JPH05295469A - Production of ferro-nickel - Google Patents

Production of ferro-nickel

Info

Publication number
JPH05295469A
JPH05295469A JP10128492A JP10128492A JPH05295469A JP H05295469 A JPH05295469 A JP H05295469A JP 10128492 A JP10128492 A JP 10128492A JP 10128492 A JP10128492 A JP 10128492A JP H05295469 A JPH05295469 A JP H05295469A
Authority
JP
Japan
Prior art keywords
clinker
nickel
rotary kiln
ferro
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10128492A
Other languages
Japanese (ja)
Inventor
Toyomi Matsumori
豊己 松森
Tsukasa Ishizuka
司 石塚
Kazuya Nakaya
一弥 中家
Takashi Nakajima
中島  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP10128492A priority Critical patent/JPH05295469A/en
Publication of JPH05295469A publication Critical patent/JPH05295469A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To improve recovery rate of nickel by charging nickel oxide ore into a rotary kiln together with a reducing agent, executing semi-smelting reduc tion, slowly cooling the obtd. clinker, then pulverizing the clinker and recoverying the ferro-nickel. CONSTITUTION:The iron contg. nickel oxide ore is charged into the rotary kiln together with reducing agent such as anthracite. Then, a semi-smelting reduction is executed to the nickel oxide ore while tumbling it in an oxidizing combustion gas flow at a high temp. of about 1300 deg.C. By this method, Ni oxide and Fe oxide contents in the ore are reduced to obtain the ferro-nickel. At this time, the clinker containing Fe and Ni formed in the rotary kiln is slowly cooled to about 810 deg.C by air-cooling and thereafter, if necessary, this clinker is further rapidly cooled by water-cooling, etc., and successively, this clinker is pulverized and the ferro-nickel particles are recovered by a magnetic separation and floatation. By this method, most of Ni contained in sulfide layer 2 in the clinker is recovered by the ferro-nickel particles 1 and the sulfide layer 2 is removed together with slag 3 from the ferro-nickel particles 1 by pulverizing the clinker.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フェロニッケルの製造
方法に関し、特に酸化ニッケル鉱石からフェロニッケル
を高い回収率で製造する方法についての提案である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ferronickel, and particularly to a method for producing ferronickel from nickel oxide ore with a high recovery rate.

【0002】[0002]

【従来の技術】酸化ニッケル鉱石からフェロニッケルを
乾式法で製造する方法としては、従来、連続式のもので
はロータリーキルンを使う方式のもの、また、バッチ式
のものでは焼結鍋を使うものなどが、それぞれ知られて
いる。例えば、前者のものでは、特公平1−21855 号公
報として公開されている本出願人の提案にかかる半溶融
還元炉による方法がある。この方法は、ロータリーキル
ン内に酸化ニッケル鉱石とともに還元材( 無煙炭) を装
入し、酸化性燃焼気流中で転動造粒して半溶融還元する
ことにより、鉱石中の酸化Ni、酸化Fe分を還元し、その
後フェロニッケルとスラグの混合物であるクリンカーを
水冷して粗砕し、さらにロッドミル等で粉砕し浮選と磁
選してフェロニッケルとして回収する技術である。
2. Description of the Related Art Conventional methods for producing ferronickel from nickel oxide ore by a dry method include a continuous method using a rotary kiln, and a batch method using a sintering pot. , Respectively known. For example, in the former case, there is a method using a semi-smelting reduction furnace proposed by the present applicant, which is disclosed as Japanese Patent Publication No. 1-21855. In this method, a reducing material (anthracite) is charged together with nickel oxide ore into a rotary kiln, and rolling granulation is carried out in an oxidizing combustion air stream to carry out semi-melt reduction to remove Ni oxide and Fe oxide contents in the ore. This is a technique of reducing and then clinker, which is a mixture of ferronickel and slag, is water-cooled to be coarsely crushed, further crushed by a rod mill or the like, and subjected to flotation and magnetic separation to recover ferronickel.

