side: ground electrode side (substrate side) = 2: 1
The above is necessary. When we think about capacitance here,
When the electrode cross section is A (m 2 ), the electrode distance L (m), the vacuum permittivity ε 0 (F · m ~ 1 ), and the relative permittivity ε s, the following equation (1)
It is represented by.

【0011】[0011]

【数1】C=ε0・εs A/L …(1) 従って、シ−スにより発生する電気容量に対して、ア−
スシ−ルドにおいて発生する浮遊電気容量の方が、大き
い値を持つことになる。
[Number 1] C = ε 0 · εs A / L ... (1) Therefore, sheet - the electric capacity generated by the scan, A -
The stray capacitance generated in the shield has a larger value.

【0012】これらのことを考慮した電極の等価回路図
を図1に示している。ここで、シ−スにより発生する電
気容量CP(F)、電極と並列に発生する浮遊電気容量
F(F)、電極間全体の電気容量CA(F)、自己バイ
アス電圧VP(V)、空間電荷電流I(A)、角速度ω
(rad/s)とすると、プラズマシ−スでの電気容量
P(F)に対して、浮遊電気容量CF(F)は10CP
(F)以上の値となることが分かる。従って、次式
(2)、(3)
FIG. 1 shows an equivalent circuit diagram of the electrode in consideration of these points. Here, the electric capacitance C P (F) generated by the sheath, the floating electric capacitance C F (F) generated in parallel with the electrodes, the electric capacitance C A (F) between the electrodes, and the self-bias voltage V P ( V), space charge current I (A), angular velocity ω
(Rad / s), the floating capacitance C F (F) is 10 C P with respect to the capacitance C P (F) in the plasma case.
It can be seen that the value is (F) or more. Therefore, the following equations (2) and (3)

【0013】[0013]

【数2】CP≪CF …(2)[Equation 2] C P << C F (2)

【0014】[0014]

【数3】CA=CP+CF≒CF …(3) となり、電極間における全電気容量CAは9割以上が浮
遊電気容量CFによるものとなる。従って、電極間にお
ける電圧値VP(自己バイアス電圧)は、次式(4
## EQU3 ## C A = C P + C F ≈C F (3), and 90% or more of the total electric capacitance C A between the electrodes is due to the floating electric capacitance C F. Therefore, the voltage value V P (self-bias voltage) between the electrodes is calculated by the following equation (4)

【0015】)))

【数4】VP=I/ω・CF …(4) と表され、CFに律速されることになる。## EQU4 ## V P = I / ωC F (4), which is rate-controlled by C F.

【0016】本発明に関わるプラズマ処理装置では、こ
れらのことを考慮した上で、浮遊電気容量CFを最小限
に押さえる構造としている。即ち、通常、真空槽内にお
いてプラズマを囲み得る供給電源側電極にア−スシ−ル
ドを設け、異常放電を防ぐが、本発明では、真空槽自体
を供給電源側の電極(真空槽と電極とを兼ねた電極真空
槽)として用いることで真空槽内のア−スシ−ルドを撤
廃し、真空槽外の安全のため、真空槽を取り囲み得るア
−スカバーを設けた構造としている。これらについて以
下の実施例の中で具体的に説明する。
The plasma processing apparatus according to the present invention has a structure in which the stray capacitance C F is minimized in consideration of these points. That is, normally, an earth shield is provided on an electrode on the power supply side capable of enclosing plasma in the vacuum chamber to prevent abnormal discharge. However, in the present invention, the vacuum chamber itself is an electrode on the power supply side (vacuum chamber and electrode). The electrode shield tank also serves as an electrode vacuum tank, which eliminates the ground shield inside the vacuum tank and provides an earth cover for surrounding the vacuum tank for safety outside the vacuum tank. These will be specifically described in the following examples.

【0017】[0017]

【作用】本発明によると、ディスク基板2を接地側とし
た正バイアス電圧値を得る電極構造において、そのバイ
アス電圧値を増加させることが可能となる。実験結果を
図2に示す。ここで、横軸に浮遊電気容量CF、縦軸に
バイアス電圧VPをプロットしている。図から分かるよ
うに浮遊電気容量CFを少なくするほどバイアス電圧が
増加する結果が得られた。特に、CF=250(pF)
以下においては、希望とするバイアス電圧値800
(V)以上が得られた。
According to the present invention, the bias voltage value can be increased in the electrode structure in which the disk substrate 2 is grounded and a positive bias voltage value is obtained. The experimental results are shown in FIG. Here, the abscissa plots the stray capacitance C F , and the ordinate plots the bias voltage V P. As can be seen from the figure, the result is that the bias voltage increases as the stray capacitance C F decreases. In particular, C F = 250 (pF)
Below, the desired bias voltage value 800
(V) The above was obtained.

