JPH05295454A - Strength estimating method of sintered ore for blast furnace - Google Patents

Strength estimating method of sintered ore for blast furnace

Info

Publication number
JPH05295454A
JPH05295454A JP4121086A JP12108692A JPH05295454A JP H05295454 A JPH05295454 A JP H05295454A JP 4121086 A JP4121086 A JP 4121086A JP 12108692 A JP12108692 A JP 12108692A JP H05295454 A JPH05295454 A JP H05295454A
Authority
JP
Japan
Prior art keywords
strength
raw material
sinter
sample
sintered ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4121086A
Other languages
Japanese (ja)
Inventor
Tetsuya Yamamoto
哲也 山本
Yukihiro Hida
行博 肥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4121086A priority Critical patent/JPH05295454A/en
Publication of JPH05295454A publication Critical patent/JPH05295454A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To estimate the strength of a sintered ore with extremely good accuracy by directly using the mixed raw material before sintering with a sintering machine. CONSTITUTION:Of the mixed raw material of the sintered ore for blast furnaces, raw material of the part having <=1mm grain size is taken out and packed into a prescribed container where the raw material is compression molded to form a sample; thereafter, the sample is fired in an electric furnace. The volume of the sample before and after the firing is measured and the strength of the sintered ore formed by using the mixed raw material mentioned above is estimated from the measured volumetric ratio. As a result, the fluctuation in the strength of the sintered ore at every change of the mixing ratio between each of the raw materials is prevented and the problem of an increase in the production cost of the sintered ore and the fuel ratio of the blast furnace is solved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉製銑法の主要原料
である焼結鉱の強度を焼結用配合原料の配合設計段階で
事前に推定する方法に関し、配合原料の配合割合変更に
よる焼結鉱強度の変動を未然に防止するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of preliminarily estimating the strength of sinter, which is the main raw material of the blast furnace pig iron making process, at the stage of designing the blending raw material for sintering. It is intended to prevent fluctuations in the strength of the sinter.

【0002】[0002]

【従来の技術】一般に高炉用焼結鉱の原料は、外国産の
鉄鉱石を大型輸送船で輸入することから、10日から2
0日に一度程度の頻度で各種鉄鉱石の配合割合を変更せ
ざるを得ない状況にある。また、鉄鉱石は各産地別にそ
れぞれ成分、粒径などが異なるため、配合割合の変更の
たびに焼結鉱強度が変動して焼結鉱製造コストや高炉燃
料比が増加する問題があった。
2. Description of the Related Art Generally, a raw material for a sinter for a blast furnace is 10 days to 2 days since foreign-made iron ore is imported by a large transport ship.
There is no choice but to change the mixing ratio of various iron ores once a day. Further, since iron ore has different components, particle sizes, etc. depending on each production area, there is a problem that the sinter ore production cost and the blast furnace fuel ratio increase due to variation in sinter ore strength each time the mixing ratio is changed.

【0003】従来は、配合割合の変更による上記問題に
対して、過去の焼結操業データから配合原料の成分と焼
結鉱強度の関係、あるいは各種鉱石銘柄の配合割合と焼
結鉱強度の関係を導き、配合変更による焼結鉱強度の変
化を推定して、燃料である粉コークスの配合比を管理し
ていた。
Conventionally, in order to solve the above problems caused by changing the mixing ratio, the relationship between the components of the mixing raw material and the strength of the sinter or the relationship between the mixing ratio of various ore brands and the strength of the sinter according to the past sintering operation data. And the change in the sinter ore strength due to the change in the composition was estimated, and the compounding ratio of the powder coke as the fuel was controlled.

【0004】[0004]

【発明が解決しようとする課題】前述した従来の焼結鉱
強度推定方法は、配合割合変更以外の外乱要因も含んだ
実機焼結機の操業データを使用するため推定精度が低
く、上記の問題を完全に解決するには至っていない。
The above-mentioned conventional method for estimating the strength of sinter uses the operation data of the actual sinter machine including the disturbance factors other than the change of the mixing ratio, and therefore the estimation accuracy is low, and the above-mentioned problem is encountered. Has not been completely resolved.