【0003】[0003]

【発明が解決しようとする課題】ロータリーキルンを使
う上記従来技術において、ロータリーキルンから1300℃
で排出され水冷されたクリンカーは、図1に示すよう
に、主としてスラグ3とフェロニッケル粒1とからな
り、このフェロニッケル粒の表面はFeとNiの硫化物相2
で覆われているのが普通である。一般に、この硫化物相
2中には、Niを24.76 wt%も含むにもかかわらず、前述
した破砕工程においてフェロニッケル粒表面から剥がれ
落ち、スラグ分となってしまい、いわゆるNi分として回
収されず、このことがNi回収率の低下を招く一因となっ
ていた。
In the above-mentioned conventional technique using a rotary kiln, 1300 ° C. from the rotary kiln.
As shown in FIG. 1, the water-cooled clinker discharged from the reactor was mainly composed of slag 3 and ferronickel particles 1, and the surface of the ferronickel particles was the sulfide phase 2 of Fe and Ni.
It is usually covered with. Generally, although 24.76 wt% of Ni is also contained in the sulfide phase 2, it is separated from the ferronickel grain surface in the crushing step described above and becomes a slag component, which is not recovered as a so-called Ni component. This was one of the causes of the decrease in Ni recovery rate.

【0004】そこで、本発明の目的は、かつてはスラグ
とともに廃棄されていた硫化物相2中のNiを回収し、Ni
回収率の一層の向上を実現して、従来技術の抱えている
問題点を克服できる技術の確立を図るところにある。
Therefore, an object of the present invention is to recover Ni in the sulfide phase 2 which was once discarded together with the slag, and to recover Ni.
The goal is to establish a technology that can further improve the recovery rate and overcome the problems of the conventional technology.

【0005】[0005]

【課題を解決するための手段】発明者らは、Ni回収率の
向上を阻害している前記硫化物の取扱いについて鋭意研
究を行なったところ、その課題の解決には、ロータリー
キルンの操業に当たって、半溶融還元後に炉内に生成す
るクリンカーの冷却方法を工夫することが有効であると
の知見を得て、本発明を完成した。
[Means for Solving the Problems] The inventors of the present invention have conducted diligent researches on the handling of the sulfides which inhibit the improvement of the Ni recovery rate. To solve the problems, the operation of the rotary kiln was The present invention has been completed based on the finding that it is effective to devise a method for cooling the clinker generated in the furnace after smelting reduction.

【0006】すなわち、ロータリーキルン中に酸化ニッ
ケル鉱石とともに還元材(無煙炭)を装入し、高温の酸
化燃焼気流中で転動させながら半溶融還元することによ
り、鉱石中の酸化Ni, 酸化Fe分を還元してクリンカーと
し、これをロータリーキルンから排出する際、従来技術
では排出された原料を直ちに水中に投下して急冷および
水砕するのであるが、本発明では、まず徐冷するか、一
旦徐冷し引き続き急冷し、その後は、常法に従って粉砕
および浮選、磁選によってフェロニッケル粒を回収する
こととし、これによって高Ni回収率でフェロニッケルを
得るようにした。
That is, a reducing material (anthracite) is charged together with nickel oxide ore into a rotary kiln, and the nickel oxide and Fe oxide components in the ore are removed by performing semi-smelting reduction while rolling in a high-temperature oxidizing combustion air stream. When the clinker is reduced to be discharged from the rotary kiln, the discharged raw material is immediately dropped into water for rapid cooling and water granulation in the conventional technique. Then, it was rapidly cooled, and thereafter, ferronickel grains were collected by pulverization, flotation, and magnetic separation according to a conventional method, thereby obtaining ferronickel with a high Ni recovery rate.

【0007】[0007]

【作用】ロータリーキルンから排出されたクリンカー
(1300℃)を、一旦 810℃まで空冷し、その後、水中に
投下して急冷および粗砕したところ、そのクリンカーの
マクロ組織は図1に示したようにフェロニッケル粒の表
面を硫化物相2が覆った構造を呈し、このようにして形
成された粒状物がスラグ中に散在した状態になっている
ことが判った。たしかに、マクロ組織的には1300℃から
急冷したクリンカーと、上述した一旦810℃まで空冷し
た後に水冷したクリンカーとは、良く似ている。しか
し、両試料の硫化物相をEPMAで定量分析したとこ
ろ、表1に示したように、急冷したクリンカーの硫化物
相には、Niが24.76 wt%も含まれているのに対し、 810
℃まで空冷した後に水冷したクリンカーの硫化物相に
は、Niが1.84wt%しか含まれていないことが明らかとな
った。
[Function] The clinker discharged from the rotary kiln (1300 ° C) was once air-cooled to 810 ° C, and then dropped into water for rapid cooling and crushing, and the macrostructure of the clinker was as shown in Fig. 1. It was found that the surface of the nickel particles was covered with the sulfide phase 2, and the particles thus formed were scattered in the slag. Certainly, in terms of macrostructure, the clinker rapidly cooled from 1300 ° C is very similar to the clinker cooled to 810 ° C and then water-cooled. However, when the sulfide phase of both samples was quantitatively analyzed by EPMA, as shown in Table 1, the sulfide phase of the rapidly cooled clinker contained 24.76 wt% of Ni, while 810
It was revealed that the sulphide phase of the clinker cooled by air after cooling to ℃ contained only 1.84 wt% Ni.

