JPH05292684A - Charging storage power supply device for motive power - Google Patents

Charging storage power supply device for motive power

Info

Publication number
JPH05292684A
JPH05292684A JP4082174A JP8217492A JPH05292684A JP H05292684 A JPH05292684 A JP H05292684A JP 4082174 A JP4082174 A JP 4082174A JP 8217492 A JP8217492 A JP 8217492A JP H05292684 A JPH05292684 A JP H05292684A
Authority
JP
Japan
Prior art keywords
capacity capacitor
power
charging
voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4082174A
Other languages
Japanese (ja)
Inventor
Michio Okamura
廸夫 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP4082174A priority Critical patent/JPH05292684A/en
Priority to EP93302233A priority patent/EP0564149B1/en
Priority to DE69314079T priority patent/DE69314079T2/en
Priority to DE69330799T priority patent/DE69330799T2/en
Priority to EP96202256A priority patent/EP0744809B1/en
Priority to US08/041,543 priority patent/US5783928A/en
Publication of JPH05292684A publication Critical patent/JPH05292684A/en
Priority to US08/454,706 priority patent/US6424156B1/en
Priority to US08/454,841 priority patent/US5532572A/en
Priority to US09/120,683 priority patent/US5977748A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02T10/7005
    • Y02T10/7022
    • Y02T10/7055
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • Y02T90/127
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

PURPOSE:To provide a charge accumulated power device for motive power capable of storing charges efficiently by using capacitors, and supplying power to a load. CONSTITUTION:The charge storage power device for motive power is one which supplies power to a load by storing charges in a large-capacity capacitor, and it has a large-capacity capacitor C which is connected to a load and which supplies power to the load directly, a charging circuit 2 which charges the large-capacity capacitor C, a charging power source 1 connected to the large- capacity capacitor C through the charging circuit 2, a voltage detecting circuit 3 which detects the terminal voltage of the large-capacity capacitor C, and a charging limiting circuit S1 which discriminates that the terminal voltage detected by the detecting circuit 3 is a specified value or more and limits the charging of the large-capacity capacitor C. Consequently, it becomes possible to use the large-capacity capacitor C up to a maximum voltage designed, and raise electric energy storing efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気二重層コンデンサ
等の大容量コンデンサを用いて電力を蓄電して負荷に給
電する動力用蓄電電源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power storage power supply device for power that stores electric power by using a large-capacity capacitor such as an electric double layer capacitor and supplies the power to a load.

【0002】[0002]

【従来の技術】地球規模での環境問題からガソリンエン
ジンを搭載した自動車の排気ガスが規制の対象として議
論されるようになって久しい。しかし、現実には、依然
として自動車の生産台数の増加傾向は続いているが、自
動車の排気ガスを低減できる見通しはたっていない。こ
のような状況にあって、排気ガスのでない自動車として
は、バッテリーや太陽電池を搭載した電気自動車が注目
を集め、その早期実用化が緊急の課題となっている。
2. Description of the Related Art Exhaust gas from automobiles equipped with a gasoline engine has long been discussed as a subject of regulation due to global environmental problems. However, in reality, although the number of automobiles produced is still increasing, there is no prospect of reducing automobile emissions. Under such circumstances, electric vehicles equipped with batteries and solar cells have been attracting attention as vehicles that do not emit exhaust gas, and their early commercialization has become an urgent issue.

【0003】最近においては、さしあたって長い継続走
行距離や高速走行を必要としない配達車や清掃車等の業
務用の車両に一部電気自動車が実用化され採用されてい
る。また、試作車としては、100km/h以上の高速
走行、200km程度の継続走行が可能な車両の報告も
なされている。さらには、太陽電池を車上に搭載してバ
ッテリーを充電しながら走行する車両やエンジンとモー
タによるハイブリッド駆動の車両等も提案されている。
In recent years, some electric vehicles have been put to practical use for commercial vehicles such as delivery vehicles and cleaning vehicles that do not require long running distances or high speeds. Further, as a prototype vehicle, a vehicle capable of high-speed running of 100 km / h or more and continuous running of about 200 km has been reported. Further, a vehicle in which a solar cell is mounted on a vehicle to run while charging the battery, a hybrid drive vehicle using an engine and a motor, and the like have been proposed.

【0004】[0004]

【発明が解決しようとする課題】電気自動車は、エンジ
ン自動車のような歯車機構をなくしホィールモータを使
った独立4輪駆動が1つの方向としてある。したがっ
て、駆動機構としては、簡素化されたものとなり、走行
性、操舵性についても、各ホィールモータの協調制御に
より解決できる。電気自動車における技術的な最大の課
題は、駆動動力源、つまりエンジン自動車に劣らない容
量のバッテリーの実現である。まず、電気自動車とし
て、十分実用に供するためには、エンジンと同程度の大
きさ、重量で、ガソリンエンジンに匹敵する動力の確保
を可能にする容量のバッテリーが必要である。しかも、
充電が高速でできるかガソリンの補給と同じ程度に簡便
に充電したバッテリーの交換が可能になることである。
One of the directions of an electric vehicle is independent four-wheel drive using a wheel motor without a gear mechanism such as an engine vehicle. Therefore, the drive mechanism is simplified, and the running property and the steering property can be solved by the coordinated control of the wheel motors. The biggest technical challenge in electric vehicles is to realize a driving power source, that is, a battery having a capacity comparable to that of an engine vehicle. First, in order to be sufficiently put into practical use as an electric vehicle, a battery of the same size and weight as the engine and capable of securing power equivalent to that of a gasoline engine is required. Moreover,
Is it possible to charge the battery at high speed or to replace a charged battery as easily as replenishing gasoline?

