JPH05294120A - Tire pressure detecting device - Google Patents

Tire pressure detecting device

Info

Publication number
JPH05294120A
JPH05294120A JP4128079A JP12807992A JPH05294120A JP H05294120 A JPH05294120 A JP H05294120A JP 4128079 A JP4128079 A JP 4128079A JP 12807992 A JP12807992 A JP 12807992A JP H05294120 A JPH05294120 A JP H05294120A
Authority
JP
Japan
Prior art keywords
air pressure
tire
change
tire air
lowering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4128079A
Other languages
Japanese (ja)
Other versions
JP3289312B2 (en
Inventor
Toshiharu Naito
俊治 内藤
Takeyasu Taguchi
健康 田口
Hiromi Tokuda
▲ひろみ▼ 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP12807992A priority Critical patent/JP3289312B2/en
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to DE69226175T priority patent/DE69226175T2/en
Priority to PCT/JP1992/001457 priority patent/WO1993010431A1/en
Priority to EP97103562A priority patent/EP0783982B1/en
Priority to DE1992633018 priority patent/DE69233018T2/en
Priority to EP92923005A priority patent/EP0578826B1/en
Priority to US08/133,440 priority patent/US5497657A/en
Publication of JPH05294120A publication Critical patent/JPH05294120A/en
Priority to US08/168,093 priority patent/US5553491A/en
Application granted granted Critical
Publication of JP3289312B2 publication Critical patent/JP3289312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To avoid erroneous judgment by comparing each resonance frequency component extracted from the vibration frequency components of each tire to detect the lowering condition of tire pressure, comparing each rate of change in lowering with a criterion when it is judged that pressure is lowered, and thereby outputting a warning when change in lowering is small but is continued repeatedly as specified. CONSTITUTION:Signals from each wheel speed sensor which is made up of each pluser 2a through 2d composed of each magnetic body corresponding to the tires la through 1d of a vehicle, and of each pick-up coil 3a through 3d, are inputted into an electronic control means 4, and are operated so as to be processed in accordance with a specified program, so that each condition of tire pressure is thereby displayed in a display section 5. Each resonance component is extracted out of signals from the pick-up coils 3a through 3d to be compared with a criterion, and when tire pressure is found to have been lowered, the electronic control means 4 compares a rate of change in lowering with the criterion to judge whether change in lowering is large or small. And when a rate of change in lowering is judged that it is small but has been continued repeatedly as specified, the aforesaid means gives a warning for lowered tire pressure. This constitution thereby can enhance reliability with no chance of erroneous judgment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両のタイヤの空気圧
を検知するタイヤ空気圧検知装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tire air pressure detecting device for detecting the air pressure of a tire of a vehicle.

【0002】[0002]

【従来の技術】従来より、タイヤの空気圧を検知する装
置としては、タイヤの空気圧に応じてタイヤ半径が変化
することを利用して、各車輪の車輪速度を検出する車輪
速度センサの検出信号に基づいて、車両のタイヤの空気
圧を間接的に検知する装置が提案されている。
2. Description of the Related Art Conventionally, as a device for detecting a tire air pressure, the fact that the tire radius changes in accordance with the tire air pressure is used to detect the wheel speed of each wheel by using a detection signal of a wheel speed sensor. Based on this, a device for indirectly detecting the air pressure of a tire of a vehicle has been proposed.

【0003】[0003]

【発明は解決しようとする課題】しかしながら、検出対
象であるタイヤ半径は、摩耗等による個体差があった
り、旋回、制動、発信等の走行状態の影響を受けやす
い。さらに、近年普及が著しいラジアルタイヤは、タイ
ヤ空気圧の変化によるタイヤ半径の変形量が小さい(例
えば、タイヤの空気圧が1kg/cm低下したとき、
タイヤ半径の変形量は約1mmである。)。このような
理由から、タイヤ半径の変形量からタイヤ空気圧の変化
を間接的に検知する方式は、検知精度が充分に確保でき
ないという問題がある。
However, the tire radius to be detected is subject to individual differences due to wear and the like, and is easily influenced by running conditions such as turning, braking and transmission. Further, radial tires, which have been widely used in recent years, have a small amount of deformation of the tire radius due to a change in tire air pressure (for example, when the tire air pressure decreases by 1 kg / cm 2 ,
The amount of deformation of the tire radius is about 1 mm. ). For this reason, the method of indirectly detecting the change in the tire air pressure from the deformation amount of the tire radius has a problem that the detection accuracy cannot be sufficiently secured.