【0008】この原因について、発明者としては、次の
ように考えている。すなわち、硫化物相中には FeS, Ni
S が存在し、これらの硫化物はフェロニッケル、つま
り、FeおよびNiと接触している。高温域を徐冷した場
合、このような系では、下記の(1) 式の反応が優先して
起こり、金属ニッケルが生成しやすくなり、Niの還元生
成を高めることになるのである。 Fe+NiS → FeS+Ni ……(1)
The inventors consider the cause of this as follows. That is, FeS, Ni in the sulfide phase
S is present and these sulfides are in contact with ferronickel, ie Fe and Ni. When the high temperature region is gradually cooled, in such a system, the reaction of the following formula (1) occurs preferentially, metal nickel is easily produced, and the reduction production of Ni is enhanced. Fe + NiS → FeS + Ni …… (1)

【0009】なお、上記(1) 式の反応を進行させるため
のクリンカーの徐冷は、 810℃までが効果的である。ま
た、この時の冷却速度は、大気中での放冷程度でよい。
なお、その後に行う急冷処理は、クリンカーを熱衝撃で
粗砕することと、スラグの結晶粒度を細かくして後工程
での粉砕性を向上させることが主目的があり、それ故
に、高い温度から急冷したほうが効果的であるが、 810
℃は超えない。この急冷時の冷却速度は水冷程度でよ
い。
The slow cooling of the clinker for proceeding the reaction of the above formula (1) is effective up to 810 ° C. In addition, the cooling rate at this time may be a degree of cooling in the atmosphere.
In addition, the quenching treatment to be performed thereafter has the main purpose of roughly crushing the clinker by thermal shock and improving the pulverizability in the subsequent step by making the crystal grain size of the slag finer, and therefore, from a high temperature. It is more effective to quench it, but 810
Do not exceed ℃. The cooling rate during this rapid cooling may be about water cooling.

【0010】本発明者らの研究によると、Ni回収率の向
上と粉砕性の低下を考慮した場合、少なくとも1000〜81
0 ℃の温度域を空冷するのが良いと判った。なお、冷却
途中でのNi酸化ロスを防止し、より効果を高めるために
は、非酸化性雰囲気中での徐冷が好ましい。
According to the research conducted by the present inventors, in consideration of the improvement of Ni recovery rate and the reduction of pulverizability, at least 1000-81
It was found that it is better to air cool the temperature range of 0 ° C. In order to prevent Ni oxidation loss during cooling and to enhance the effect, gradual cooling in a non-oxidizing atmosphere is preferable.

【0011】また、一旦徐冷した後に急冷する理由は、
クリンカーを熱衝撃で粗砕すること、およびスラグの結
晶粒度を細かくして後工程での粉砕性を向上させるのに
より一層効果的であるためであり、本発明の第2の方法
は、正にこの現象を利用したものである。
Further, the reason why the material is gradually cooled and then rapidly cooled is as follows.
This is because it is more effective to coarsely crush the clinker by thermal shock, and to make the slag grain size finer to improve the pulverizability in the subsequent step, and the second method of the present invention is exactly This phenomenon is used.

【0012】[0012]

【実施例】以下に、本発明による実施例と比較例を示し
た。各例とも原料の配合比、ロータリーキルンの操業条
件、粉砕条件、浮選条件、磁選条件については一定にし
て実験した。 実施例1 組成が表2に示すような酸化ニッケル鉱石1tに、無煙
炭を 140kg添加し、ロータリーキルン内に装入し、酸化
性燃焼気流中で転動造粒し、最高温度1400℃で半溶融還
元した。その後、ロータリーキルンからクリンカーを13
00℃で排出し、1000℃まで空冷した後に水冷した。水冷
したクリンカーを粒径0.2 mm以下まで粉砕した後、浮選
と磁選でフェロニッケル粒を回収した。この時のNi回収
率を表3に示した。
EXAMPLES Examples according to the present invention and comparative examples are shown below. In each example, the experiment was performed with the raw material mixture ratio, rotary kiln operating conditions, crushing conditions, flotation conditions, and magnetic separation conditions kept constant. Example 1 140 kg of anthracite coal was added to 1 t of nickel oxide ore having the composition shown in Table 2, charged in a rotary kiln, tumbled and granulated in an oxidizing combustion air stream, and subjected to semi-melt reduction at a maximum temperature of 1400 ° C. did. Then 13 clinker from the rotary kiln
It was discharged at 00 ° C, air-cooled to 1000 ° C, and then water-cooled. After crushing the water-cooled clinker to a particle size of 0.2 mm or less, ferronickel particles were collected by flotation and magnetic separation. The Ni recovery rate at this time is shown in Table 3.