【0005】しかし、従来のバッテリーには、上記の要
求を満足するものがなく、特に、充電に長時間を要する
だけでなく、その割にエンジンに比べて大型で重量があ
るのが問題となっている。
However, there is no conventional battery satisfying the above-mentioned requirements, and in particular, it takes a long time to charge, and in comparison therewith, it is a problem that it is larger and heavier than an engine. ing.

【0006】また、従来のコンデンサに比べて小型で大
容量の電気二重層コンデンサが開発され、電源のバック
アップ等に利用される傾向にある。この電気二重層コン
デンサのような大容量コンデンサは、蓄電電源として考
えた場合、鉛電池等と比べ、軽量で長寿命である点で有
利であるが、加わる電圧が定格に対して過大になると、
直ちにコンデンサの容量減少、漏れ電流増加などの損傷
をもたらす。その他、内部抵抗や耐電圧のコントロール
が不十分なため、積極的に利用されるには至っていな
い。
Further, an electric double layer capacitor having a smaller size and a larger capacity than that of a conventional capacitor has been developed and tends to be used for backup of a power source. A large-capacity capacitor such as this electric double-layer capacitor is advantageous in that it is lighter and has a longer life than a lead battery when it is considered as a power storage power source, but when the applied voltage becomes excessive with respect to the rating,
Immediately, it causes damage such as decrease in capacity and increase in leakage current. In addition, since internal resistance and withstand voltage are not sufficiently controlled, they have not been actively used.

【0007】本発明は、上記の課題を解決するものであ
って、コンデンサを高効率で使って蓄電し負荷へ電力を
供給することが可能な動力用蓄電電源装置を提供するこ
とを目的とするものである。
An object of the present invention is to solve the above-mentioned problems, and an object thereof is to provide a power storage power supply device for power supply capable of storing power by using a capacitor with high efficiency and supplying power to a load. It is a thing.

【0008】[0008]

【課題を解決するための手段】そのために本発明は、大
容量コンデンサに蓄電して負荷に給電する動力用蓄電電
源装置であって、負荷に接続され負荷に直接電力を供給
する大容量コンデンサ、該大容量コンデンサを充電する
充電回路、大容量コンデンサに充電回路を通して接続さ
れる充電用電源、大容量コンデンサの端子電圧を検出す
る電圧検出回路、該検出回路により検出した端子電圧が
所定値以上になったことを判別して大容量コンデンサの
充電を制限する充電制限回路を備えたことを特徴とする
ものである。また、充電制限回路は、充電回路に直列に
挿入接続されたスイッチング手段を有し、端子電圧が所
定値以上になったことを判別して充電回路を遮断するよ
うに構成し、あるいは大容量コンデンサに並列にバイパ
ス回路を有し、端子電圧が所定値以上になったことを判
別して充電電流をバイパスするように構成したことを特
徴とするものである。
To this end, the present invention provides a power storage power supply device for storing power in a large-capacity capacitor to supply power to a load, the large-capacity capacitor being connected to the load and supplying power directly to the load, A charging circuit for charging the large-capacity capacitor, a charging power source connected to the large-capacity capacitor through the charging circuit, a voltage detection circuit for detecting the terminal voltage of the large-capacity capacitor, the terminal voltage detected by the detection circuit is a predetermined value or more. It is characterized by being provided with a charge limiting circuit which determines that the charging has been completed and limits the charging of the large-capacity capacitor. Further, the charge limiting circuit has a switching means that is inserted and connected in series to the charging circuit, and is configured to cut off the charging circuit by determining that the terminal voltage has exceeded a predetermined value, or a large-capacity capacitor. It has a bypass circuit in parallel with, and is configured to bypass the charging current by determining that the terminal voltage has become equal to or higher than a predetermined value.

【0009】[0009]

【作用】本発明の動力用蓄電電源装置では、負荷に接続
され負荷に直接電力を供給する大容量コンデンサ、該大
容量コンデンサを充電する充電回路、大容量コンデンサ
に充電回路を通して接続される充電用電源に対し、電圧
検出回路で大容量コンデンサの端子電圧を検出して、充
電制限回路で端子電圧が所定値以上になったことを判別
して大容量コンデンサの充電を制限するので、大容量コ
ンデンサを設計された最高電圧まで使用することがで
き、電気エネルギーの蓄電効率を高めることができる。
In the power storage power supply device for power of the present invention, a large-capacity capacitor connected to the load to directly supply power to the load, a charging circuit for charging the large-capacity capacitor, and a charging circuit connected to the large-capacity capacitor through the charging circuit. For the power supply, the voltage detection circuit detects the terminal voltage of the large-capacity capacitor, and the charge limiting circuit determines that the terminal voltage has exceeded the specified value and limits the charging of the large-capacity capacitor. Can be used up to the designed maximum voltage, and the storage efficiency of electric energy can be increased.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。図1は本発明の動力用蓄電電源装置の1実施例
を示す図であり、1は充電用電源、2は充電回路、3は
電圧検出回路、4は負荷、Cは大容量コンデンサ、V
r、Vr′は基準電圧、S1、S2はスイッチを示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing one embodiment of a power storage power supply device for power supply of the present invention, 1 is a charging power supply, 2 is a charging circuit, 3 is a voltage detection circuit, 4 is a load, C is a large-capacity capacitor, V
r and Vr 'are reference voltages, and S1 and S2 are switches.