【0004】そこで本願発明者らは上記問題に鑑み、ば
ね下の上下方向あるいは前後方向の共振周波数fKを抽
出し、この共振周波数fKに基づく低下偏差(f0
K)と所定偏差△fを比較することにより、タイヤの
空気圧の状態を検知する装置を発明し、これを出願した
(特願平3−294622号)。しかしながら上記装置
は、前記低下偏差(f0−fK)が所定偏差△f以上にな
ると、直ちにタイヤ空気圧の低下警報を運転者に報知す
るようにしたものであるため誤判定の虞れがある。本発
明は上記した点に鑑みて、誤判定の虞れのない信頼性の
高いタイヤ空気圧検知装置を提供することを目的とする
ものである。
In view of the above problems, the inventors of the present application have extracted the resonance frequency f K in the up-down direction or the front-rear direction of the unsprung part, and decrease the deviation (f 0 −) based on this resonance frequency f K.
We invented a device for detecting the state of tire air pressure by comparing f K ) with a predetermined deviation Δf, and filed an application for this (Japanese Patent Application No. 3-294622). However, the above-mentioned device is designed to immediately notify the driver of a tire pressure drop warning when the drop deviation (f 0 −f K ) becomes equal to or greater than the predetermined deviation Δf, and therefore there is a risk of misjudgment. .. The present invention has been made in view of the above points, and an object thereof is to provide a highly reliable tire air pressure detection device without the risk of erroneous determination.

【0005】[0005]

【問題点を解決するための手段】上記目的を達成するた
めに、本発明によるタイヤ空気圧検知装置は、車両の走
行時に、タイヤの振動周波数成分を含む信号を出力する
出力手段と、前記信号から共振周波数成分の信号を抽出
する抽出手段と、前記共振周波数成分の信号を判定値と
比較することにより前記タイヤ空気圧の低下状態を検知
する検知手段と、前記検知手段によりタイヤ空気圧の低
下が検知されたとき、タイヤ空気圧の低下変化率を判定
値と比較することによりタイヤ空気圧の低下変化の大小
を判定する判定手段と、前記判定手段によりタイヤ空気
圧の低下変化が小と判定され、かつそれが所定回数継続
して検知されたとき、タイヤ空気圧低下警報を出力する
警報手段とを備えることを特徴とする。
In order to achieve the above object, a tire air pressure detecting device according to the present invention includes an output means for outputting a signal including a vibration frequency component of a tire when the vehicle is running, and an output means for outputting the signal. Extraction means for extracting the signal of the resonance frequency component, detection means for detecting the decrease state of the tire air pressure by comparing the signal of the resonance frequency component with a determination value, and the decrease of the tire air pressure is detected by the detection means. When the change rate of the decrease in tire air pressure is compared with the determination value, the determining means determines the size of the change in the decrease in tire air pressure, and the determining means determines that the change in the decrease in tire pressure is small, and that And a warning unit that outputs a tire pressure drop warning when the number of tires is continuously detected.

【0006】[0006]

【作用】上記構成により、判定手段によりタイヤ空気圧
の低下変化が小と判定され、かつそれが所定回数継続す
ると、警報手段がタイヤ空気圧低下警報を出力する。
With the above structure, when the determination means determines that the decrease in tire air pressure is small and continues for a predetermined number of times, the alarm means outputs a tire air pressure decrease alarm.

【0007】[0007]

【実施例】本発明の実施例を図面を参照して説明する。
図1は第1実施例の概略構成図である。車両に装着され
る前後左右の4個のタイヤ1a〜1dに対応して、それ
ぞれ車輪速度センサが設置される。車輪速度センサは、
磁性体よりなる歯車形状のパルサ2a〜2d及びピック
アップコイル3a〜3dにより構成される。パルサ2a
〜2dは、各タイヤ1a〜1dの回転車軸(図示せず)
に固定される。ピックアップコイル3a〜3dは、パル
サ2a〜2dと所定の間隔を置いて取り付けられ、パル
サ2a〜2dの回転、即ち前記各タイヤ1a〜1dの回
転速度に応じた周期を有する交流信号を出力する。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of the first embodiment. Wheel speed sensors are installed corresponding to the four tires 1a to 1d on the front, rear, left, and right mounted on the vehicle. Wheel speed sensor
It is composed of gear-shaped pulsars 2a to 2d and pickup coils 3a to 3d made of a magnetic material. Pulsar 2a
2d are rotating axles (not shown) of the tires 1a to 1d.
Fixed to. The pickup coils 3a to 3d are attached to the pulsars 2a to 2d with a predetermined space therebetween, and output pick-up AC signals having a cycle corresponding to the rotation of the pulsars 2a to 2d, that is, the rotation speed of each of the tires 1a to 1d.