【0005】本発明は極めて精度良く焼結鉱強度を推定
し、配合割合の変更のたびに焼結鉱強度が変動すること
を未然に防止して焼結鉱製造コストや高炉燃料比が増加
する問題を解決するものである。
The present invention estimates the strength of sinter ore with extremely high accuracy and prevents the strength of the sinter from varying each time the blending ratio is changed, thereby increasing the sinter production cost and the blast furnace fuel ratio. It solves the problem.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、高炉用
焼結鉱の配合原料のうち粒径が1mm以下の部分を取り
出して所定の容器に充填し、圧縮成型して試料を作成し
た後電気炉で焼成し、焼成前後の前記試料の体積を測定
してその体積比から前記配合原料を用いた焼結鉱の強度
を推定する高炉用焼結鉱の強度推定方法である。
Means for Solving the Problem The gist of the present invention is to prepare a sample by taking out a portion having a particle size of 1 mm or less from a raw material for sinter for a blast furnace, filling it into a predetermined container, and compression-molding it. It is a method for estimating the strength of a sinter for blast furnace, which comprises firing in a post electric furnace, measuring the volume of the sample before and after firing, and estimating the strength of the sinter using the blended raw material from the volume ratio.

【0007】[0007]

【作用】一般に焼結鉱原料には5〜15種類程度の鉄鉱
石と副原料である石灰石、珪石、蛇紋岩、生石灰などを
混合したものが用いられ、これらを配合原料と総称して
いる。配合原料の平均粒径は1.5〜3mm程度の範囲
にあり、1mm以下の割合は30〜70%である。
In general, as a raw material for sinter, a mixture of about 5 to 15 kinds of iron ore and auxiliary raw materials such as limestone, silica stone, serpentine and quick lime is used, and these are collectively referred to as blended raw materials. The average particle size of the blended raw material is in the range of about 1.5 to 3 mm, and the proportion of 1 mm or less is 30 to 70%.

【0008】焼結鉱は上記配合原料を返鉱および燃料で
ある粉コークスと混合造粒してから焼結機ベッド層内に
装入し、最上面に点火した後、空気を下方吸引してベッ
ド内の温度を除々に上昇させ、原料の微粉部分から溶融
を開始させて製造する。
The sinter ore is prepared by mixing and blending the above-mentioned blended raw material with powdered coke which is a return ore, and charging the mixture into the bed layer of the sinter machine, igniting the uppermost surface, and then sucking air downward. The temperature in the bed is gradually raised, and melting is started from the fine powder portion of the raw material for production.

【0009】本発明は、前述のごとく配合原料の微粉部
分から溶融が開始し、焼結が行われる点に着目し、配合
原料の粒径が1mm以下の部分を所定の容器に充填し、
圧縮成型して試料を作成した後電気炉で焼成し、焼成前
後の前記試料の体積を測定してその体積比から前記配合
原料を用いた焼結鉱の強度を推定する方法である。以
下、詳細について述べる。
In the present invention, attention is paid to the fact that the melting starts from the fine powder portion of the compounded raw material and the sintering is performed as described above, and a portion where the particle diameter of the compounded raw material is 1 mm or less is filled in a predetermined container,
This is a method of preparing a sample by compression molding, firing it in an electric furnace, measuring the volume of the sample before and after firing, and estimating the strength of the sinter using the blended raw material from the volume ratio. The details will be described below.

【0010】焼結鉱原料として予定されている配合原料
について、配合前の各種の原料をサンプリングし、ふる
い分けて粒径1mm以下の部分を採取する。これら各種
の原料の粒径1mm以下の部分を、配合割合にあらかじ
め求めておいた粒径1mm以下の重量割合をかけた値、
すなわち配合原料の粒径1mm以下の部分におけるその
原料の割合に応じて調合し、焼結鉱強度推定用の試料と
する。混合の完了した配合原料をサンプリングし、その
1mm以下の部分を採取して強度推定用試料としても良
いが、この場合にはサンプリングのばらつきが大きく、
強度推定精度が低下する恐れがあるため、前述の方法が
望ましい。
With respect to the blended raw material planned as a raw material for sinter, various raw materials before blending are sampled and sieved to collect a portion having a particle diameter of 1 mm or less. A value obtained by multiplying a portion having a particle diameter of 1 mm or less of each of these various raw materials by a weight ratio having a particle diameter of 1 mm or less, which is obtained in advance, by a compounding ratio,
That is, a sample for estimating the strength of sinter ore is prepared by mixing the mixed raw materials according to the ratio of the raw materials in a portion having a particle diameter of 1 mm or less. It is also possible to sample the mixed raw material that has been mixed, and collect a portion of 1 mm or less to use as a strength estimation sample, but in this case, there is a large variation in sampling,
The method described above is desirable because the accuracy of intensity estimation may be reduced.

【0011】上記試料0.5g以上を一定量秤量して直
径30mm以下の円筒型成型容器に充填し、4kg/m
2 以下の一定量の荷重をかけて圧縮成型する。圧縮成
型した試料はマイクロメーターを用いて高さを計測し、
円筒型成型容器の直径と掛け合わせて体積を算出する。
次に試料を電気炉で焼成するが、実際の焼結でのヒート
・パターンに近似させて、最高温度を1300℃、11
00℃から最高温度までの昇温速度を200℃/mi
n、最高温度から1100℃までの冷却速度を70℃/
minとして焼成する。焼成後は水銀法で試料の体積を
測定する。
A fixed amount of 0.5 g or more of the above sample was weighed and filled in a cylindrical molding container having a diameter of 30 mm or less, and 4 kg / m.
Compression molding is performed by applying a certain amount of load of m 2 or less. The height of the compression-molded sample is measured using a micrometer,
The volume is calculated by multiplying it by the diameter of the cylindrical molding container.
Next, the sample is fired in an electric furnace, and the maximum temperature is set to 1300 ° C. at 11 ° C. by approximating the heat pattern in actual sintering.
Temperature rising rate from 00 ℃ to maximum temperature is 200 ℃ / mi
n, cooling rate from maximum temperature to 1100 ° C is 70 ° C /
Bake as min. After firing, the sample volume is measured by the mercury method.

【0012】ここで試料重量を0.5g以上としたの
は、これ未満では試料の代表性がそこなわれるためであ
る。また、成型容器に円筒型容器を用いるのは、成型後
に焼成する段階で、直方体や立方体に比べて試料の均一
な焼成状態が得やすいためであり、試料直径が30mm
を超えると、焼成時の試料表面と内部の温度が不均一に
なり強度推定精度が低下する。さらに、圧縮成型時の荷
重が4kg/mm2 を超えると試料の焼成前後の体積変
化が小さくなり、本発明で評価指標とする焼成前後の体
積比の差異が配合の異なる試料間で小さくなるため、強
度推定精度が低下することが実験により判明した。
The reason why the sample weight is set to 0.5 g or more is that the representativeness of the sample is impaired if the sample weight is less than 0.5 g. Further, the reason why the cylindrical container is used as the molding container is that it is easier to obtain a uniform baking state of the sample at the stage of baking after molding as compared with a rectangular parallelepiped or a cube, and the sample diameter is 30 mm.
If it exceeds, the temperature on the surface of the sample during firing will be non-uniform and the accuracy of strength estimation will decrease. Furthermore, when the load during compression molding exceeds 4 kg / mm 2 , the volume change before and after firing of the sample becomes small, and the difference in volume ratio before and after firing, which is an evaluation index in the present invention, becomes small between the samples having different formulations. It was found through experiments that the accuracy of strength estimation was reduced.

【0013】焼結鉱の強度推定指標としては、焼成前の
試料体積V1 と焼成後の試料体積V2 から焼成による試
料の収縮率(1−V2 /V1 )を算出して用いる。本発
明においては、図1に示したように、上記収縮率が高い
ほど実際の焼結鉱の強度が高くなる。すなわち、焼結鉱
の強度は落下強度(JIS M8711−87)、回転
強度(JIS M8712−87)共に収縮率と相関が
ある。
As an index for estimating the strength of the sinter, the shrinkage ratio (1-V 2 / V 1 ) of the sample due to firing is calculated from the sample volume V 1 before firing and the sample volume V 2 after firing. In the present invention, as shown in FIG. 1, the higher the shrinkage ratio, the higher the actual strength of the sintered ore. That is, the strength of the sinter has both a drop strength (JIS M8711-87) and a rotation strength (JIS M8712-87), which are correlated with the shrinkage rate.