【0013】実施例2 組成が表2に示すような酸化ニッケル鉱石1tに、無煙
炭を 140kg添加し、ロータリーキルン内に装入し、酸化
性燃焼気流中で転動造粒し、最高温度1400℃で半溶融還
元した。その後、ロータリーキルンからクリンカーを13
00℃で排出し、810 ℃まで空冷した後に水冷した。水冷
した原料を粒径0.2 mm以下まで粉砕した後、浮選と磁選
でフェロニッケル粒を回収した。この時のNi回収率を表
3に示した。
Example 2 140 kg of anthracite was added to 1 t of nickel oxide ore having the composition shown in Table 2, charged in a rotary kiln, and tumbled and granulated in an oxidizing combustion air stream at a maximum temperature of 1400 ° C. Semi-melt reduced. Then 13 clinker from the rotary kiln
It was discharged at 00 ° C, air-cooled to 810 ° C, and then water-cooled. After pulverizing the water-cooled raw material to a particle size of 0.2 mm or less, ferronickel particles were collected by flotation and magnetic separation. The Ni recovery rate at this time is shown in Table 3.

【0014】実施例3 組成が表2に示すような酸化ニッケル鉱石1tに、無煙
炭を 140kg添加し、ロータリーキルン内に装入し、酸化
性燃焼気流中で転動造粒し、最高温度1400℃で半溶融還
元した。その後、ロータリーキルンからクリンカーを13
00℃で排出し、810 ℃まで非酸化性雰囲気中で空冷した
後に水冷した。水冷した原料を粒径0.2 mm以下まで粉砕
した後、浮選と磁選でフェロニッケル粒を回収した。こ
の時のNi回収率を表3に示した。
Example 3 140 kg of anthracite coal was added to 1 t of nickel oxide ore having the composition shown in Table 2, charged in a rotary kiln, and tumbled and granulated in an oxidizing combustion air stream at a maximum temperature of 1400 ° C. Semi-melt reduced. Then 13 clinker from the rotary kiln
It was discharged at 00 ° C, air-cooled to 810 ° C in a non-oxidizing atmosphere, and then water-cooled. After pulverizing the water-cooled raw material to a particle size of 0.2 mm or less, ferronickel particles were collected by flotation and magnetic separation. The Ni recovery rate at this time is shown in Table 3.

【0015】実施例4 組成が表2に示すような酸化ニッケル鉱石1tに、無煙
炭を 140kg添加してロータリーキルン内に装入し、酸化
性燃焼気流中で転動造粒し、最高温度1400℃で半溶融還
元した。その後、ロータリーキルン中で徐冷し 810℃で
排出されたクリンカーを水冷した。水冷したクリンカー
を粒径0.2 mm以下まで粉砕した後、浮選と磁選でフェロ
ニッケル粒を回収した。この時のNi回収率を表3に示し
た。
Example 4 To 1 t of nickel oxide ore having the composition shown in Table 2, 140 kg of anthracite was added and charged into a rotary kiln, and tumbled and granulated in an oxidizing combustion air stream at a maximum temperature of 1400 ° C. Semi-melt reduced. Then, the clinker was gradually cooled in a rotary kiln and discharged at 810 ° C. to be water-cooled. After crushing the water-cooled clinker to a particle size of 0.2 mm or less, ferronickel particles were collected by flotation and magnetic separation. The Ni recovery rate at this time is shown in Table 3.

【0016】実施例5 組成が表2に示すような酸化ニッケル鉱石1tに、無煙
炭を 140kg添加してロータリーキルン内に装入し、酸化
性燃焼気流中で転動造粒し、最高温度1400℃で半溶融還
元した。その後、ロータリーキルンから1300℃で排出さ
れたクリンカーを25℃まで空冷し、粒径0.2 mm以下まで
粉砕した後、浮選と磁選でフェロニッケル粒を回収し
た。この時のNi回収率を表3に示した。
Example 5 To 1 t of nickel oxide ore having the composition shown in Table 2, 140 kg of anthracite was added and charged into a rotary kiln. The granules were tumbled and granulated in an oxidizing combustion air stream at a maximum temperature of 1400 ° C. Semi-melt reduced. Then, the clinker discharged from the rotary kiln at 1300 ° C. was air-cooled to 25 ° C., pulverized to a particle size of 0.2 mm or less, and ferronickel particles were collected by flotation and magnetic separation. The Ni recovery rate at this time is shown in Table 3.