【0008】ピックアップコイル3a〜3dから出力さ
れる交流信号は、電子制御装置(以下ECUという)4に
入力される。ECU4は、CPU、波形整形回路、RO
M,RAM等から構成され、所定のプログラムに従い入
力される各種信号を処理する。そして、その信号処理結
果は表示部5に入力され、該表示部5は運転者に対して
各タイヤ1a〜1dの空気圧の状態を報知する。報知態
様は、各タイヤ1a〜1dの空気圧の状態を格別に表示
するようにしてもよく、また1個の警告ランプにより、
いずれか1個のタイヤの空気圧が基準空気圧よりも低下
したとき、前記警告ランプを点灯して警告するようにし
てもよい。
AC signals output from the pickup coils 3a to 3d are input to an electronic control unit (hereinafter referred to as ECU) 4. The ECU 4 includes a CPU, a waveform shaping circuit, an RO
It is composed of M, RAM, etc., and processes various signals inputted according to a predetermined program. Then, the signal processing result is input to the display unit 5, and the display unit 5 notifies the driver of the air pressure state of each of the tires 1a to 1d. As the notification mode, the state of the air pressure of each of the tires 1a to 1d may be specially displayed, and one warning lamp
When the air pressure of any one of the tires becomes lower than the reference air pressure, the warning lamp may be turned on to give a warning.

【0009】ここで、本実施例におけるタイヤ空気圧の
検知原理について説明する。車両が舗装されたアスファ
ルト路面を走行した場合、その路面表面の微小な凹凸に
より上下及び前後方向の力を受け、その力によってタイ
ヤは上下及び前後方向に振動する。このタイヤ振動時の
車両のばね下の加速度の周波数特性は、図2に示すよう
にa点、b点でピーク値を示す。a点は車両のばね下に
おける上下方向の共振周波数であり、b点は車両のばね
下における前後方向の共振周波数である。
The principle of tire pressure detection in this embodiment will now be described. When a vehicle travels on a paved asphalt road surface, minute irregularities on the surface of the road surface receive forces in the vertical and longitudinal directions, and the forces cause the tire to vibrate in the vertical and longitudinal directions. The frequency characteristics of the unsprung acceleration of the vehicle during tire vibration show peak values at points a and b as shown in FIG. Point a is the vertical resonance frequency of the vehicle under the spring, and point b is the front-rear resonance frequency of the vehicle under the spring.

【0010】タイヤの空気圧が変化すると、タイヤゴム
部のばね定数も変化するため、上記の上下方向及び前後
方向の共振周波数がともに変化する。例えば、図3に示
すように、タイヤの空気圧が低下すると、タイヤゴム部
のばね定数も低下するので、上下方向及び前後方向の共
振周波数が全体的に低周波側に移行し、ピーク値a点は
a′点にピーク値b点はb′点に移行する。従って、タ
イヤの振動周波数より、車両のばね下における上下方向
及び前後方向の共振周波数の少なくとも一方を抽出すれ
ば、この共振周波数に基づいてタイヤの空気圧の状態を
検知することができる。
When the tire air pressure changes, the spring constant of the tire rubber portion also changes, so that the resonance frequencies in the vertical direction and the front-back direction both change. For example, as shown in FIG. 3, when the tire air pressure decreases, the spring constant of the tire rubber portion also decreases, so the resonance frequencies in the up-down direction and the front-rear direction generally shift to the low frequency side, and the peak value a point is The peak value b point at point a ′ shifts to point b ′. Therefore, by extracting at least one of the resonance frequency in the up-down direction and the front-rear direction under the spring of the vehicle from the vibration frequency of the tire, it is possible to detect the tire air pressure state based on the resonance frequency.

【0011】一方、本発明者らの詳細な検討の結果、車
輪速度センサの検出信号には、タイヤの振動周波数成分
が含まれていることが解明された。即ち、車輪速度セン
サの検出信号を周波数解析した結果は、図4に示すよう
に2点でピーク値を示すとともに、タイヤの空気圧の低
下に伴い、その2点のピーク値も低下することが明らか
となった。このため、本実施例では車輪速度センサの検
出信号から、車両のばね下における上下方向及び前後方
向の共振周波数を抽出することで、タイヤ空気圧を検知
しようとするものである。
On the other hand, as a result of a detailed study by the present inventors, it was clarified that the detection signal of the wheel speed sensor contains the vibration frequency component of the tire. That is, it is clear that the result of frequency analysis of the detection signal of the wheel speed sensor shows peak values at two points as shown in FIG. 4, and that the peak values at those two points also decrease as the tire air pressure decreases. Became. For this reason, in the present embodiment, the tire air pressure is detected by extracting the vertical and longitudinal resonance frequencies of the unsprung portion of the vehicle from the detection signal of the wheel speed sensor.