【0011】図1において、負荷に接続され負荷に直接
電力を供給する大容量コンデンサCは、スイッチS1、
充電回路2を介して充電用電源1に接続されると共に負
荷4に接続され、負荷4に直接電力を供給するものであ
る。充電用電源1は、大容量コンデンサCを充電するた
めの、例えば商用電源であり、充電回路2は、インバー
タなどの電圧変換手段を備えたものである。電圧検出回
路3は、基準電圧Vr、Vr′と比較して大容量コンデ
ンサCの端子電圧が満充電レベルか否かを検出するもの
であり、満充電レベルになるとスイッチS1をオフにす
ると共にスイッチS2をオンにする。したがって、基準
電圧Vr+Vr′を満充電レベルに設定することによっ
て、大容量コンデンサCの端子電圧が満充電レベルにな
るまで、スイッチS1をオンの状態のままにして充電回
路2を介して充電用電源1から大容量コンデンサCを充
電し、満充電レベルに達するとスイッチS1をオフにし
て充電を停止させ、大容量コンデンサCに加わる電圧が
定格に対して過大となるのを防ぐ。また、このとき、ス
イッチS2をオンにして一部の基準電圧Vr′を短絡す
ることによって、スイッチS1のオン/オフ制御に一定
のデッドバンドを設定している。
In FIG. 1, a large-capacity capacitor C connected to the load and supplying electric power directly to the load is a switch S1,
It is connected to the charging power source 1 via the charging circuit 2 and also connected to the load 4, and supplies power directly to the load 4. The charging power supply 1 is, for example, a commercial power supply for charging the large-capacity capacitor C, and the charging circuit 2 is provided with a voltage converting means such as an inverter. The voltage detection circuit 3 detects whether or not the terminal voltage of the large-capacitance capacitor C is at the full charge level by comparing with the reference voltages Vr and Vr '. When the full charge level is reached, the switch S1 is turned off and the switch is turned on. Turn on S2. Therefore, by setting the reference voltage Vr + Vr 'to the full charge level, the switch S1 is kept in the ON state until the terminal voltage of the large-capacity capacitor C reaches the full charge level, and the charging power source is supplied via the charging circuit 2. The large-capacity capacitor C is charged from 1, and when the full-charge level is reached, the switch S1 is turned off to stop the charging, and the voltage applied to the large-capacity capacitor C is prevented from becoming excessive with respect to the rating. At this time, a certain dead band is set for the on / off control of the switch S1 by turning on the switch S2 and short-circuiting a part of the reference voltage Vr '.

【0012】先に述べたようにコンデンサを電源として
使う場合には、加わる電圧がコンデンサの定格に対して
過大になると、直ちにコンデンサの容量減少、漏れ電流
増加などの損傷をもたらす。これに対処するため、コン
デンサ側では、分解電圧、耐電圧等に余裕をもって設計
製造するのが通常である。しかし、コンデンサに貯えら
れる電気エネルギーは、その電圧の2乗に比例するた
め、少しでも高い電圧まで使用とするのが有利である。
このような観点から、本発明では、コンデンサの端子電
圧を常時監視してスイッチS1により制限するので、コ
ンデンサをその最高電圧いっぱいまで使用でき、より大
きな電気エネルギーを有効に貯えることができる。
As described above, when the capacitor is used as a power source, if the applied voltage becomes excessively large with respect to the rating of the capacitor, the capacitance of the capacitor is reduced and the leakage current is increased. In order to deal with this, it is usual to design and manufacture the capacitor with a margin in decomposition voltage, withstand voltage and the like. However, since the electric energy stored in the capacitor is proportional to the square of the voltage, it is advantageous to use even a high voltage.
From such a viewpoint, in the present invention, since the terminal voltage of the capacitor is constantly monitored and limited by the switch S1, the capacitor can be used up to its maximum voltage, and a larger amount of electric energy can be effectively stored.