【0018】また、図3は、縦軸に成膜速度をプロット
しているが、ここでも同様に、浮遊電気容量CFと成膜
速度の逆数的関係が得られている。これは、バイアス電
圧増加によって飛び込むイオンのエネルギ−を増加さ
せ、成膜速度を向上できたと考えられる。
Further, in FIG. 3, the film formation rate is plotted on the vertical axis, and the reciprocal relation between the stray capacitance C F and the film formation rate is obtained here as well. It is considered that this is because the energy of the ions jumped in by increasing the bias voltage was increased, and the film formation rate was improved.

【0019】また、図8に示した従来装置の真空槽16
内において、ア−スカバー3を撤廃したことにより、供
給電源側電極−ア−スシ−ルド間における異常放電を引
き起こすこともなく、従来型の構造では致命的な問題で
あったプラズマ漏洩を完全に排除できる。
Further, the vacuum chamber 16 of the conventional apparatus shown in FIG.
Since the earth cover 3 is removed, no abnormal discharge occurs between the electrode on the power supply side and the ground shield, and the plasma leakage, which is a fatal problem in the conventional structure, is completely eliminated. Can be eliminated.

【0020】[0020]

【実施例】以下、本発明の一実施例を図面にしたがって
説明する。 〈実施例1〉図4は、本発明をディスク基板用プラズマ
処理装置に適用した構成例を示す要部断面概略図であ
る。すなわち、本発明によるプラズマ処理装置は、少な
くとも大気圧以下の圧力に排気可能な真空槽であり、し
かも、高電圧を印加するための電極である電極と真空槽
を兼ねた電極真空槽1、及び基板ホルダーを介して接地
された被処理ディスク基板2と、これらを囲み得るア−
スカバ−3と、これらを絶縁し真空を保持する為の絶縁
材5と、前記電極真空槽1に高電圧を印加するための電
圧印加装置7と、ガス状物質をプラズマ発生領域に導入
するためのガス導入機構8と、電極真空槽1内部を大気
圧以下に保持するための排気機構6と、電極真空槽1と
排気機構6とを仕切るバルブ4とから構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. <Embodiment 1> FIG. 4 is a schematic cross-sectional view of an essential part showing a structural example in which the present invention is applied to a plasma processing apparatus for a disk substrate. That is, the plasma processing apparatus according to the present invention is a vacuum chamber that can be evacuated to a pressure of at least atmospheric pressure or less, and an electrode vacuum chamber 1 that also serves as an electrode for applying a high voltage and a vacuum chamber, and A disk substrate 2 to be processed, which is grounded via a substrate holder, and an array of disks which can surround them.
Scuba-3, an insulating material 5 for insulating them and maintaining a vacuum, a voltage applying device 7 for applying a high voltage to the electrode vacuum chamber 1, and for introducing a gaseous substance into the plasma generation region. Gas introduction mechanism 8, an exhaust mechanism 6 for keeping the inside of the electrode vacuum chamber 1 at atmospheric pressure or below, and a valve 4 for partitioning the electrode vacuum chamber 1 and the exhaust mechanism 6.

【0021】このような電極を用い、高周波プラズマを
発生させると、ディスク基板2の基板に大きなバイアス
電圧の降下が生じ、ガス導入機構8からガス状物質とし
てエッチングガスを導入すれば反応性イオンエッチング
処理が施され、例えばメタンガスの如き炭化水素からな
る成膜原料ガスを導入すれば硬質カ−ボン膜の如き成膜
処理を施すことが出来る。
When high frequency plasma is generated using such an electrode, a large drop in bias voltage occurs in the substrate of the disk substrate 2, and reactive ion etching is possible if an etching gas is introduced as a gaseous substance from the gas introduction mechanism 8. After the treatment, for example, a film-forming treatment gas such as a methane gas is introduced to form a film-forming treatment such as a hard carbon film.