【0012】上記により、本実施例によれば、近年搭載
車両の増加しているアンチスキッド制御装置(ABS)
を備える車両等は、既に各タイヤに車輪速度センサが装
備されているため、何ら新たなセンサ類を追加しなくと
もタイヤ空気圧の検知が可能となる。車両の実用範囲で
は、上記共振周波数の変化量は殆どタイヤ空気圧の変化
に起因するタイヤゴム部のばね定数の変化に基づくもの
であり、タイヤの摩擦等の他の要因の影響を受けること
なく安定した空気圧検知が可能となる。
As described above, according to the present embodiment, the anti-skid control device (ABS), which has been increasing in the number of vehicles equipped with it in recent years,
A vehicle or the like equipped with is equipped with a wheel speed sensor in each tire, so that tire pressure can be detected without adding any new sensor. In the practical range of the vehicle, the amount of change in the resonance frequency is almost based on the change in the spring constant of the tire rubber portion caused by the change in tire air pressure, and is stable without being affected by other factors such as tire friction. Air pressure can be detected.

【0013】以下図5のフローチャートを参照して、E
CU4が行う信号処理について説明する。尚、ECU4
は各車輪1a〜1dに対して同様の処理を行うため、図
5のフローチャートは何れかの1車輪に対しての処理の
みを示している。このため、以後の説明では各符号の添
字は省略する。また、特にタイヤの空気圧が基準値以下
に低下したことを検知し、運転者に対して警告を行う例
について示す。そして、以下の信号処理は4個のタイヤ
毎に独立して行う。
Referring to the flowchart of FIG. 5 below, E
The signal processing performed by the CU 4 will be described. The ECU 4
Performs the same process for each wheel 1a to 1d, the flowchart of FIG. 5 shows only the process for any one wheel. Therefore, in the following description, the subscript of each code is omitted. In addition, an example will be given, in particular, in which it is detected that the tire air pressure has dropped below a reference value and the driver is warned. Then, the following signal processing is independently performed for each of the four tires.

【0014】イグニッションスイッチオンにより処理が
スタートすると、ステップ101で、ピックアップコイ
ル3から出力された交流信号(図6)を波形整形してパル
ス信号とした後、そのパルス間隔をその間の時間で除算
することにより車輪速度vを演算する。この車輪速度v
は図7に示すように、通常タイヤの振動周波数成分を含
む多くの高周波成分を含んでいる。
When the process is started by turning on the ignition switch, in step 101, the AC signal (FIG. 6) output from the pickup coil 3 is shaped into a pulse signal, and the pulse interval is divided by the time interval. Thus, the wheel speed v is calculated. This wheel speed v
As shown in FIG. 7, it usually contains many high frequency components including the vibration frequency component of the tire.

【0015】ステップ102では、演算された車輪速度
vの変動幅△vが基準値v0以上か否かを判定する路面
状態判定処理を行う。このとき、車輪速度vの変動幅△
vが基準値v0以上と判定されるとステップ103に進
む。ステップ103では、車輪速度vの変動幅△vが基
準値v0以上となっている時間△Tが、所定時間t0以上
か否かを判定する路面長判定処理を行う。ステップ10
2の路面状態判定処理、及びステップ103の路面長判
定処理は、車両が走行している路面が、本実施例の検知
手法によってタイヤ空気圧の検知が可能な路面か否かを
判定するために行うものである。つまり、本実施例では
タイヤの空気圧の検知を、タイヤの振動周波数成分に含
まれる共振周波数の変化に基づいて行うため、車輪速度
vがある程度変動し、かつそれが継続されなければ、上
記共振周波数を算出するための充分なデータを得ること
ができない。尚、前記ステップ103における判定で
は、車輪速度vの変動幅△vが基準値v0以上となった
時点で所定時間△tが設定される。また、この所定時間
△t内に再び車輪速度vの変動幅△vが基準値v0以上
になると、時間△Tの計測が継続される。
In step 102, a road surface condition determination process is performed to determine whether the calculated fluctuation width Δv of the wheel speed v is equal to or greater than the reference value v 0 . At this time, the fluctuation range of the wheel speed v Δ
When v is determined to be the reference value v 0 or more, the process proceeds to step 103. In step 103, a road surface length determination process is performed to determine whether or not the time period ΔT in which the fluctuation range Δv of the wheel speed v is the reference value v 0 or more is the predetermined time t 0 or more. Step 10
The road surface condition determination processing of 2 and the road surface length determination processing of step 103 are performed to determine whether or not the road surface on which the vehicle is traveling is a road surface on which the tire air pressure can be detected by the detection method of this embodiment. It is a thing. That is, in the present embodiment, since the tire air pressure is detected based on the change in the resonance frequency included in the vibration frequency component of the tire, if the wheel speed v fluctuates to some extent and is not continued, the resonance frequency It is not possible to obtain sufficient data for calculating In the determination in step 103, the predetermined time Δt is set when the fluctuation width Δv of the wheel speed v becomes equal to or larger than the reference value v 0 . Further, when the fluctuation width Δv of the wheel speed v again becomes equal to or larger than the reference value v 0 within the predetermined time Δt, the measurement of the time ΔT is continued.