【0013】図2は本発明の動力用蓄電電源装置の他の
実施例を示す図であり、ZDは定電圧素子、TRはトラ
ンジスタ、R1、R2は抵抗を示す。図2に示す実施例
は、トランジスタTRと抵抗R2の直列回路を大容量コ
ンデンサCの充電電流のバイパス回路として接続し、大
容量コンデンサCの端子電圧を定電圧素子ZDの電圧に
制限するように構成したものである。この構成により、
大容量コンデンサCが満充電レベルのときの電圧に定電
圧素子ZDの電圧を選定すると、満充電レベルでトラン
ジスタTRが導通し、大容量コンデンサCの端子電圧が
満充電レベルに維持されるようにトランジスタTRの導
通度が変化する。つまり電圧リミッタを構成している。
FIG. 2 is a diagram showing another embodiment of the power storage power supply device for power according to the present invention. ZD is a constant voltage element, TR is a transistor, and R1 and R2 are resistors. In the embodiment shown in FIG. 2, the series circuit of the transistor TR and the resistor R2 is connected as a bypass circuit for the charging current of the large capacity capacitor C, and the terminal voltage of the large capacity capacitor C is limited to the voltage of the constant voltage element ZD. It is composed. With this configuration,
When the voltage of the constant voltage element ZD is selected as the voltage when the large capacity capacitor C is at the full charge level, the transistor TR becomes conductive at the full charge level so that the terminal voltage of the large capacity capacitor C is maintained at the full charge level. The conductivity of the transistor TR changes. That is, it constitutes a voltage limiter.

【0014】図3は本発明の動力用蓄電電源装置のさら
に他の実施例を示す図であり、11は充電用交流電源、
12は充電用直流電源、13〜15は充電回路、16は
充電制御回路、17は負荷、CA、CBは大容量コンデ
ンサ、Vrは基準電圧を示す。
FIG. 3 is a view showing still another embodiment of the power storage device for power of the present invention, 11 is an AC power supply for charging,
12 is a charging DC power supply, 13 to 15 are charging circuits, 16 is a charging control circuit, 17 is a load, CA and CB are large-capacity capacitors, and Vr is a reference voltage.

【0015】図3において、大容量コンデンサCAは、
負荷17に接続され負荷17に電力を直接供給する負荷
給電用の電源であり、電力密度がそれほど高くないが、
内部抵抗の低いコンデンサが用いられる。大容量コンデ
ンサCBは、大容量コンデンサCAを充電する電源であ
り、大容量コンデンサCAに比べて、内部抵抗はそれほ
ど低くないが、電力容量の体積或いは重量に対する比が
大きなコンデンサが用いられる。充電回路15は、大容
量コンデンサCBから大容量コンデンサCAを充電する
回路であり、インバータ等の電圧変換手段で構成したも
のである。充電制御回路16は、大容量コンデンサCA
の端子電圧、つまり負荷電圧を検出して基準電圧Vrと
比較し、基準電圧Vrの場合には、大容量コンデンサC
Bから大容量コンデンサCAを充電するように充電回路
15を制御するものである。なお、基準電圧Vrは、大
容量コンデンサCAの満充電レベルに設定される。
In FIG. 3, the large-capacity capacitor CA is
It is a power supply for load power supply that is connected to the load 17 and supplies power directly to the load 17, and the power density is not so high,
A capacitor with low internal resistance is used. The large-capacity capacitor CB is a power source for charging the large-capacity capacitor CA, and has an internal resistance not so low as compared with the large-capacity capacitor CA, but a capacitor having a large power capacity to volume or weight ratio is used. The charging circuit 15 is a circuit for charging the large-capacity capacitor CA from the large-capacity capacitor CB, and is composed of voltage conversion means such as an inverter. The charge control circuit 16 includes a large-capacity capacitor CA.
Of the terminal voltage, that is, the load voltage, is detected and compared with the reference voltage Vr. In the case of the reference voltage Vr, the large-capacity capacitor C
The charging circuit 15 is controlled so that the large capacity capacitor CA is charged from B. The reference voltage Vr is set to the full charge level of the large capacity capacitor CA.

【0016】充電用交流電源11は、例えば通常の商用
交流電源等であり、充電用直流電源12は、例えば太陽
電池等の直流電源である。充電回路13、14は、電圧
変換・整流して大容量コンデンサCBを充電する回路で
ある。勿論、充電回路13、14をインバータ等の電圧
変換手段で構成してもよい。
The charging AC power supply 11 is, for example, a normal commercial AC power supply, and the charging DC power supply 12 is a DC power supply such as a solar cell. The charging circuits 13 and 14 are circuits that convert and rectify the voltage to charge the large-capacity capacitor CB. Of course, the charging circuits 13 and 14 may be composed of voltage conversion means such as an inverter.

【0017】上記のように、必要な電源容量を大容量コ
ンデンサCA、大容量コンデンサCBからなる2つの電
源部に分け、負荷等の条件によって異なるが、例えば大
容量コンデンサCAに全容量の1/4、大容量コンデン
サCBに残り容量3/4を持たせる。そして、可能な限
り大容量コンデンサCAを満充電レベルに保つことによ
って、負荷は常に内部抵抗の低い電源(大容量コンデン
サCA)から、比較的一定の電圧の供給を受けることが
可能になり、しかも、製造の容易な、内部抵抗の大きな
電源(大容量コンデンサCB)を多用するので、全体の
体積や重量を小さくすることができる。
As described above, the required power source capacity is divided into two power source sections consisting of the large-capacity capacitor CA and the large-capacity capacitor CB, and it depends on the conditions such as the load. 4. The large-capacity capacitor CB has a remaining capacity of 3/4. By keeping the large-capacity capacitor CA at the full charge level as much as possible, the load can always be supplied with a relatively constant voltage from the power source (large-capacity capacitor CA) having a low internal resistance. Since a power supply (large-capacity capacitor CB) having a large internal resistance, which is easy to manufacture, is frequently used, the overall volume and weight can be reduced.