【0022】〈実施例2〉図5は、図4に示す電極真空
槽1を被処理ディスク基板2を中心に相対向させて2個
用いる。この時、2つのプラズマ処理部のガス圧やガス
流量、印加電圧や電流などをそれぞれ独立に制御するこ
とによって、2つのプラズマ処理部の処理効率の差(成
膜速度や膜質、エッチング速度など)を最小にすれば、
両面同時に均一なプラズマ処理を行うことができる。
<Embodiment 2> In FIG. 5, two electrode vacuum chambers 1 shown in FIG. 4 are used with the disk substrate 2 to be processed facing each other. At this time, by independently controlling the gas pressure and gas flow rate of the two plasma processing units, the applied voltage and the current, etc., the difference in processing efficiency between the two plasma processing units (deposition rate, film quality, etching rate, etc.) Is minimized,
A uniform plasma treatment can be performed on both sides simultaneously.

【0023】また、これら2つのプラズマ処理部の処理
条件を独立に設定することにより、一方の処理部では例
えばCVDによる成膜を施し、他方の処理部ではエッチ
ング処理をするとか、両方共にCVDよる成膜をそれぞ
れことなる条件、例えば異なる材質の成膜を行なうと
か、種々の処理を組み合わせることが可能であり、両面
同時に所望のプラズマ処理を施すことができる。
Further, by setting the processing conditions of these two plasma processing sections independently, one processing section performs film formation by, for example, CVD, and the other processing section performs etching processing, or both are processed by CVD. It is possible to combine various treatments, such as different conditions of film formation, for example, film formation of different materials, and desired plasma treatment can be performed simultaneously on both surfaces.

【0024】また、本実施例に用いる電極の構造は、相
対向する一組の電極真空槽1同志を、ディスク基板2の
基板面に対し、矢印で示したように垂直方向に往復移動
させ、基板2に近付けてプラズマを閉じ込めたり、ま
た、基板2を搬入、搬出移動させるために基板から遠ざ
け開放するものであり、スパッタリング成膜やプラズマ
CVDなどにも、さらにはプラズマエッチング処理など
にも用いることができる。
In the structure of the electrodes used in this embodiment, a pair of electrode vacuum chambers 1 facing each other are reciprocated in the vertical direction with respect to the substrate surface of the disk substrate 2 as shown by the arrow. It is used to close the plasma near the substrate 2 or to open the substrate 2 away from the substrate in order to carry it in and out, and is used for sputtering film formation, plasma CVD, etc., and also for plasma etching treatment, etc. be able to.

【0025】上記のようにこの電極真空槽1の往復移動
機構は、装置本体にディスク基板2を搬入出する際に用
いるものであるが、具体的には、向かい合った電極真空
槽1を被処理部18より遠ざけておき、ディスク基板2
が被処理部18にセットされた後、電極真空槽1をディ
スク基板2の両側からプラズマが漏洩しない距離まで近
づけて、電源7から高電圧を印加し、プラズマを発生さ
せる。処理後はプラズマ停止の後、電極真空槽1を再び
ディスク基板2から遠ざけ、ディスク基板2を排出す
る。
As described above, the reciprocating mechanism of the electrode vacuum chamber 1 is used when loading / unloading the disk substrate 2 into / from the apparatus main body. Specifically, the electrode vacuum chambers 1 facing each other are to be processed. Keep away from the portion 18 and the disk substrate 2
After being set on the processed portion 18, the electrode vacuum chamber 1 is brought closer to both sides of the disk substrate 2 to a distance where plasma does not leak, and a high voltage is applied from the power supply 7 to generate plasma. After the processing, the plasma is stopped, the electrode vacuum chamber 1 is moved away from the disk substrate 2 again, and the disk substrate 2 is discharged.

【0026】〈実施例3〉本発明を適用した磁気ディス
クの製造装置の一例を図6に示す。この装置はディスク
基板2をホルダー19に搭載し、これをレール15にの
せて搬送し、仕込み室9、前処理室10、スパッタ室1
1(この例では11a、11bの2室で構成)、仕切り
室12、プラズマCVD室13、取り出し室14の順に
移動させ、下地膜、磁性膜、保護膜の順に成膜して取り
出すものである。これら各室内にはレール15が連続し
て布設されており、基板は各室を移動できる構成となっ
ている。
<Third Embodiment> FIG. 6 shows an example of a magnetic disk manufacturing apparatus to which the present invention is applied. In this apparatus, a disk substrate 2 is mounted on a holder 19, and the holder 19 is placed on a rail 15 to be conveyed, and a preparation chamber 9, a pretreatment chamber 10 and a sputtering chamber 1 are provided.
1 (composed of two chambers 11a and 11b in this example), a partition chamber 12, a plasma CVD chamber 13, and a take-out chamber 14 in this order, and a base film, a magnetic film, and a protective film are formed in this order and taken out. .. Rails 15 are continuously laid in each of these chambers so that the substrate can move in each chamber.

【0027】なお、本実施例において前処理室10は、
単に加熱でもよいが、プラズマCVD室13と同じ構造
のものとし、ガス導入機構8(図4、図5参照)からC
VDガスの代わりにアルゴンなどの不活性ガスを導入し
てプラズマを発生させることにより、基板表面を軽くエ
ッチングする構成としてもよい。すなわち、この場合に
は本発明のプラズマ処理装置をエッチング処理装置とし
て処理室10に適用することになる。
In this embodiment, the pretreatment chamber 10 is
Although it may be simply heated, it has the same structure as the plasma CVD chamber 13, and the gas introduction mechanism 8 (see FIGS. 4 and 5) to C
Instead of the VD gas, an inert gas such as argon may be introduced to generate plasma to lightly etch the substrate surface. That is, in this case, the plasma processing apparatus of the present invention is applied to the processing chamber 10 as an etching processing apparatus.

【0028】つぎに上記装置を用いて磁気ディスクを実
際に製造した例について説明する。直径5.25インチ
のディスク基板2を1枚づつホルダー19に搭載したも
のを20セット仕込み室9にセットし、真空排気した。
スパッタ室11のスパッタ用カソードには、あらかじめ
下地膜用のCrターゲットと磁性膜用のCoCrTa合
金ターゲットを一対づつセットし、一旦真空排気した
後、アルゴンを導入し、ガス圧を10mTorrに保っ
て、直流プラズマを発生させ、1〜2時間ダミースパッ
タを行った後、プラズマを停止させた。つぎに、前記ホ
ルダ−19を1枚取り出し室14側に向かって搬送し、
前処理室10に到達したところで一旦とめて加熱し、約
200℃まで基板を加熱した。
Next, an example of actually manufacturing a magnetic disk using the above apparatus will be described. Twenty sets of disk substrates 2 each having a diameter of 5.25 inches mounted on a holder 19 were set in the preparation chamber 9 and evacuated.
In the sputtering cathode of the sputtering chamber 11, a pair of a Cr target for a base film and a CoCrTa alloy target for a magnetic film were set in advance, and after vacuum evacuation, argon was introduced and the gas pressure was kept at 10 mTorr. DC plasma was generated, dummy sputtering was performed for 1 to 2 hours, and then the plasma was stopped. Next, the holder-19 is conveyed toward the side of the single take-out chamber 14 and
When it reached the pretreatment chamber 10, it was once stopped and heated to heat the substrate to about 200 ° C.

【0029】つぎに、このホルダーをスパッタ室11に
搬送すると同時に、次のホルダーを仕込み室9から前処
理室10に送った。このように、それぞれの処理室で処
理を行いながらホルダー19を順次送り出した。このよ
うにして、スパッタ室11aで、ディスク基板にCrを
約300nmスパッタし、つぎに、スパッタ室11bで
CoCrTa合金を50nmスパッタした。ついで、プ
ラズマCVD室13に搬送した。
Next, the holder was conveyed to the sputtering chamber 11, and at the same time, the next holder was sent from the charging chamber 9 to the pretreatment chamber 10. In this way, the holder 19 was sequentially sent out while performing processing in each processing chamber. In this way, about 300 nm of Cr was sputtered on the disk substrate in the sputtering chamber 11a, and then CoCrTa alloy of 50 nm was sputtered in the sputtering chamber 11b. Then, it was transported to the plasma CVD chamber 13.

【0030】図5に示したように搬送の際は、処理槽内
をあらかじめ排気し、かつ電極真空槽1をディスク基板
2から遠ざかる方向に移動しておき、被処理部18にお
いて、ホルダ−19が容易に通る間隔を確保した。ホル
ダー19が被処理部18に到達し、停止した時点で、上
記電極真空槽1をディスク基板面に向かって動かし、被
処理部18の間隔を小さくして、電極真空槽1とホルダ
−19との間隔を狭めた。そしてガス導入機構8からメ
タン(CH4)ガスを導入し、圧力が6.7(Pa)一定
となるように流量と排気速度を調節した。その後、周波
数13.56MHzの高電圧を印加し、プラズマを発生
させた。この時、実効電力は1kWでバイアス電圧は1
000(V)が得られ成膜速度として1nm/s得られ
た。プラズマを1分間保持した後、電圧印加を停止し、
電極真空槽1を再びディスク基板2から遠ざけ、ガスを
止め、排気した後、ディスク基板ホルダー19を、取り
出し室14に送ると同時に、次のディスク基板2を導入
した。
As shown in FIG. 5, during the transportation, the inside of the processing tank is evacuated in advance, and the electrode vacuum tank 1 is moved away from the disk substrate 2. Secured an easy passage. When the holder 19 reaches the processing target 18 and stops, the electrode vacuum chamber 1 is moved toward the disk substrate surface to reduce the distance between the processing target 18 and the electrode vacuum chamber 1 and the holder 19. Narrowed the intervals. Then, methane (CH 4 ) gas was introduced from the gas introduction mechanism 8 and the flow rate and the exhaust speed were adjusted so that the pressure became constant at 6.7 (Pa). Then, a high voltage having a frequency of 13.56 MHz was applied to generate plasma. At this time, the effective power is 1 kW and the bias voltage is 1
000 (V) was obtained, and the film formation rate was 1 nm / s. After holding the plasma for 1 minute, stop the voltage application,
The electrode vacuum chamber 1 was moved away from the disk substrate 2 again, the gas was stopped and the gas was exhausted. Then, the disk substrate holder 19 was sent to the take-out chamber 14, and at the same time, the next disk substrate 2 was introduced.

【0031】上記のサイクルを繰り返すことにより、2
0枚のホルダー19に搭載したディスク基板2に硬質カ
ーボン保護膜を形成した。この時、ディスク基板上に必
要とした保護膜膜厚20nmは、成膜速度が1nm/s
得られたために、実行処理時間は20s程度と従来に比
較して1/3程度に短縮することが出来た。
By repeating the above cycle, 2
A hard carbon protective film was formed on the disk substrate 2 mounted on 0 holders 19. At this time, when the protective film thickness of 20 nm required on the disk substrate is 1 nm / s
Since it was obtained, the execution processing time was about 20 s, which was able to be shortened to about 1/3 of the conventional case.

【0032】〈実施例4〉図7は、上記実施例3のプラ
ズマ処理装置を用いて製造した磁気ディスク21を複数
枚スピンドルに搭載した磁気ディスク装置の一部破断断
面斜視図を示したものである。図示のように、磁気ディ
スク装置は、磁気ヘッド21と、磁気ディスク20と、
磁気ヘッド21をアーム22を介して磁気ディスク21
の有効記録再生範囲の中の所定位置に移動させる機構2
5と、磁気ヘッド21を介して磁気ディスク20に情報
を書き込み、もしくは読み出すアクセス機構(図示せ
ず)とを備えている。この装置において、従来のカーボ
ン保護膜の耐久性に比較しても遜色ない良好な結果が得
られた。
<Embodiment 4> FIG. 7 is a partially cutaway sectional perspective view of a magnetic disk device in which a plurality of magnetic disks 21 manufactured by using the plasma processing apparatus of Embodiment 3 are mounted on a spindle. is there. As shown, the magnetic disk device includes a magnetic head 21, a magnetic disk 20,
The magnetic head 21 is attached to the magnetic disk 21 via the arm 22.
2 for moving to a predetermined position within the effective recording / reproducing range of
5 and an access mechanism (not shown) for writing or reading information on the magnetic disk 20 via the magnetic head 21. In this device, good results comparable to the durability of the conventional carbon protective film were obtained.

【0033】〈実施例5〉この例は、上記実施例1のプ
ラズマ処理装置をエッチング装置に適用し、液晶表示装
置の電解効果トランジスタのゲート電極アレイを形成す
るものである。先ず、基板2として予めガラス基板にア
ルミを蒸着、もしくはスパッタで形成し、この上に所定
のレジストマスクパターンを周知のリソグラフ技術で形
成したものを準備した。次いで、エッチングガスとして
市販のフッ素系ガスをガス導入機構8から導入し、実施
例3のカーボン膜の成膜とほぼ同様のプラズマ発生条件
で基板2をプラズマエッチング処理した。これにより所
定のマスクパターンに対応したアルミのエッチングパタ
ーンが得られ、目的とするアルミのゲート電極アレイを
形成することができた。エッチング速度は従来の約3倍
で、加工精度は従来に比して何ら遜色はなかった。
<Fifth Embodiment> In this embodiment, the plasma processing apparatus of the first embodiment is applied to an etching apparatus to form a gate electrode array of a field effect transistor of a liquid crystal display device. First, as the substrate 2, a glass substrate on which aluminum was vapor-deposited or sputtered beforehand, and a predetermined resist mask pattern was formed thereon by a well-known lithographic technique was prepared. Next, a commercially available fluorine-based gas was introduced as an etching gas from the gas introduction mechanism 8, and the substrate 2 was subjected to plasma etching treatment under substantially the same plasma generation conditions as the carbon film formation in Example 3. As a result, an aluminum etching pattern corresponding to a predetermined mask pattern was obtained, and the intended aluminum gate electrode array could be formed. The etching rate was about 3 times faster than the conventional one, and the processing accuracy was comparable to the conventional one.