【0016】前記ステップ102及びステップ103に
おいて、ともに肯定判断されるとステップ104に進
み、とちらか一方において否定判断されると、ステップ
101に戻る。ステップ104では、演算された車輪速
度vに対して周波数解析(以下FFTという)演算により
周波数解析を行うとともに、その演算回数Nを積算す
る。実際に車両が一般道を走行して得られる車輪速度に
対してFFT演算を実施すると、図8に示すように非常
にランダムな周波数特性となることが通常である。これ
は、路面に存在する微妙な凹凸の形状(大きさや高さ)
が全く不規則なためであり、車輪速度データ毎にその周
波数特性は変動することとなる。従って、本実施例で
は、この周波数特性の変動をできるだけ低減するため
に、複数回のFFT演算結果の平均値を求める。
If both steps 102 and 103 are affirmatively determined, the process proceeds to step 104, and if one or the other is negatively determined, the process returns to step 101. In step 104, frequency analysis is performed on the calculated wheel speed v by frequency analysis (hereinafter referred to as FFT) calculation, and the number of times N of calculation is integrated. When the FFT calculation is actually performed on the wheel speed obtained when the vehicle actually travels on a general road, the frequency characteristics are usually very random as shown in FIG. This is the shape (size and height) of the subtle unevenness that exists on the road surface.
Is completely irregular, and the frequency characteristic fluctuates for each wheel speed data. Therefore, in this embodiment, in order to reduce the variation of the frequency characteristic as much as possible, the average value of the FFT calculation results of a plurality of times is obtained.

【0017】このため、ステップ105では、ステップ
104におけるFFT演算の回数Nが所定回数n0に達
したか否かを判定する。演算回数Nが所定回数n0に達
っしていないときは、前記ステップ101からステップ
104の処理を繰り返し実行する。一方、演算回数Nが
所定回数n0に達っしたときには、ステップ106に進
んで平均化処理を行う。この平均化処理は図9に示すよ
うに、各FFT演算結果の平均値を求めるものであり、
各周波数成分のゲインの平均値が算出される。この平均
化処理によって、路面によるFFT演算結果の変動を低
減することが可能となる。
Therefore, in step 105, it is judged whether or not the number N of FFT operations in step 104 has reached a predetermined number n 0 . When the number of calculations N has not reached the predetermined number n 0 , the processing from step 101 to step 104 is repeatedly executed. On the other hand, when the number of calculations N reaches the predetermined number n 0 , the process proceeds to step 106 to perform the averaging process. As shown in FIG. 9, this averaging process is to obtain an average value of the FFT calculation results,
The average value of the gain of each frequency component is calculated. By this averaging process, it is possible to reduce the fluctuation of the FFT calculation result due to the road surface.

【0018】しかし、上述の平均化処理だけでは、ノイ
ズ等によって車両のばね下の上下方向及び前後方向の共
振周波数のゲインが、その近辺の周波数のゲインに比較
して必ずしも最大ピーク値になるとは限らないという問
題がある。そこで、上述の平均化処理に引き続き、ステ
ップ107において移動平均処理を実施する。この移動
平均処理は、n番目の周波数のゲインYを以下の演算
式によって求めることにより実施される。
However, with the above averaging process alone, the gain of the resonance frequency in the vertical direction and the front-back direction of the unsprung part of the vehicle does not always reach the maximum peak value as compared with the gain of the frequencies in the vicinity thereof due to noise or the like. There is a problem that it is not limited. Therefore, following the averaging process described above, the moving average process is performed in step 107. This moving average processing is performed by obtaining the gain Y n of the nth frequency by the following arithmetic expression.