【0014】[0014]

【実施例】まず、本法による焼結鉱強度推定値の精度に
ついて説明する。
EXAMPLES First, the accuracy of the sinter ore strength estimated value by this method will be described.

【0015】表1に示す10種類の配合原料を実際に焼
結機で焼結した場合の焼結鉱強度と本法で強度推定指標
とする収縮率の関係を図1に示す。なお、収縮率は試料
1gを直径8mmの円筒型容器に充填し、2kg/mm
2 の荷重で圧縮成型した後、電気炉で焼成して焼成前後
の体積変化から求めた。
FIG. 1 shows the relationship between the sinter strength when 10 kinds of compounded raw materials shown in Table 1 are actually sintered by a sinter and the shrinkage rate which is a strength estimation index in this method. The shrinkage rate is 2 kg / mm when 1 g of the sample is filled in a cylindrical container having a diameter of 8 mm.
After compression-molding with a load of 2 , it was fired in an electric furnace and determined from the volume change before and after firing.

【0016】[0016]

【表1】 [Table 1]

【0017】図1によれば、各種鉱石銘柄の配合割合と
焼結鉱強度の関係を実機操業データから導いた従来法の
推定値に比べて、本法の推定精度が極めて高いことが明
確である。
According to FIG. 1, it is clear that the estimation accuracy of this method is much higher than the estimation value of the conventional method, which was derived from the actual operation data of the relationship between the mixing ratio of various ore brands and the sinter strength. is there.

【0018】次に、本法を用いた焼結操業結果、高炉操
業成績について説明する。
Next, the sintering operation results and blast furnace operation results using this method will be described.

【0019】図2に示すように、本発明による焼結鉱強
度推定を用いない従来操業の期間は、配合変更のたびに
焼結鉱強度が変動した。粉コークス配合量の増減で強度
を管理しているものの事後管理のためオーバーアクショ
ンにならざるを得ず、かつ高炉の燃料比にも大きな変動
がある。これに対し、本法を適用した期間は焼結鉱強度
を安定させる事ができ、粉コークス配合の増減量が減少
して従来より低い粉コークス配合量となった。さらに強
度の安定により高炉燃料比も低減できた。
As shown in FIG. 2, during the conventional operation period in which the sinter ore strength estimation according to the present invention was not used, the sinter ore strength varied each time the composition was changed. Although the strength is controlled by increasing / decreasing the amount of powdered coke blended, there is no choice but to take over action due to the post-management, and the fuel ratio of the blast furnace also fluctuates greatly. On the other hand, during the period when this method was applied, the strength of the sintered ore could be stabilized, and the increase / decrease in the amount of powder coke compounded decreased, resulting in a lower amount of powder coke compounded. In addition, the stable strength also reduced the blast furnace fuel ratio.

【0020】[0020]

【発明の効果】本発明は高炉製銑法の主要原料である焼
結鉱の強度を焼結用配合原料の配合設計段階で事前に精
度良く推定することができ、配合原料の配合割合変更に
よる焼結鉱強度の変動を未然に防止して焼結鉱製造コス
トや高炉燃料比が増加する問題を解決できる。
INDUSTRIAL APPLICABILITY According to the present invention, the strength of sinter, which is a main raw material of the blast furnace pig iron making method, can be accurately estimated in advance at the blending design stage of the blending raw material for sintering. It is possible to prevent the fluctuation of the strength of the sinter before it can solve the problem of increasing the manufacturing cost of the sinter and the fuel ratio of the blast furnace.

【図面の簡単な説明】[Brief description of drawings]

【図1】本法の焼結鉱強度推定精度を示す図である。FIG. 1 is a diagram showing sinter ore strength estimation accuracy of the present method.