【0034】[0034]

【発明の効果】以上説明したように本発明により、所期
の目的を達成することができた。すなわち、プラズマC
VD正バイアス電極構造においてバイアス電圧値を律速
する要因を排除し、その値を増加させることができた。
そのため、被処理基板表面へ飛び込むイオンのエネルギ
−を増加、表面上での化学反応を促進させることがで
き、成膜、もしくはエッチング速度の高速化が図れるよ
うになった。したがって、例えば多数枚のディスク基板
を順次搬送して、短時間での効率のよい処理装置を提供
することができ、多工程連続処理装置の適用範囲を大き
く広げることができる。
As described above, according to the present invention, the intended purpose can be achieved. That is, plasma C
In the VD positive bias electrode structure, the factor limiting the bias voltage value was eliminated, and the value could be increased.
Therefore, the energy of ions jumping to the surface of the substrate to be processed can be increased, the chemical reaction on the surface can be promoted, and film formation or etching speed can be increased. Therefore, for example, a large number of disc substrates can be sequentially transported to provide an efficient processing apparatus in a short time, and the applicable range of the multi-step continuous processing apparatus can be greatly expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】浮遊電気容量を説明するプラズマCVD電極構
造の等価回路図。
FIG. 1 is an equivalent circuit diagram of a plasma CVD electrode structure for explaining a floating capacitance.

【図2】浮遊電気容量とバイアス電圧値との関係を示す
特性曲線図。
FIG. 2 is a characteristic curve diagram showing a relationship between a floating capacitance and a bias voltage value.

【図3】浮遊電気容量と成膜速度との関係を示す特性曲
線図。
FIG. 3 is a characteristic curve diagram showing the relationship between floating capacitance and film formation rate.

【図4】本発明によるプラズマ処理装置の一実施例とな
る基本構成を示す断面図。
FIG. 4 is a cross-sectional view showing the basic configuration of an embodiment of a plasma processing apparatus according to the present invention.

【図5】同じく他の実施例となるプラズマ処理装置の断
面図。
FIG. 5 is a sectional view of a plasma processing apparatus according to another embodiment of the present invention.

【図6】同じくさらに異なる他の実施例となる連続プラ
ズマ成膜装置の断面図。
FIG. 6 is a sectional view of a continuous plasma film forming apparatus according to another embodiment of the same.

【図7】同じく本発明のプラズマ処理装置を用いて製造
した磁気ディスクを搭載した磁気ディスク装置の一部破
断断面斜視図。
FIG. 7 is a partially cutaway perspective view of a magnetic disk device equipped with a magnetic disk manufactured by using the plasma processing apparatus of the present invention.

【図8】従来のプラズマ処理装置の構成を示す断面図。FIG. 8 is a cross-sectional view showing the configuration of a conventional plasma processing apparatus.

【符号の説明】[Explanation of symbols]