【0019】[0019]

【数1】Yn=(yn+1+Yn-1)/2 つまり、移動平均処理では、n番目の周波数のゲインY
が、前回の演算結果におけるn+1番目のゲインy
n+1 と既に演算されたn−1番目の周波数のゲインY
n-1 との平均値とされる。これにより、FFT演算結果
は、滑からに変化する波形を示すことになる。この移動
平均処理により求められた演算結果を図10に示す。
## EQU1 ## Y n = (y n + 1 + Y n-1 ) / 2 That is, in the moving average processing, the gain Y of the nth frequency is obtained.
n is the (n + 1) th gain y in the previous calculation result
n + 1 and the gain Y of the n-1th frequency already calculated
It is an average value with n-1 . As a result, the FFT calculation result shows a waveform that changes from slippage. FIG. 10 shows the calculation result obtained by this moving average processing.

【0020】尚、ここでの波形処理は上記移動平均処理
に限らず、平均化処理後のFFT演算結果に対してロー
パスフィルタ処理を施しても良いし、或いは前記ステッ
プ105のFFT演算を実施する前に、車輪速度vの微
分演算を行い、その微分演算結果に対してFFT演算を
実施してもよい。
The waveform processing here is not limited to the above moving average processing, but low pass filter processing may be applied to the FFT calculation result after the averaging processing, or the FFT calculation of step 105 is performed. Before that, the wheel speed v may be differentially calculated, and the FFT calculation may be performed on the differential calculation result.

【0021】続くステップ108では、上記移動平均処
理によりスムージングされたFFT演算結果に基づい
て、車両のばね下の前後方向の共振周波数fKを算出す
る。そして、ステップ109では、算出された共振周波
数fKと予め設定されている空気圧低下判定値fL以下と
なるか否かの判定を行う。次にステップ110では、前
記共振周波数fKの時間当たりの変化率dfKを判定値
(△fK/△t)と比較することにより、タイヤ空気圧の
低下の程度(度合い)を判定する。ここで△fKは、今回
の共振周波数の演算結果と前回の演算結果との差であ
り、△tはその間の時間である。この変化率が前記判定
値以下の場合、即ち急激なタイヤ空気圧の低下でない場
合は、ステップ111へ進みカウンタを設定する。続く
ステップ112では、算出される共振周波数fKの変化
率が前記判定値以下となり、且つ連続してm0回以上前
記空気圧低下判定値fL以下となるか否かの判定を行
う。ステップ112で肯定されると、ステップ113へ
進んで検知対象のタイヤの空気圧が低下した旨の警告が
表示部5に表示される。
In the following step 108, the resonance frequency f K of the unsprung vehicle in the front-rear direction is calculated based on the FFT calculation result smoothed by the moving average processing. Then, in step 109, it is determined whether or not the calculated resonance frequency f K becomes equal to or lower than a preset air pressure drop determination value f L. Next, in step 110, the rate of change df K of the resonance frequency f K per unit time is determined.
By comparing with (Δf K / Δt), the degree (degree) of decrease in tire air pressure is determined. Here, Δf K is the difference between the present calculation result of the resonance frequency and the previous calculation result, and Δt is the time between them. If the rate of change is equal to or less than the determination value, that is, if the tire air pressure does not drop suddenly, the process proceeds to step 111 and the counter is set. In the following step 112, it is determined whether or not the calculated rate of change of the resonance frequency f K is equal to or less than the determination value and is continuously less than or equal to m 0 times and equal to or less than the air pressure decrease determination value f L. If the result in step 112 is affirmative, the process proceeds to step 113, and a warning that the air pressure of the tire to be detected has decreased is displayed on the display unit 5.

【0022】また、前記ステップ109で否定される
と、ステップ109以下の連続処理回数をカウントする
ため、カウンタ値を「0」に初期化する。さらに、前記
ステップ110で共振周波数fKの変化率が前記判定値
以上の場合は、タイヤ空気圧の洩れが急激に発生してタ
イヤ空気圧が低下したものと判断し、ステップ113へ
ジャンプして直ちに前記内容の警告表示を行う。
When the result in step 109 is negative, the counter value is initialized to "0" in order to count the number of continuous processes after step 109. Further, when the rate of change of the resonance frequency f K is equal to or higher than the determination value in step 110, it is determined that the tire air pressure has suddenly leaked and the tire air pressure has dropped, and the process jumps to step 113 and immediately Display a warning of the contents.