【0018】図4は充電制御部の構成例を示す図であ
り、コンパレータ21は、大容量コンデンサCAの端子
電圧と基準電圧Vrとを比較して基準電圧Vrが大きい
と充電回路15をオンにする信号を出力するものであ
り、抵抗R1、R2で大容量コンデンサCAの端子電圧
を分圧して検出し、抵抗R13を介してコンパレータ2
1に端子電圧の検出信号を入力している。また、抵抗r
は、電流検出用の抵抗であり、充電回路15でこの抵抗
rによって充電電流を検出し充電電流を一定に制御す
る。すなわち、充電回路15では、コンパレータ21の
出力信号によってオン/オフし、抵抗rによる電流の検
出によって充電電流の制御を行う。大容量コンデンサC
Bは、内部抵抗の大きな電源であり、大電流で充電する
と、損失が大きくなるので、充電電流を制限することに
よって、損失を少なくすることができる。
FIG. 4 is a diagram showing a configuration example of the charge control unit. The comparator 21 compares the terminal voltage of the large-capacity capacitor CA with the reference voltage Vr and turns on the charging circuit 15 when the reference voltage Vr is large. Is output, the terminal voltage of the large-capacity capacitor CA is divided and detected by the resistors R1 and R2, and the comparator 2 is connected via the resistor R13.
A detection signal of the terminal voltage is input to 1. Also, the resistance r
Is a resistance for current detection, and the charging circuit 15 detects the charging current by the resistance r and controls the charging current to be constant. That is, the charging circuit 15 is turned on / off by the output signal of the comparator 21, and the charging current is controlled by detecting the current by the resistor r. Large capacity capacitor C
B is a power source with a large internal resistance, and when it is charged with a large current, the loss becomes large. Therefore, it is possible to reduce the loss by limiting the charging current.

【0019】次に、本発明で用いられる電気二重層コン
デンサを説明する。電気二重層コンデンサは、電極材料
として比表面積が大きく且つ電気化学的に不活性の活性
炭を用い、電解質と組み合わせて大きな電気二重層容量
を利用するものであり、電極間に電圧をかけてゆくと、
電解質の分解電圧に達するまでは、電気二重層ができて
充電され、分解電圧を越えると電流が流れ始める。した
がって、この電気二重層コンデンサの耐圧は、電解質の
分解電圧で規制され、導電率の高い水溶液電解質の分解
電圧は、約1.2〜1.3Vになる。電気二重層コンデ
ンサには、数Vの耐圧で、数F(ファラド)の容量もの
が市販されていて、内部抵抗は100Ωから10Ω程度
まで様々のものがあるが、最近の試作品としては、2.
5V、240F、0.1Ωのものが発表されている。
Next, the electric double layer capacitor used in the present invention will be described. The electric double layer capacitor uses activated carbon which has a large specific surface area and is electrochemically inactive as an electrode material, and utilizes a large electric double layer capacity in combination with an electrolyte. ,
An electric double layer is formed and charged until the decomposition voltage of the electrolyte is reached, and when the decomposition voltage is exceeded, a current starts to flow. Therefore, the withstand voltage of the electric double layer capacitor is regulated by the decomposition voltage of the electrolyte, and the decomposition voltage of the aqueous electrolyte having high conductivity is about 1.2 to 1.3V. Electric double layer capacitors with a withstand voltage of several V and a capacity of several F (farad) are commercially available, and there are various internal resistances of 100Ω to 10Ω. .
5V, 240F, 0.1Ω has been announced.

【0020】上記のように従来の電気二重層コンデンサ
では、蓄電電源として使用しようとすると、耐圧が低
く、内部抵抗が比較的大きいのが難点である。しかも、
鉛電池やニッケルカドミウム電池等の電気化学セルと比
べると、電気二重層コンデンサでも、重量とエネルギー
の関係で、後者が20倍程度大きくなり、また、内部抵
抗が大きいため、大電力には使用できない。そのため、
電気二重層コンデンサが蓄電池と対抗できるようになる
には、基本的に、エネルギー密度を上げ、内部抵抗を小
さくすることである。
As described above, in the conventional electric double layer capacitor, when it is used as a power storage power source, it is difficult to have a low breakdown voltage and a relatively large internal resistance. Moreover,
Compared to electrochemical cells such as lead batteries and nickel-cadmium batteries, even in electric double-layer capacitors, the latter is about 20 times larger in terms of weight and energy, and because it has a large internal resistance, it cannot be used for high power. .. for that reason,
In order for an electric double layer capacitor to be able to compete with a storage battery, it is basically to increase the energy density and reduce the internal resistance.

【0021】一般にコンデンサは、分解電圧以上の電圧
を印加すると、容量減少、漏れ電流増加などの損傷をも
たらす。そのため、分解電圧以下の電圧が耐圧として用
いられている。この分解電圧は、水の場合で1.23
V、通常用いられている有機電解液の場合で1.25V
程度である。他方、化学材料の溶媒には、有機電解質の
中で6V以上の分解電圧を有するものが多々存在してい
る。しかし、現実に電気二重層コンデンサに使用する
と、分解電圧は1.2〜1.3Vの定格になっている。
これは、水を含む不純物のためであると考えられる。
In general, when a voltage higher than the decomposition voltage is applied to a capacitor, it causes damage such as a decrease in capacity and an increase in leakage current. Therefore, a voltage equal to or lower than the decomposition voltage is used as the breakdown voltage. This decomposition voltage is 1.23 for water.
V, 1.25V in the case of a commonly used organic electrolyte
It is a degree. On the other hand, as the solvent of the chemical material, there are many organic electrolytes having a decomposition voltage of 6 V or more. However, when actually used in an electric double layer capacitor, the decomposition voltage is rated at 1.2 to 1.3V.
This is believed to be due to impurities including water.

【0022】そこで、例えばプロピレンカーボネイトに
溶質を入れて電気分解すると、始めは分解電圧が1V強
程度からまちまちではあるが、徐々に上がってゆくこと
が判った。つまり、高純度の電解液であっても水や不純
物を含むため、はじめの分解電圧は1V強程度である
が、これを電気分解してゆくと、不純物が分解して分離
し本来の分解電圧を得ることができる。したがって、目
的とする高純度電解液にその理論上の分解電圧よりわず
かに低い直流電圧を印加した電極を挿入すると、その分
解電圧より低い不純物が電気分解し分離するので、この
ようにして電解液を精製することにより耐電圧を高くす
ることができる。
Then, for example, when solute was put in propylene carbonate and electrolyzed, it was found that the decomposition voltage was gradually increased from about 1 V or more at first, though it was varied. In other words, even if a high-purity electrolytic solution contains water and impurities, the initial decomposition voltage is about 1 V or more, but when this is electrolyzed, the impurities are decomposed and separated, and the original decomposition voltage is reached. Can be obtained. Therefore, when an electrode applied with a DC voltage slightly lower than the theoretical decomposition voltage is inserted into the target high-purity electrolytic solution, impurities lower than the decomposition voltage are electrolyzed and separated. The withstand voltage can be increased by refining.

【0023】他方、活性炭や活性炭繊維などの多孔質電
極には、自然状態で各種の異物質が吸着しているので、
これらをそのま電極として使用すると、電極を電解質に
浸した際に各種の異物質が電解液中に溶出する。そのた
め、上記のようにして高純度の電解液を精製してもその
純度が低下し分解電圧が低くなってしまう。そこで、電
極を予め真空容器中で高周波加熱しつつ排気し、そのま
ま冷却後電解液に真空含浸すると、異物質を除去するこ
とができ、電解液の純度の低下を防ぐことができる。
On the other hand, since various foreign substances are naturally adsorbed on the porous electrode such as activated carbon or activated carbon fiber,
When these are used as they are as electrodes, various foreign substances are eluted into the electrolytic solution when the electrodes are immersed in the electrolyte. Therefore, even if the high-purity electrolytic solution is purified as described above, the purity is lowered and the decomposition voltage is lowered. Therefore, when the electrode is evacuated while being heated in a vacuum container in advance with high frequency, cooled as it is, and impregnated with the electrolytic solution in vacuum, foreign substances can be removed, and deterioration of the purity of the electrolytic solution can be prevented.

【0024】また、内部抵抗を低くするための電極の構
造としては、活性炭繊維をやや過度に賦活してやや大き
なミクロボアを持った繊維を得る。そして、これらの繊
維を整列させ、ほとんど密着して板状に並べ、その両端
及び背面にアルミニウムなどの金属を蒸着又は熔射する
か、導電性塗料などで接続して引き出し線を取り付け
る。これにより電気抵抗が小さく、密度の高い電極を得
ることができる。これらの電極に電解液を含浸させて間
荷絶縁性の多孔質セパレータを介して対立させ、正負の
電極として用いる。
As the structure of the electrode for lowering the internal resistance, activated carbon fiber is slightly excessively activated to obtain a fiber having a slightly large microbore. Then, these fibers are aligned and arranged almost in close contact with each other in a plate shape, and a metal such as aluminum is vapor-deposited or melted on both ends and a back surface thereof, or connected with a conductive paint or the like to attach a lead wire. This makes it possible to obtain an electrode having a low electric resistance and a high density. These electrodes are impregnated with an electrolytic solution and are opposed to each other via a load-insulating porous separator, and are used as positive and negative electrodes.

【0025】上記のようにして電解液の精製と共に活性
炭電極の製造組立を行うことによって高い耐電圧の電気
二重層コンデンサができ、内部抵抗も小さくすることが
できる。その結果、耐電圧が例えば4倍高くすると、そ
の2乗の16倍に蓄電可能な電力量を増やすことができ
る。例えば先に述べた2.5V、240F、0.1Ωの
電気二重層コンデンサの試作品は、体積が35mmφ×
50mmであり、1Vまでに取り出せる電力が0.17
5WHであるから、電気自動車の動力源に必要とされる
20KWHの電力を確保するには、約6m3 の体積が必
要になる。しかし、例えば耐電圧を4倍に上げるだけで
も体積を1/16にすることができる。本発明では、こ
のような電気二重層コンデンサを使い分けることによ
り、貯える電気エネルギーを大きくすると共に、内部抵
抗の小さくし、電力損失を低減して電力の供給効率を高
めることができる。
As described above, by refining the electrolytic solution and manufacturing and assembling the activated carbon electrode, an electric double layer capacitor having a high withstand voltage can be obtained and the internal resistance can be reduced. As a result, if the withstand voltage is increased four times, for example, the amount of electric power that can be stored can be increased by 16 times the square. For example, the prototype of the electric double layer capacitor of 2.5V, 240F, 0.1Ω described above has a volume of 35 mmφ ×
It is 50mm, and the electric power that can be taken out to 1V is 0.17
Since it is 5 WH, a volume of about 6 m 3 is required to secure the electric power of 20 KWH required for the power source of the electric vehicle. However, the volume can be reduced to 1/16 by simply increasing the withstand voltage four times. In the present invention, by selectively using such an electric double layer capacitor, it is possible to increase the stored electric energy, reduce the internal resistance, reduce the power loss, and improve the power supply efficiency.