【0017】比較例 組成が表2に示すような酸化ニッケル鉱石1tに、無煙
炭を 140kg添加してロータリーキルン内に装入し、酸化
性燃焼気流中で転動造粒し、最高温度1400℃で半溶融還
元した。その後、ロータリーキルンからクリンカーを13
00℃で排出したのち直ちに水冷した。水冷したクリンカ
ーを粒径0.2 mm以下まで粉砕した後、浮選と磁選でフェ
ロニッケル粒を回収した。この時のNi回収率を表3に示
した。
Comparative Example To 1 t of nickel oxide ore having the composition shown in Table 2, 140 kg of anthracite was added and charged into a rotary kiln, and the mixture was tumbled and granulated in an oxidizing combustion air stream at a maximum temperature of 1400 ° C. Melt reduced. Then 13 clinker from the rotary kiln
It was discharged at 00 ° C and immediately cooled with water. After crushing the water-cooled clinker to a particle size of 0.2 mm or less, ferronickel particles were collected by flotation and magnetic separation. The Ni recovery rate at this time is shown in Table 3.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】上掲表3に示す結果から判るように、実施
例3ではNi回収率が97.8%となり、比較例のNi回収率9
1.4%に比べて 6.4%Ni回収率が向上した。実施例1で
は、冷却温度が1000℃と比較的高いために、Ni回収率が
94.5%に留まった。実施例2では、大気中で冷却したた
めに実施例3に比べてNi回収率が低く、96.3%となっ
た。実施例4では、ロータリーキルン内で冷却したが、
実施例3と同等のNi回収率を得た。実施例5では、室温
まで徐冷したためにクリンカーの粉砕性が低下し、Ni回
収率も94.9%に留まった。
As can be seen from the results shown in Table 3 above, the Ni recovery rate in Example 3 was 97.8%, and the Ni recovery rate in Comparative Example 9 was 9%.
The 6.4% Ni recovery was improved compared to 1.4%. In Example 1, since the cooling temperature was relatively high at 1000 ° C., the Ni recovery rate was
It remained at 94.5%. In Example 2, since Ni was cooled in the atmosphere, the Ni recovery rate was lower than that in Example 3, and was 96.3%. In Example 4, cooling was performed in the rotary kiln,
The Ni recovery rate equivalent to that in Example 3 was obtained. In Example 5, since the clinker was gradually cooled to room temperature, the crushability of the clinker was lowered, and the Ni recovery rate was 94.9%.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
Ni酸化鉱石からNi含有量の高いフェロニッケルを容易に
製造できる。
As described above, according to the present invention,
Ferronikel with high Ni content can be easily produced from Ni oxide ore.

【図面の簡単な説明】[Brief description of drawings]

【図1】排出クリンカーの部分断面図である。FIG. 1 is a partial cross-sectional view of an effluent clinker.

【符号の説明】[Explanation of symbols]