【0023】尚、上記実施例は一旦ステップ113で警
告表示を行うと、車両停止まではその警告表示を継続す
る。そして、車両再スタート後又はイグニッションスイ
ッチがオンされ再スタートした後、最初に演算される共
振周波数fKの値が前記空気圧低下判定値より大であれ
ば、タイヤ空気圧低下判定状態を解除し警告表示を中止
する。前記最初に演算される共振周波数fKの値が前記
空気圧低下判定値以下であれば、次の車両停止までその
警告表示を継続するものとし、上記ステップを繰り返す
ものとする。
In the above embodiment, once the warning is displayed in step 113, the warning is continued until the vehicle is stopped. Then, after the vehicle is restarted or after the ignition switch is turned on and restarted, if the value of the resonance frequency f K calculated first is larger than the air pressure drop determination value, the tire air pressure drop determination state is released and a warning display is displayed. To cancel. If the value of the resonance frequency f K calculated first is less than or equal to the air pressure decrease determination value, the warning display is continued until the next vehicle stop, and the above steps are repeated.

【0024】上記実施例は、共振周波数fKの時間当た
りの変化率を求め、この変化率が判定値以下となり、且
つ連続してm0回以上前記空気圧低下判定値fL以下とな
るか否かの判定を行う2段階の判定結果により、タイヤ
の空気圧が低下した旨の警告を行うものであるので、誤
判定を回避でき信頼性を向上できる。
In the above embodiment, the rate of change of the resonance frequency f K per time is obtained, and whether or not this rate of change is not more than the judgment value and continuously not less than m 0 times and not more than the air pressure drop judgment value f L. Since the warning indicating that the tire air pressure has dropped is issued based on the two-stage determination result, it is possible to avoid erroneous determination and improve reliability.

【0025】[0025]

【発明の効果】本発明は上記構成を有し、タイヤ空気圧
の低下変化が小さいと判定されたときには、この状態が
所定回数継続すると、警報手段がタイヤ空気圧低下警報
を出力するものであるから、誤判定の虞れのない信頼性
の高いタイヤ空気圧検知装置を提供できる優れた効果が
ある。
The present invention has the above-mentioned structure, and when it is determined that the change in the decrease in tire air pressure is small, if this state continues for a predetermined number of times, the alarm means outputs a tire air pressure decrease alarm. There is an excellent effect that it is possible to provide a highly reliable tire air pressure detection device without the risk of misjudgment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るタイヤ空気圧検知装置の概略構成
図である。
FIG. 1 is a schematic configuration diagram of a tire air pressure detection device according to the present invention.

【図2】車両のばね下の加速度の周波数特性を示す特性
図である。
FIG. 2 is a characteristic diagram showing frequency characteristics of unsprung acceleration of a vehicle.

【図3】タイヤ空気圧の変化に伴う車両のばね下の上下
方向及び前後方向の共振周波数の変化の様子を示す特性
図である。
FIG. 3 is a characteristic diagram showing how the resonance frequency changes in the up-down direction and the front-rear direction of the unsprung part of the vehicle with changes in tire air pressure.

【図4】タイヤ空気圧の検知原理を示す説明図である。FIG. 4 is an explanatory diagram showing the principle of tire pressure detection.

【図5】ECUの処理内容を示すフローチャートであ
る。
FIG. 5 is a flowchart showing the processing contents of the ECU.

【図6】車輪速度センサの出力電圧波形を示す波形図で
ある。
FIG. 6 is a waveform diagram showing an output voltage waveform of a wheel speed sensor.

【図7】車輪速度センサの検出信号に基づいて演算され
た車輪速度vの変動状態を示す波形図である。
FIG. 7 is a waveform diagram showing a variation state of a wheel speed v calculated based on a detection signal of a wheel speed sensor.

【図8】図7に示す波形の車輪速度vに対するFFT演
算結果を示す特性図である。
8 is a characteristic diagram showing an FFT calculation result for the wheel speed v of the waveform shown in FIG. 7.

【図9】平均化処理を説明するための説明図である。FIG. 9 is an explanatory diagram illustrating an averaging process.

【図10】移動平均処理を行った後のFFT演算結果を
示す特性図である。
FIG. 10 is a characteristic diagram showing an FFT calculation result after performing a moving average process.

【符号の説明】[Explanation of symbols]