【0026】なお、本発明は、上記の実施例に限定され
るものではなく、種々の変形が可能である。例えば上記
の実施例では、回路のオン/オフ手段を単にスイッチで
示したが、サイリスタやトランジスタ等の半導体スイッ
チング素子、その他のスイッチング手段を用いてもよ
い。また、電気自動車の電源としてだけでなく、電気溶
接器その他の電気動力装置の電源、携帯用電源として用
いてもよいことはいうまでもない。
The present invention is not limited to the above embodiment, but various modifications can be made. For example, in the above-described embodiments, the circuit on / off means is simply shown as a switch, but a semiconductor switching element such as a thyristor or a transistor, or other switching means may be used. Needless to say, it may be used not only as a power source for an electric vehicle, but also as a power source for an electric welder or other electric power unit or a portable power source.

【0027】[0027]

【発明の効果】以上の説明から明らかなように、本発明
によれば、コンデンサの充電を端子電圧で制御して満充
電レベルに充電するので、電気エネルギーを有効に貯え
ることができ、蓄電電源装置としての供給効率を高める
ことができる。また、コンデンサに定格に対して過大と
なる電圧が加わるのを防ぐことができるので、蓄電電源
として使う場合にも、コンデンサの容量減少や漏れ電流
増加などの損傷を防ぐことができる。
As is apparent from the above description, according to the present invention, the charge of the capacitor is controlled by the terminal voltage to charge it to the full charge level, so that the electric energy can be effectively stored and the power storage power source can be stored. The supply efficiency of the device can be increased. Further, since it is possible to prevent the capacitor from being applied with an excessive voltage with respect to the rating, it is possible to prevent damage such as a decrease in the capacity of the capacitor and an increase in leakage current even when the capacitor is used as a power storage power source.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の動力用蓄電電源装置の1実施例を示
す図である。
FIG. 1 is a diagram showing one embodiment of a power storage power supply device for power of the present invention.

【図2】 本発明の動力用蓄電電源装置の他の実施例を
示す図である。
FIG. 2 is a diagram showing another embodiment of the power storage power supply device for power of the present invention.

【図3】 本発明の動力用蓄電電源装置のさらに他の実
施例を示す図である。
FIG. 3 is a diagram showing still another embodiment of the power storage power supply device for motive power of the present invention.

【図4】 充電制御部の構成例を示す図である。FIG. 4 is a diagram illustrating a configuration example of a charge control unit.

【符号の説明】[Explanation of symbols]

1…充電用電源、2…充電回路、3…電圧検出回路、4
…負荷、C…大容量コンデンサ、Vr、Vr′…基準電
圧、S1、S2…スイッチ
1 ... Charging power source, 2 ... Charging circuit, 3 ... Voltage detection circuit, 4
... load, C ... large-capacity capacitor, Vr, Vr '... reference voltage, S1, S2 ... switch

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 大容量コンデンサに蓄電して負荷に給電
する動力用蓄電電源装置であって、負荷に接続され負荷
に直接電力を供給する大容量コンデンサ、該大容量コン
デンサを充電する充電回路、大容量コンデンサに充電回
路を通して接続される充電用電源、大容量コンデンサの
端子電圧を検出する電圧検出回路、該検出回路により検
出した端子電圧が所定値以上になったことを判別して大
容量コンデンサの充電を制限する充電制限回路を備えた
ことを特徴とする動力用蓄電電源装置。
1. A power storage power supply device for power storage that stores electricity in a large-capacity capacitor to supply power to a load, wherein the large-capacity capacitor is connected to the load to supply electric power directly to the load, and a charging circuit that charges the large-capacity capacitor. A charging power source connected to a large-capacity capacitor through a charging circuit, a voltage detection circuit that detects the terminal voltage of the large-capacity capacitor, and a large-capacity capacitor that determines that the terminal voltage detected by the detection circuit has exceeded a predetermined value. A power storage power supply device for motive power, comprising a charge limiting circuit for limiting the charging of the battery.
【請求項2】 充電制限回路は、充電回路に直列に挿入
接続されたスイッチング手段を有し、端子電圧が所定値
以上になったことを判別して充電回路を遮断するように
構成したことを特徴とする請求項1記載の動力用蓄電電
源装置。
2. The charge limiting circuit has a switching means that is inserted and connected in series to the charging circuit, and is configured to cut off the charging circuit when it is determined that the terminal voltage has reached a predetermined value or higher. The power storage power supply device for power according to claim 1.
【請求項3】 充電制限回路は、大容量コンデンサに並
列にバイパス回路を有し、端子電圧が所定値以上になっ
たことを判別して充電電流をバイパスするように構成し
たことを特徴とする請求項1記載の動力用蓄電電源装
置。
3. The charge limiting circuit has a bypass circuit in parallel with the large-capacity capacitor, and is configured to bypass the charging current when it is determined that the terminal voltage has exceeded a predetermined value. The power storage power supply device according to claim 1.
JP4082174A 1992-04-03 1992-04-03 Charging storage power supply device for motive power Pending JPH05292684A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP4082174A JPH05292684A (en) 1992-04-03 1992-04-03 Charging storage power supply device for motive power
EP93302233A EP0564149B1 (en) 1992-04-03 1993-03-24 Storage capacitor power supply
DE69314079T DE69314079T2 (en) 1992-04-03 1993-03-24 Power supply with storage capacitor
DE69330799T DE69330799T2 (en) 1992-04-03 1993-03-24 Power supply with storage capacitor
EP96202256A EP0744809B1 (en) 1992-04-03 1993-03-24 Storage capacitor power supply
US08/041,543 US5783928A (en) 1992-04-03 1993-04-02 Storage capacitor power supply
US08/454,706 US6424156B1 (en) 1992-04-03 1995-05-31 Storage capacitor power supply
US08/454,841 US5532572A (en) 1992-04-03 1995-05-31 Storage capacitor power supply
US09/120,683 US5977748A (en) 1992-04-03 1998-07-21 Storage capacitor power supply and method of operating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4082174A JPH05292684A (en) 1992-04-03 1992-04-03 Charging storage power supply device for motive power

Publications (1)

Publication Number Publication Date
JPH05292684A true JPH05292684A (en) 1993-11-05

Family

ID=13767073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4082174A Pending JPH05292684A (en) 1992-04-03 1992-04-03 Charging storage power supply device for motive power

Country Status (1)

Country Link
JP (1) JPH05292684A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214299A (en) * 2004-01-29 2005-08-11 Kawaden:Kk Electric valve
JP2007218433A (en) * 2007-04-02 2007-08-30 Hitachi Valve Ltd Actuator for emergency shut-off valve
WO2016005839A1 (en) * 2014-07-08 2016-01-14 Lisini Gianni Method and related system for transferring electric energy from an electric energy source to a load to be electrically supplied
WO2016052163A1 (en) * 2014-09-29 2016-04-07 株式会社オートネットワーク技術研究所 Charge-discharge control circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214299A (en) * 2004-01-29 2005-08-11 Kawaden:Kk Electric valve
JP4593936B2 (en) * 2004-01-29 2010-12-08 株式会社カワデン Electric valve
JP2007218433A (en) * 2007-04-02 2007-08-30 Hitachi Valve Ltd Actuator for emergency shut-off valve
JP4639403B2 (en) * 2007-04-02 2011-02-23 日立バルブ株式会社 Emergency shut-off valve actuator
WO2016005839A1 (en) * 2014-07-08 2016-01-14 Lisini Gianni Method and related system for transferring electric energy from an electric energy source to a load to be electrically supplied
US10305317B2 (en) 2014-07-08 2019-05-28 Gianni Lisini Method and related system for transferring electric energy from an electric energy source to a load to be electrically supplied
WO2016052163A1 (en) * 2014-09-29 2016-04-07 株式会社オートネットワーク技術研究所 Charge-discharge control circuit

Similar Documents

Publication Publication Date Title
US5532572A (en) Storage capacitor power supply
KR100825208B1 (en) Hybrid-typed Battery Pack Operated in High Efficiency
JP4633960B2 (en) Power storage system for automobiles
CN101003259A (en) Vehicle propulsion system
US5977748A (en) Storage capacitor power supply and method of operating same
JPH07264715A (en) Electric vehicle
JP4526718B2 (en) Power storage device
JPH05292683A (en) Charge storage power device for motive power
JPH06261452A (en) Battery charging power supply equipment
JPH05292684A (en) Charging storage power supply device for motive power
JP3994812B2 (en) Power system
Bhajekar et al. Comparative Analysis of Symmetrical, Asymmetrical and Hybrid Supercapacitors as a Pulse Current Device
JP2005080470A (en) Capacitor device
US10319536B1 (en) High-capacity electrical energy storage device
CN206884947U (en) A kind of super capacitor system for vehicle braking energy recovery
CN107284380B (en) Super capacitor system for recovering vehicle braking energy
JPH08130805A (en) Electric automobile
CN206360835U (en) Vehicle startup system based on carbon-based capacitor batteries group
JPH08126119A (en) Electric automobile
JP2002238108A (en) Control method and control device for braking generating energy
Kokate et al. Innovative approach for increasing reliability in electronic cranking in two wheelers
JPWO2006001192A1 (en) Electronic device using electrochemical capacitor and method for recovering capacitance of electrochemical capacitor
CN2366975Y (en) Composition accumulator
Sayed et al. Advanced super capacitor based converter for power regeneration of electric vehicle applications
CN111361430B (en) Super capacitor energy storage system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010619