1 フェロニッケル粒 2 硫化物相 3 スラグ 1 Ferronickel grain 2 Sulfide phase 3 Slag

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 隆 京都府宮津市字須津413 日本冶金工業株 式会社大江山製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Nakajima 413 Sutsu, Miyazu, Kyoto Prefecture Nippon Metallurgical Industry Co., Ltd. Oeyama Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ロータリーキルンに酸化ニッケル鉱石と
ともに還元材を装入し、高温の酸化性燃焼気流中で転動
させながら半溶融還元することにより、鉱石中の酸化N
i, 酸化Fe分を還元してフェロニッケルを製造する方法
において、上記半溶融還元の後に得られるFe・Ni含有ク
リンカーを徐冷し、その後粉砕してフェロニッケル粒の
回収を行うことを特徴とするフェロニッケル製造方法。
1. A rotary kiln is charged with a reducing material together with nickel oxide ore, and is subjected to semi-molten reduction while rolling in a high-temperature oxidizing combustion airflow, thereby oxidizing N in the ore.
i, a method for producing ferronickel by reducing Fe oxide, characterized in that the Fe / Ni-containing clinker obtained after the semi-melt reduction is gradually cooled and then pulverized to recover ferronickel particles. Method for producing ferronickel.
【請求項2】 ロータリーキルンに酸化ニッケル鉱石と
ともに還元材を装入し、高温の酸化燃焼気流中で転動さ
せながら半溶融還元することにより、鉱石中の酸化Ni,
酸化Fe分を還元してフェロニッケルを製造する方法にお
いて、上記半溶融還元後に得られるFe・Ni含有クリンカ
ーを一旦徐冷し、引き続き急冷し、その後粉砕してフェ
ロニッケル粒の回収を行うことを特徴とするフェロニッ
ケル製造方法。
2. A rotary kiln is charged with a reducing material together with nickel oxide ore, and is subjected to semi-molten reduction while rolling in a high-temperature oxidizing combustion air flow to obtain nickel oxide in the ore.
In the method of producing ferronickel by reducing Fe oxide, the Fe / Ni-containing clinker obtained after the semi-melt reduction is gradually cooled, then rapidly cooled, and then pulverized to recover ferronickel particles. A characteristic method for producing ferronickel.
JP10128492A 1992-04-21 1992-04-21 Production of ferro-nickel Pending JPH05295469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10128492A JPH05295469A (en) 1992-04-21 1992-04-21 Production of ferro-nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10128492A JPH05295469A (en) 1992-04-21 1992-04-21 Production of ferro-nickel

Publications (1)

Publication Number Publication Date
JPH05295469A true JPH05295469A (en) 1993-11-09

Family

ID=14296565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10128492A Pending JPH05295469A (en) 1992-04-21 1992-04-21 Production of ferro-nickel

Country Status (1)

Country Link
JP (1) JPH05295469A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336028A (en) * 2005-05-31 2006-12-14 Nippon Yakin Kogyo Co Ltd Ferronickel smelting process
KR101009034B1 (en) * 2008-09-19 2011-01-17 주식회사 포스코 Method of forming a ferronikel
JP7393570B1 (en) * 2023-01-27 2023-12-06 日本冶金工業株式会社 Ferronickel alloy and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336028A (en) * 2005-05-31 2006-12-14 Nippon Yakin Kogyo Co Ltd Ferronickel smelting process
JP4625373B2 (en) * 2005-05-31 2011-02-02 日本冶金工業株式会社 Ferronickel smelting method
KR101009034B1 (en) * 2008-09-19 2011-01-17 주식회사 포스코 Method of forming a ferronikel
JP7393570B1 (en) * 2023-01-27 2023-12-06 日本冶金工業株式会社 Ferronickel alloy and its manufacturing method

Similar Documents

Publication Publication Date Title
US1717160A (en) Reduction of complex ores
EP3252178B1 (en) Method for smelting saprolite ore
WO2023273263A1 (en) Method for treating mixture of laterite nickel ore leached slag and yellow sodium jarosite slag and application thereof
WO2000050652A1 (en) Treatment of metal sulphide concentrates by roasting and arc furnace smelt reduction
CN112410586B (en) Method for comprehensively recovering niobium, rare earth and titanium from multi-metal ore containing iron, niobium and rare earth
US3929461A (en) Fusion-oxidation process for recovering vanadium and titanium from iron ores
JPS61221337A (en) Metallurgical method
CA1216432A (en) Method for treating iron-bearing slags containing precious metals, particularly slags created in the smelting processes of copper and nickel
JPS61221338A (en) Metallurgical method
US4023959A (en) Method for recovering vanadium from magnetite and forming a magnetite product low in sodium and silica
JPH05295469A (en) Production of ferro-nickel
GB2030553A (en) Recovery of metallic iron
US4200455A (en) Hydrometallurgical recovery of metal values
CA1134621A (en) Hydrometallurgical recovery of metal values
US4312841A (en) Enhanced hydrometallurgical recovery of cobalt and nickel from laterites
KR20010090551A (en) Process of recovering valuable metal
JPS5827917A (en) Treatment of converter slag or the like
US4328192A (en) Ammoniacal nickel leach of laterites
JPH05311265A (en) Production of high-ni-content ferronickel
US2765988A (en) Reduction of iron ores
US3068090A (en) Alkali metal salts and base additions in non-titaniferous ore reductions
US2912319A (en) Method for desulphurizing iron
US3097090A (en) Metallurgical process
US3468629A (en) Recovery of nickel from nickel-containing sulfide materials
US3232742A (en) Using iron-iron sulfide product to precipitate copper from a copper-bearing solution