1…電極真空槽、 2…被処理デ
ィスク基板、3…ア−スカバ−、
4…バルブ、5…絶縁材、
6…排気機構、7…電圧印加機構、
8…ガス導入機構、9…仕込み室、
10…前処理室、11…スパッタ室、
12…仕切り室、13…プラズマCVD処理
室、 14…取出し室、15…レ−ル、
16…真空槽、17…電極真空槽、
18…被処理部、19…基板ホルダー、
20…磁気ディスク、21…ヘッド、
22…ア−ム、23…スピンド
ルモ−タ、 24…カバ−、25…磁気ヘッ
ドを磁気ディスクの有効記録再生範囲の中の所定位置に
移動させる機構。
1 ... Electrode vacuum tank, 2 ... Disk substrate to be processed, 3 ... Aer cover,
4 ... Valve, 5 ... Insulation material,
6 ... Exhaust mechanism, 7 ... Voltage applying mechanism,
8 ... Gas introduction mechanism, 9 ... Preparation room,
10 ... Pretreatment chamber, 11 ... Sputtering chamber,
12 ... Partition chamber, 13 ... Plasma CVD processing chamber, 14 ... Take-out chamber, 15 ... Rail,
16 ... Vacuum tank, 17 ... Electrode vacuum tank,
18 ... Processed part, 19 ... Substrate holder,
20 ... magnetic disk, 21 ... head,
22 ... Arm, 23 ... Spindle motor, 24 ... Cover, 25 ... Mechanism for moving the magnetic head to a predetermined position within the effective recording / reproducing range of the magnetic disk.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鬼頭 諒 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryo Kito, 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa, Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】真空容器と、真空容器中の圧力を大気圧よ
り低い状態に保持する排気手段と、真空容器中にプラズ
マを発生させるための電極と、電極に電圧を印加するた
めの電圧供給手段と、プラズマ発生部にガス状物質を供
給する手段とを具備して成るプラズマ処理装置におい
て、前記真空容器を、プラズマが生成される空間を取り
囲み得る形状の真空槽とすると共に、これを接地せずに
電圧供給手段に接続して前記プラズマを発生させる電極
とする電極真空槽で構成して成り、前記真空容器内の接
地部材を基板とその取り付け部材で構成して成るプラズ
マ処理装置。
1. A vacuum container, an evacuation means for keeping the pressure in the vacuum container lower than atmospheric pressure, an electrode for generating plasma in the vacuum container, and a voltage supply for applying a voltage to the electrode. In a plasma processing apparatus comprising means and means for supplying a gaseous substance to a plasma generating part, the vacuum container is a vacuum chamber having a shape capable of enclosing a space in which plasma is generated, and the vacuum container is grounded. A plasma processing apparatus which is constituted by an electrode vacuum chamber which is connected to a voltage supply means without being used as an electrode for generating the plasma, and in which the ground member in the vacuum container is constituted by a substrate and its mounting member.
【請求項2】プラズマ被処理基板を中心にその両側に上
記電極真空槽をそれぞれ対向して一組配設せしめ、前記
基板の両面をそれぞれ独立にプラズマ処理できる構成と
して成るプラズマ処理装置。
2. A plasma processing apparatus having a structure in which a pair of the electrode vacuum chambers are arranged on both sides of a substrate to be plasma-processed so as to face each other, and both surfaces of the substrate can be independently plasma-processed.
【請求項3】上記一組の電極真空槽を上記プラズマ被処
理基板の基板面に対して垂直方向に相互に往復移動させ
る電極真空槽移動手段と、前記基板を電極真空槽外に排
出し、搬送せしめる基板移動手段とを具備して成る請求
項1もしくは2記載のプラズマ処理装置。
3. An electrode vacuum chamber moving means for mutually reciprocating the set of electrode vacuum chambers in a direction perpendicular to the substrate surface of the plasma processed substrate; and discharging the substrate out of the electrode vacuum chamber. The plasma processing apparatus according to claim 1 or 2, further comprising: a substrate moving unit that conveys the substrate.
【請求項4】上記真空容器の外側の大気中にア−スカバ
ーを配設して成る請求項1乃至3何れか記載のプラズマ
処理装置。
4. The plasma processing apparatus according to claim 1, wherein an earth cover is provided in the atmosphere outside the vacuum container.
【請求項5】上記電極真空槽と基板を含む基板ホルダと
間に発生する電気容量を250pF以下として成る請求
項1乃至4何れか記載のプラズマ処理装置。
5. The plasma processing apparatus according to claim 1, wherein the electric capacity generated between the electrode vacuum chamber and the substrate holder including the substrate is 250 pF or less.
【請求項6】上記電極真空槽をプラズマCVD処理槽と
して成る請求項1乃至5何れか記載のプラズマ処理装
置。
6. The plasma processing apparatus according to claim 1, wherein the electrode vacuum tank is a plasma CVD processing tank.
【請求項7】上記電極真空槽をプラズマエッチング処理
槽として成る請求項1乃至5何れか記載のプラズマ処理
装置。
7. The plasma processing apparatus according to claim 1, wherein the electrode vacuum tank is a plasma etching processing tank.
【請求項8】磁性膜が形成された磁気ディスク基板表面
に、プラズマCVD処理により保護膜を形成する工程を
有する磁気ディスクの製造方法において、請求項1記載
のプラズマ処理装置のプラズマ発生部に、ガス状物質と
して所定の保護膜形成用ガスを供給して所定の保護膜を
形成して成る磁気ディスクの製造方法。
8. A method of manufacturing a magnetic disk, comprising a step of forming a protective film on a surface of a magnetic disk substrate on which a magnetic film is formed by a plasma CVD process, wherein the plasma generating unit of the plasma processing apparatus according to claim 1, A method of manufacturing a magnetic disk, comprising forming a predetermined protective film by supplying a predetermined protective film forming gas as a gaseous substance.
【請求項9】上記所定の保護膜形成用ガスとして、炭化
水素ガスを供給し、カーボン保護膜を形成して成る請求
項8記載の磁気ディスクの製造方法。
9. A method of manufacturing a magnetic disk according to claim 8, wherein a hydrocarbon gas is supplied as the predetermined protective film forming gas to form a carbon protective film.
【請求項10】請求項8もしくは9記載の磁気ディスク
の製造方法にて形成された保護膜を有して成る磁気ディ
スク。
10. A magnetic disk comprising a protective film formed by the method for manufacturing a magnetic disk according to claim 8.
【請求項11】少なくとも磁気ヘッドと、磁気ディスク
と、磁気ヘッドをアームを介して前記磁気ディスクの有
効記録再生範囲の中の所定位置に移動させる機構と、前
記磁気ヘッドを介して前記磁気ディスクに情報を書き込
み、もしくは読み出すアクセス機構とを具備して成る磁
気ディスク装置において、前記磁気ディスクを請求項1
0記載の磁気ディスクで構成して成る磁気ディスク装
置。
11. A magnetic head, a magnetic disk, a mechanism for moving the magnetic head to a predetermined position within an effective recording / reproducing range of the magnetic disk via an arm, and a magnetic disk to the magnetic disk via the magnetic head. A magnetic disk device comprising an access mechanism for writing or reading information, wherein the magnetic disk is a magnetic disk device.
A magnetic disk device comprising the magnetic disk described in 0.
JP9764692A 1992-04-17 1992-04-17 Plasma treating device Pending JPH05295552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9764692A JPH05295552A (en) 1992-04-17 1992-04-17 Plasma treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9764692A JPH05295552A (en) 1992-04-17 1992-04-17 Plasma treating device

Publications (1)

Publication Number Publication Date
JPH05295552A true JPH05295552A (en) 1993-11-09

Family

ID=14197878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9764692A Pending JPH05295552A (en) 1992-04-17 1992-04-17 Plasma treating device

Country Status (1)

Country Link
JP (1) JPH05295552A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046115A (en) * 2005-08-10 2007-02-22 Fuji Electric Device Technology Co Ltd Method for forming protective film, and magnetic recording medium provided with the protective film
KR101879606B1 (en) * 2013-03-29 2018-07-18 후지필름 가부시키가이샤 Protective film etching method, method for producing template, and template produced using said methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046115A (en) * 2005-08-10 2007-02-22 Fuji Electric Device Technology Co Ltd Method for forming protective film, and magnetic recording medium provided with the protective film
KR101879606B1 (en) * 2013-03-29 2018-07-18 후지필름 가부시키가이샤 Protective film etching method, method for producing template, and template produced using said methods
US10248026B2 (en) 2013-03-29 2019-04-02 Fujifilm Corporation Method for etching protective film, method for producing template, and template produced thereby

Similar Documents

Publication Publication Date Title
JPH03120362A (en) Apparatus and method for plasma treatment
US6365010B1 (en) Sputtering apparatus and process for high rate coatings
US6228439B1 (en) Thin film deposition apparatus
US6183816B1 (en) Method of fabricating the coating
US6835523B1 (en) Apparatus for fabricating coating and method of fabricating the coating
KR100367340B1 (en) Method of removing accumulated films from the surfaces of substrate holders in film deposition apparatus, and film deposition apparatus, and thin film deposition apparatus
EP3711078B1 (en) Linearized energetic radio-frequency plasma ion source
JP2001043530A (en) Formation of protective film for information recording disk and apparatus for forming thin film for information recording disk
JP2007023376A (en) Improved magnetron sputtering system for large-area substrate
JPH0950992A (en) Film forming device
US6001432A (en) Apparatus for forming films on a substrate
JPH05295552A (en) Plasma treating device
JP3213029B2 (en) Plasma processing apparatus for disk substrate and processing method thereof
WO2010044237A1 (en) Sputtering apparatus, thin film forming method and method for manufacturing field effect transistor
JP3083008B2 (en) Film forming apparatus and film forming method
JPH09202965A (en) Electron beam vapor deposition apparatus
JP3305654B2 (en) Plasma CVD apparatus and recording medium
JPS61210190A (en) Thin film forming device
JPH09125243A (en) Thin film forming device
JP2652292B2 (en) Plasma processing equipment
US6060131A (en) Method of forming a thin film by plasma chemical vapor deposition
JPH08241797A (en) Plasma treatment device
JPS61174725A (en) Thin film forming apparatus
JP2002146525A (en) Sputter deposition system
JPH07216547A (en) Inline-type sputtering device