【図2】従来操業期間および本法適用期間の操業推移を
示す図である。
FIG. 2 is a diagram showing an operation transition during a conventional operation period and an application period of the present method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高炉用焼結鉱の配合原料のうち粒径が1
mm以下の部分を取り出して所定の容器に充填し、圧縮
成型して試料を作成した後電気炉で焼成し、焼成前後の
前記試料の体積を測定してその体積比から前記配合原料
を用いた焼結鉱の強度を推定する高炉用焼結鉱の強度推
定方法。
1. The particle size of the mixed raw material of sinter for blast furnace is 1
A portion of mm or less is taken out, filled in a predetermined container, compression molded to prepare a sample, and then fired in an electric furnace, the volume of the sample before and after firing is measured, and the blended raw material is used from the volume ratio. A method for estimating the strength of sinter ore for blast furnace to estimate the strength of sinter.
JP4121086A 1992-04-16 1992-04-16 Strength estimating method of sintered ore for blast furnace Pending JPH05295454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4121086A JPH05295454A (en) 1992-04-16 1992-04-16 Strength estimating method of sintered ore for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4121086A JPH05295454A (en) 1992-04-16 1992-04-16 Strength estimating method of sintered ore for blast furnace

Publications (1)

Publication Number Publication Date
JPH05295454A true JPH05295454A (en) 1993-11-09

Family

ID=14802525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4121086A Pending JPH05295454A (en) 1992-04-16 1992-04-16 Strength estimating method of sintered ore for blast furnace

Country Status (1)

Country Link
JP (1) JPH05295454A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101109838B1 (en) * 2009-10-29 2012-02-13 현대제철 주식회사 Metals structure measuring method of sintered ore
JP2020041187A (en) * 2018-09-11 2020-03-19 日鉄日新製鋼株式会社 Method for estimating strength of sintered ore

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120625A (en) * 1981-01-20 1982-07-27 Sumitomo Metal Ind Ltd Manufacture of sintered ore
JPS59153845A (en) * 1983-02-21 1984-09-01 Nippon Kokan Kk <Nkk> Method for controlling blending of ore as starting material for sintering

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120625A (en) * 1981-01-20 1982-07-27 Sumitomo Metal Ind Ltd Manufacture of sintered ore
JPS59153845A (en) * 1983-02-21 1984-09-01 Nippon Kokan Kk <Nkk> Method for controlling blending of ore as starting material for sintering

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101109838B1 (en) * 2009-10-29 2012-02-13 현대제철 주식회사 Metals structure measuring method of sintered ore
JP2020041187A (en) * 2018-09-11 2020-03-19 日鉄日新製鋼株式会社 Method for estimating strength of sintered ore

Similar Documents

Publication Publication Date Title
EP0147101A2 (en) Aluminum nitride-based sintered body of high thermal conductivity
JPH05295454A (en) Strength estimating method of sintered ore for blast furnace
GB1602821A (en) Ceramic powder material and method for manufacturing the same
JPS5681603A (en) Sintering method for green material of aluminum powder
ATE167755T1 (en) STORAGE CATHODE AND PRODUCTION PROCESS
CN103011789A (en) Injection molding composition and producing method thereof
JP6420109B2 (en) Method for producing sintered ore
CN104451207B (en) Technical method for performing vacuum induction melting of 4J36 low-expansion alloy
SU865479A1 (en) Composition for making ceramic foundry cores
JPH0565628A (en) Silicon nitride target
JPS6148536A (en) Manufacture of sintered ore
Takashiba et al. Experimental ammonia-free phosphate-bonded investments using Mg (H2PO4) 2 solution
JPH0677069A (en) Manufacture of anisotropic magnet
JPH1081920A (en) Operation of sintering
KR101581572B1 (en) Methods of manufacturing pellet for blast furnace
JP2656709B2 (en) Method for producing silicon nitride sintered body
JP4510343B2 (en) Raw material evaluation method and blending design method
JP2020004943A (en) Manufacturing method of thermoelectric element
JPS61199061A (en) Molybdenum plate for baking of ceramic material
JP3633762B2 (en) Method for manufacturing voltage nonlinear resistor
KR20030050220A (en) Method for manufacturing the sintering ore
JPH0734408B2 (en) Method for manufacturing high permeability magnetic material
CN117198671A (en) Super-micro-sized neodymium-iron-boron sintered magnet and preparation method and application thereof
JPH06330188A (en) Method for adjusting moisture content in raw material for sintering
JP2003335571A (en) Method for manufacturing clay tile