1a〜1d...タイヤ 2a〜2d...パルサ 3a〜3d...ピックアップコイル 4...ECU(電子制御装置) 5...表示部 1a to 1d ... tires 2a to 2d ... pulser 3a to 3d ... pickup coil 4 ... ECU (electronic control unit) 5 ... display section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 車両の走行時に、タイヤの振動周波数成
分を含む信号を出力する出力手段と、前記信号から共振
周波数成分の信号を抽出する抽出手段と、前記共振周波
数成分の信号を判定値と比較することにより前記タイヤ
空気圧の低下状態を検知する検知手段と、前記検知手段
によりタイヤ空気圧の低下が検知されたとき、タイヤ空
気圧の低下変化率を判定値と比較することによりタイヤ
空気圧の低下変化の大小を判定する判定手段と、前記判
定手段によりタイヤ空気圧の低下変化が小と判定され、
かつそれが所定回数継続して検知されたとき、タイヤ空
気圧低下警報を出力する警報手段とを備えることを特徴
とするタイヤ空気圧検知装置。
1. When the vehicle is running, output means for outputting a signal including a vibration frequency component of a tire, extraction means for extracting a signal of a resonance frequency component from the signal, and a signal of the resonance frequency component as a judgment value. When a decrease in tire air pressure is detected by the detection unit that detects the decrease in tire air pressure by comparing, a decrease in tire air pressure is changed by comparing the change rate of decrease in tire air pressure with a determination value. Of the determination means for determining the magnitude of the, and the change in the decrease in tire air pressure is determined to be small by the determination means,
A tire air pressure detection device, further comprising: an alarm unit that outputs a tire air pressure drop alarm when it is detected a predetermined number of times continuously.
JP12807992A 1991-11-11 1992-04-20 Tire pressure detector Expired - Fee Related JP3289312B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP12807992A JP3289312B2 (en) 1992-04-20 1992-04-20 Tire pressure detector
PCT/JP1992/001457 WO1993010431A1 (en) 1991-11-11 1992-11-10 Tire pneumatic pressure sensor
EP97103562A EP0783982B1 (en) 1991-11-11 1992-11-10 Tire air pressure detecting device using a resonance frequency and wheel speed sensor
DE1992633018 DE69233018T2 (en) 1991-11-11 1992-11-10 Tire air pressure detection device using a resonance frequency and wheel speed sensor
DE69226175T DE69226175T2 (en) 1991-11-11 1992-11-10 Tire pressure meter with the resonance frequency of the tire
EP92923005A EP0578826B1 (en) 1991-11-11 1992-11-10 Tire air pressure detecting device using a resonance frequency
US08/133,440 US5497657A (en) 1991-11-11 1993-10-08 Tire air pressure detecting device
US08/168,093 US5553491A (en) 1991-11-11 1993-12-17 Tire air pressure detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12807992A JP3289312B2 (en) 1992-04-20 1992-04-20 Tire pressure detector

Publications (2)

Publication Number Publication Date
JPH05294120A true JPH05294120A (en) 1993-11-09
JP3289312B2 JP3289312B2 (en) 2002-06-04

Family

ID=14975906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12807992A Expired - Fee Related JP3289312B2 (en) 1991-11-11 1992-04-20 Tire pressure detector

Country Status (1)

Country Link
JP (1) JP3289312B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500038A (en) * 2012-11-23 2016-01-07 ルノー エス.ア.エス. Automobile tire pressure monitoring system
JP2016506329A (en) * 2012-11-23 2016-03-03 ルノー エス.ア.エス. Method and system for monitoring vehicle tire pressure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500038A (en) * 2012-11-23 2016-01-07 ルノー エス.ア.エス. Automobile tire pressure monitoring system
JP2016506329A (en) * 2012-11-23 2016-03-03 ルノー エス.ア.エス. Method and system for monitoring vehicle tire pressure

Also Published As

Publication number Publication date
JP3289312B2 (en) 2002-06-04

Similar Documents

Publication Publication Date Title
JP2836652B2 (en) Tire pressure detector
US5557552A (en) System for projecting vehicle speed and tire condition monitoring system using same
JP3362522B2 (en) Tire pressure detector
JP3136801B2 (en) Tire pressure detector
JP3182836B2 (en) Tire balance detection device
JP3462228B2 (en) Tire pressure detector
JP3391486B2 (en) Tire pressure detector
JP3146733B2 (en) Tire pressure detector
JP3289312B2 (en) Tire pressure detector
JP3063386B2 (en) Tire pressure detector
JP3095095B2 (en) Tire abnormal wear detection device
JPH07137509A (en) Tire pneumatic pressure detector
JP3289384B2 (en) Tire pressure detector
JP3136772B2 (en) Tire pressure detector
JP3289382B2 (en) Tire pressure detector
JP3391482B2 (en) Tire pressure detector
JP3147472B2 (en) Tire pressure detector
JP3289318B2 (en) Tire pressure detector
JPH06328920A (en) Tire pneumatic pressure detector
JPH05319041A (en) Tire air-pressure detecting device
JP3137138B2 (en) Tire pressure detector
JPH05319040A (en) Hydroplaining phenomenon forcasting and warning device of vehicle
JP3358323B2 (en) Tire pressure detector
JP3343937B2 (en) Tire pressure detector
JP3055293B2 (en) Tire pressure detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees