JPH05292670A - Controlling system for dispersed power supply in distribution system - Google Patents

Controlling system for dispersed power supply in distribution system

Info

Publication number
JPH05292670A
JPH05292670A JP4090587A JP9058792A JPH05292670A JP H05292670 A JPH05292670 A JP H05292670A JP 4090587 A JP4090587 A JP 4090587A JP 9058792 A JP9058792 A JP 9058792A JP H05292670 A JPH05292670 A JP H05292670A
Authority
JP
Japan
Prior art keywords
voltage
distributed power
distribution
control
distribution system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4090587A
Other languages
Japanese (ja)
Inventor
Minoru Kanai
実 叶井
Yuzuru Imamura
譲 今村
Kiyoji Iwashita
喜代次 岩下
Yasuhiro Terada
保広 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4090587A priority Critical patent/JPH05292670A/en
Publication of JPH05292670A publication Critical patent/JPH05292670A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To maintain the voltage of a distribution system within a proper range when a dispersed power supply is connected to the distribution system and operated. CONSTITUTION:Dispersed power supplies 9a, 9b are connected to a distribution line 7b directly or through an AC converter 10. A voltage time waveform V2 and a current time waveform I2 in the vicinity of the node of the distribution line 7b and a current time waveform Id2 delivered between the distribution line 7b and the dispersed power supply 9b are detected by a voltage sensor 11 and current sensors 12, 13 and taken into a conatroller 14 at the time of the dispersed power supply 9b. A voltage value on the secondary side, the distribution system side, of a transformer 3 for the distribution of electrical energy is also detected by a voltage sensor 17 and taken into the controller 14. The controller 14 controls the dispersed power supplies 9a, 9b or the AC converter 10 on the basis of these input information. Accordingly, the voltage of a distribution system can be maintained within a proper range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、配電系統分散電源制御
システムに係り、特に配電系統に接続された分散電源を
最適に制御するに好適な配電系統分散電源制御システム
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power distribution system distributed power supply control system, and more particularly to a power distribution system distributed power supply control system suitable for optimally controlling distributed power supplies connected to a power distribution system.

【0002】[0002]

【従来の技術】近年、省エネルギ及び新エネルギ開発の
点から、コジェネレーションあるいは太陽光発電などの
分散電源が注目されている。これらの分散電源は、電力
会社の大規模集中電源と異なり、配電系統の需要家の近
くに配置されるため、送電コストが小さい,需要の変化
に対応しやすいなど、高効率な電力システムとして運用
できる可能性を持っている。
2. Description of the Related Art In recent years, from the viewpoint of energy saving and new energy development, distributed power sources such as cogeneration and solar power generation have been attracting attention. Unlike large-scale centralized power sources of electric power companies, these distributed power sources are located near customers in the distribution system, and therefore operate as a highly efficient power system with low transmission costs and easy response to changes in demand. I have the possibility to do it.

【0003】このような分散電源に対する運用形態は、
現在は分散電源が配電系統から電力をもらうだけに限定
されているが、近い将来には前記の特長を生かし配電系
統に電力を注入する形態でも運用されるようになるもの
と考えられる。
The operation mode for such a distributed power source is as follows.
Currently, distributed power sources are limited to receiving power from the distribution system, but in the near future, it will be possible to operate by injecting power into the distribution system by taking advantage of the above features.

【0004】[0004]

【発明が解決しようとする課題】しかし、現在の配電系
統は、電力供給源が上位系統に連なる一つのみであり、
配電系統中には電源が存在しないことを前提にして樹枝
状に構成されている。したがって、分散電源の運用の仕
方によっては、電力品質,供給信頼性あるいは安全性な
どの面で様々な問題が生じてくることが予想される。特
に、適正電圧維持に関して、以下に述べるような問題が
予想される。
However, the current distribution system has only one power supply source connected to the upper system,
It has a tree-like structure on the assumption that there is no power source in the distribution system. Therefore, it is expected that various problems will occur in terms of power quality, supply reliability, safety, etc., depending on how the distributed power sources are operated. In particular, the following problems are expected with respect to maintaining an appropriate voltage.

【0005】前記したように配電系統は、単一電源かつ
樹枝状構成であるため、有効電力は常に電源から樹枝状
の末端に向かっている。一方、無効電力は配電系統に接
続されている負荷の特徴から、遅れ側になることが、そ
の結果、電圧は電源から末端に向かって低下する分布に
なることが多いため、柱上変圧器のタップを配電変電所
からの距離によって調整することにより、一般需要家へ
の供給電圧を適正範囲に維持するようにしている。これ
に対して、将来分散電源が配電系統に接続され、かつ配
電系統との間に電力の授受をもって運用されるようにな
ると、分散電源の運用次第では電力の方向が複雑に変化
するため、前記のような方法では電圧の適正範囲維持が
難しくなるという問題がある。例えば、進み無効電力が
分散電源から配電系統に多く供給されるような場合に
は、電圧が電源から末端に向かって高くなるため、柱上
変圧器でのタップ調整が逆効果になり、一般需要家への
供給電圧が適正範囲を逸脱してしまう結果となる。な
お、このような状態は、静電容量が大きい配電系統で
は、分散電源から配電系統に電力が供給されていない現
在でも考えられ、この点からも電圧の適正範囲維持のた
めの方策が必要であった。本発明の目的は、分散電源が
配電系統に接続され、配電系統との間に電力の授受をも
って運用される際に、あるいは静電容量が大きい系統で
運用される際に、配電系統の電圧を適正範囲に維持でき
る配電系統分散電源制御システムの提供にある。
As described above, since the power distribution system has a single power source and a dendritic structure, active power always goes from the power source to the dendritic end. On the other hand, the reactive power may be on the delay side due to the characteristics of the load connected to the power distribution system, and as a result, the voltage often has a distribution that decreases from the power supply toward the end. By adjusting the taps according to the distance from the distribution substation, the supply voltage to general consumers is maintained within an appropriate range. On the other hand, if a distributed power source will be connected to the distribution system in the future and will be operated by exchanging power with the distribution system, the direction of the power will change in a complicated manner depending on the operation of the distributed power source. Such a method has a problem in that it is difficult to maintain an appropriate voltage range. For example, when a large amount of advanced reactive power is supplied from the distributed power source to the distribution system, the voltage rises from the power source toward the end, and the tap adjustment in the pole transformer has the opposite effect, resulting in a general demand. The result is that the voltage supplied to the house deviates from the proper range. It should be noted that such a state is conceivable even in the present day when power is not being supplied from the distributed power source to the distribution system in a distribution system with a large capacitance, and from this point also measures must be taken to maintain the appropriate voltage range. there were. An object of the present invention is to connect a distributed power source to a power distribution system and operate the voltage distribution system when the power is exchanged with the power distribution system or when the power is operated with a large capacitance. It is to provide a distributed power supply control system that can maintain the power distribution within an appropriate range.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、配電系統分散電源制御システムを、上位
電力系統から配電用変圧器を介して電力が供給される配
電系統と、該配電系統中に接続される複数の分散電源
と、該分散電源と前記配電系統の接続点の電圧が、前記
配電用変圧器の配電系統側の電圧に近づけるように前記
分散電源の出力を制御する制御装置とから構成したもの
である。
In order to achieve the above object, the present invention provides a distribution system distributed power supply control system, a distribution system to which power is supplied from a higher-order power system through a distribution transformer, and the distribution system. A plurality of distributed power sources connected in the grid, and a control that controls the output of the distributed power source so that the voltage at the connection point between the distributed power sources and the power distribution system approaches the voltage on the power distribution system side of the distribution transformer. It is composed of a device.

【0007】[0007]

【作用】制御装置により、分散電源と配電系統の接続点
の電圧が、配電用変圧器の配電系統側の電圧に近づける
ように前記分散電源の出力が制御されるので、配電電圧
を適正範囲に維持できるものである。
[Operation] The output of the distributed power source is controlled by the control device so that the voltage at the connection point between the distributed power source and the power distribution system approaches the voltage on the power distribution system side of the power distribution transformer. It can be maintained.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1に、本発明に係る配電系統分散電源制御シス
テムの基本的構成を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a basic configuration of a distribution system distributed power supply control system according to the present invention.

【0009】図1において配電系統は、配電変電所1内
に設置され上位電力系統2からの供給電圧を配電電圧に
変換する配電用変圧器3と、該配電用変圧器3に接続さ
れる開閉器4と、該開閉器4に接続された三相母線5
と、該三相母線5に開閉器6a,6bを介して接続され
た複数の配電線7a,7bを含んで構成されている。配
電線7bには、負荷8a,8bの他に分散電源9a,9
bが接続されている。ここで、分散電源9aは交流発電
機による交流電源、分散電源9bは太陽光発電や燃料電
池などの直流電源を想定しており、分散電源9bは交直
変換装置10を介して配電線7bに接続される。ここで
は、一例として配電線7bに、2台の分散電源が接続さ
れている場合について示したが、配電線7aなどの他フ
ィーダにも複数台の分散電源が接続されているものとす
る。
In FIG. 1, the power distribution system includes a power distribution transformer 3 installed in the power distribution substation 1 for converting a supply voltage from a higher power system 2 into a power distribution voltage, and an opening / closing connected to the power distribution transformer 3. And a three-phase bus bar 5 connected to the switch 4.
And a plurality of distribution lines 7a, 7b connected to the three-phase bus 5 via switches 6a, 6b. In addition to the loads 8a and 8b, there are distributed power sources 9a and 9b on the distribution line 7b.
b is connected. Here, the dispersed power source 9a is assumed to be an alternating current power source by an alternating current generator, the dispersed power source 9b is assumed to be a direct current power source such as photovoltaic power generation or a fuel cell, and the dispersed power source 9b is connected to the distribution line 7b via the AC / DC converter 10. To be done. Here, the case where two distributed power sources are connected to the distribution line 7b is shown as an example, but it is assumed that a plurality of distributed power sources are also connected to other feeders such as the distribution line 7a.

【0010】ここで、分散電源9bを例にとり、本発明
に係る配電系統分散電源制御システムについて説明す
る。配電系統分散電源制御システムは、分散電源9bと
配電線7bの接続点近傍の電圧時間波形V2 ,電流時間
波形I2 を検出する電圧センサ11,電流センサ12
と、配電線7bと分散電源9bとの間で授受される電流
時間波形Id2を検出する電流センサ13と、電圧センサ
11及び電流センサ12,13の検出出力を取り込み、
分散電源9b及び交直変換装置10を制御する制御装置
14とを備えている。また、制御装置14に対して、通
信線15を介して他の分散電源制御装置との協調指令を
与える協調制御指令装置16も備えている。さらに、協
調制御指令装置16には配電用変圧器3の二次側すなわ
ち配電系統側の電圧値が、電圧センサ17によって検出
され取り込まれる。
Here, the distributed power supply 9b will be taken as an example to explain the distribution system distributed power supply control system according to the present invention. The distribution system distributed power supply control system includes a voltage sensor 11 and a current sensor 12 for detecting a voltage time waveform V 2 and a current time waveform I 2 near the connection point between the distributed power source 9b and the distribution line 7b.
And a current sensor 13 for detecting a current-time waveform I d2 transmitted and received between the distribution line 7b and the distributed power source 9b, and the detection outputs of the voltage sensor 11 and the current sensors 12, 13,
The controller 14 controls the distributed power source 9b and the AC / DC converter 10. Further, the control device 14 is also provided with a cooperation control command device 16 which gives a cooperation command with another distributed power supply control device via the communication line 15. Further, the voltage value on the secondary side of the distribution transformer 3, that is, the distribution system side is detected by the voltage sensor 17 and taken into the cooperative control command device 16.

【0011】次に、制御装置14の構成を図2を参照し
て説明する。図2において、制御装置14は、電圧セン
サ11及び電流センサ12,13それぞれの検出出力を
所定の電圧波形信号に変換する入力部18a,18b,
18cと、入力部18a,18b,18cからの電圧出
力信号及び協調制御指令装置16からの協調指令を取り
込み、所定の制御ロジックにより分散電源9b及び交直
変換装置10に制御指令を送出する制御信号作成部19
とを備えている。
Next, the configuration of the control device 14 will be described with reference to FIG. In FIG. 2, the control device 14 includes input units 18a, 18b, which convert detection outputs of the voltage sensor 11 and the current sensors 12, 13 into predetermined voltage waveform signals.
18c, a voltage output signal from the input units 18a, 18b, 18c and a coordination command from the coordination control command device 16 are fetched, and a control signal is generated to send a control command to the distributed power source 9b and the AC / DC converter 10 by a predetermined control logic. Part 19
It has and.

【0012】制御装置14の動作を図3を参照して説明
する。協調制御指令装置16は、まず配電系統の末端に
近い分散電源すなわち図1の場合で言えば分散電源9b
に対して制御指令を送信する。制御装置14は、協調制
御指令装置16からの制御開始指令信号を受けて、図3
に示す制御ロジックを開始する。まず、S1では、制御
開始指令とともに送られてきた配電用変圧器3の二次側
電圧値Vs 及び分散電源9bと配電線7bの接続点近傍
の電圧時間波形V2′ が、読み込まれる。以下、数字の
サフィックス2は、分散電源9bに関するデータを、サ
フィックス1は、分散電源9aに関するデータを表すも
のとする。また、波形信号については例えばV2′ のよ
うに表し、その絶対値は′をとりV2 のように表すこと
にする。S2では、配電用変圧器3の二次側電圧値Vs
と接続点近傍の電圧値V2 との差の絶対値ΔV2 が計算
され、基準電圧Vthと比較される。ΔV2 がVthより大
きくなければ、制御の必要なしと判断してS10にジャ
ンプする。ΔV2 がVthより大きければ、S3で分散電
源9bから配電線7bに有効あるいは無効電力が供給可
能であるかどうかチェックし、供給可能であればS4に
おいて接続点近傍の電流時間波形I2 が取り込まれる。
供給不可能な場合には、制御不能と判断してS10にジ
ャンプする。S4では、まず接続点近傍の電圧時間波形
2′ と電流時間波形I2′ の位相差θ2 が求められ、
次に接続点近傍までの電圧降下がS5に示す式で計算さ
れる。これらの式について説明する。一般に、同一線種
で末端にのみ負荷が集中しているような配電線区間kを
考えると、その区間の電圧降下ΔVk は次式により求め
られる。
The operation of the controller 14 will be described with reference to FIG. First, the cooperative control command device 16 transmits the distributed power source near the end of the distribution system, that is, the distributed power source 9b in the case of FIG.
To the control command. The control device 14 receives the control start command signal from the cooperative control command device 16, and
The control logic shown in is started. First, in S1, the secondary side voltage value V s of the distribution transformer 3 and the voltage time waveform V 2 ′ in the vicinity of the connection point between the distributed power source 9b and the distribution line 7b are read together with the control start command. Hereinafter, the numerical suffix 2 represents data regarding the distributed power supply 9b, and the suffix 1 represents data regarding the distributed power supply 9a. A waveform signal is represented as V 2 ′, and its absolute value is represented as V 2 by taking ′. At S2, the secondary side voltage value V s of the distribution transformer 3
And the absolute value ΔV 2 of the difference between the voltage value V 2 in the vicinity of the connection point and V 2 is calculated and compared with the reference voltage V th . If ΔV 2 is not larger than V th , it is determined that control is not necessary and the process jumps to S10. If ΔV 2 is larger than V th, it is checked in S3 whether active or reactive power can be supplied from the distributed power source 9b to the distribution line 7b. If it can be supplied, the current time waveform I 2 near the connection point is output in S4. It is captured.
If the supply is impossible, it is determined that the control is impossible and the process jumps to S10. In S4, first, the phase difference θ 2 between the voltage time waveform V 2 ′ and the current time waveform I 2 ′ near the connection point is obtained,
Next, the voltage drop to the vicinity of the connection point is calculated by the formula shown in S5. These equations will be described. In general, considering a distribution line section k in which the load is concentrated only at the end in the same line type, the voltage drop ΔV k in that section is obtained by the following equation.

【0013】 ΔVk=rkk・Ikcosθk+xkk・Iksinθk …(1) ここで、rk,xk:それぞれ、k区間の単位長さ当たり
の線路抵抗及びリアクタンス lk :k区間の配電線路長さ Ik :k区間の配電線を流れる皮相電流 cosθk:k区間の力率 なお、(1)式において第一項は有効電流Ip による電圧
降下、第二項は無効電流Iq による電圧降下でありそれ
ぞれΔVp ,ΔVq で表すことにする。(1)式から分散
電源9bと配電線7bとの接続点近傍までの電圧降下
は、次式により求められる。
ΔV k = r k l k · I k cos θ k + x k l k · I k sin θ k (1) where r k and x k are line resistance per unit length of k section and Reactance l k : Distribution line length of k section I k : Apparent current flowing in distribution line of k section cos θ k : Power factor of k section In the equation (1), the first term is the voltage drop due to the active current I p , The second term is the voltage drop due to the reactive current I q, which is expressed by ΔV p and ΔV q , respectively. From the equation (1), the voltage drop to the vicinity of the connection point between the distributed power source 9b and the distribution line 7b is obtained by the following equation.

【0014】 ΔV2=Σrkk・Ikcosθk+Σxkk・Iksinθk …(2) ここで、区間は配電用変圧器3の二次側から、分散電源
9bの接続点までを取る。(2)式に示す第一項,第二項
がそれぞれS5に示すΔVp2,ΔVq2の式となる。
ΔV 2 = Σr k l k · I k cos θ k + Σx k l k · I k sin θ k (2) Here, a section is a connection point from the secondary side of the distribution transformer 3 to the distributed power source 9 b. Take up. The first term and the second term shown in the equation (2) are the equations of ΔV p2 and ΔV q2 shown in S5, respectively.

【0015】S6では、ΔVp2の絶対値が基準電圧V
pth と比較され、|ΔVp2|がVpthより大きければS
7に進み、|ΔVp2|がVpth 以下になるように分散電
源9bの能力の範囲以内で配電線7bに有効電流Idp2
が供給される。すなわち、有効電流Idp2 の供給により
接続点から上位系統側の配電線7bの有効電流I2・cos
θ2が減少し、その分だけ上位系統側の電圧降下ΔVp2
が小さくなるわけである。S6で、|ΔVp2|がVpth
より大きくなければ有効電流の制御は必要なしと判断し
てS7の制御は行なわずS8にジャンプする。S8で
は、Vq2の絶対値が基準電圧Vqth と比較され、|ΔV
q2|がVqth より大きければS9に進み、|ΔVq2|が
qth 以下になるように分散電源9bの能力の範囲以内
で配電線7bに無効電流Idq2 が供給される。この場合
は、無効電流Idq2 の供給により接続点から上位系統側
の配電線7bの無効電流I2・sinθ2 が減少し、その分
だけ上位系統側の電圧降下ΔVp2が小さくなるわけであ
る。S10では、分散電源9bの制御終了信号が協調指
令装置16に伝送され、分散電源9bの制御が終了す
る。協調指令装置16は、分散電源9bの制御終了信号
を受信した後、分散電源9bより上位系統に近い側の分
散電源すなわち図2の場合、分散電源9aに対して制御
指令を送信する。分散電源9aの制御装置は、図3と同
様な手順により分散電源9aを制御する。
In S6, the absolute value of ΔV p2 is the reference voltage V
pth, and if | ΔV p2 | is greater than V pth , then S
7, the effective current I dp2 is applied to the distribution line 7b within the capacity of the distributed power source 9b so that | ΔV p2 | becomes V pth or less.
Is supplied. That is, by supplying the effective current I dp2 , the effective current I 2 · cos of the distribution line 7b on the higher system side from the connection point
θ 2 decreases, and the voltage drop ΔV p2 on the upper system side correspondingly
Will be smaller. In S6, | ΔV p2 | is V pth
If it is not larger, it is judged that the control of the active current is not necessary and the control of S7 is not performed and the process jumps to S8. In S8, the absolute value of V q2 is compared with the reference voltage V qth, and | ΔV
q2 | proceeds to S9 is greater than V qth, | ΔV q2 | is supplied reactive current I dq2 distribution line 7b within the range of capability of the distributed power 9b to be less than V qth. In this case, the reactive current I dq2 is supplied to reduce the reactive current I 2 · sin θ 2 of the distribution line 7b on the upper system side from the connection point, and the voltage drop ΔV p2 on the upper system side is correspondingly reduced. .. In S10, the control end signal of the distributed power source 9b is transmitted to the cooperation command device 16, and the control of the distributed power source 9b ends. After receiving the control end signal of the distributed power source 9b, the cooperation command device 16 sends a control command to the distributed power source closer to the upper system than the distributed power source 9b, that is, in the case of FIG. 2, the distributed power source 9a. The control device for the distributed power source 9a controls the distributed power source 9a in the same procedure as in FIG.

【0016】このような制御が行なわれたときの電圧変
化を説明するために、以下のような配電系統を想定し、
図3から図12を参照して説明する。まず、負荷が、配
電線の末端にのみ集中して存在する長さ12kmの配電
線を考える。負荷の電流及び力率は、それぞれ500
A,0.95 と仮定する。したがって、制御前の配電線
皮相電流は図4に示す分布となる。また、線路抵抗及び
線路リアクタンスは、配電線に沿って一定としそれぞれ
0.08Ω/km,0.3Ω/kmとする。
In order to explain the voltage change when such control is performed, assume the following power distribution system,
This will be described with reference to FIGS. 3 to 12. First, consider a distribution line having a length of 12 km in which loads are concentrated only at the ends of the distribution line. The load current and power factor are 500
Assume A, 0.95. Therefore, the distribution line apparent current before control has the distribution shown in FIG. The line resistance and line reactance are constant along the distribution line and are 0.08 Ω / km and 0.3 Ω / km, respectively.

【0017】以上想定した配電線に対して、前述の(2)
式により計算される配電用変圧器3の二次側電圧値Vs
からの電圧降下を図5に示す。また、皮相電流と力率か
ら計算される有効電流Ip 及び無効電流Iq の分布を図
6に示す。
For the distribution line assumed above, the above (2)
Secondary side voltage value V s of the distribution transformer 3 calculated by the formula
The voltage drop from is shown in FIG. FIG. 6 shows the distribution of the active current I p and the reactive current I q calculated from the apparent current and the power factor.

【0018】図3で説明したように、まず分散電源9b
が制御対象となる。図5に示すように、配電用変圧器二
次側電圧値Vs と接続点近傍の電圧値V2 との差の絶対
値ΔV2 は916Vとなり基準電圧Vthと比較された結
果、この場合制御必要ありと判断されたと仮定する。S
3では、分散電源9bから配電線7bに電力が供給可能
であるかどうかチェックされるが、この場合供給可能と
仮定する。S5では、I2及びθ2を用いて有効電流及び
無効電流によるそれぞれの電圧降下ΔVp2,ΔVq2が図
7に示すように求められる。
As described with reference to FIG. 3, first, the distributed power source 9b.
Is the control target. As shown in FIG. 5, the absolute value ΔV 2 of the difference between the secondary voltage value V s of the distribution transformer and the voltage value V 2 in the vicinity of the connection point is 916 V, which is compared with the reference voltage V th. It is assumed that it is determined that control is necessary. S
In No. 3, it is checked whether power can be supplied from the distributed power source 9b to the distribution line 7b. In this case, it is assumed that power can be supplied. In S5, the respective voltage drops ΔV p2 and ΔV q2 due to the active current and the reactive current are obtained using I 2 and θ 2 as shown in FIG.

【0019】図7に示すように、ΔVp2は約400Vと
大きいため、S6では、有効電流の制御が必要と判断さ
れ、分散電源9bの能力の範囲以内で配電線7bに有効
電流Idp2 が供給される。この場合、供給される有効電
流Idp2 は分散電源9bの能力から、図8に示すように
200Aとする。その結果、配電線7bにおいて接続点
から上位系統側の有効電流が275Aに減少し、その分
だけ接続点までの電圧降下ΔVp2が図9に示すように改
善されるわけである。
As shown in FIG. 7, since ΔV p2 is as large as about 400 V, it is determined in S6 that active current control is required, and the active current I dp2 is applied to the distribution line 7b within the capacity of the distributed power source 9b. Supplied. In this case, the effective current I dp2 supplied is set to 200 A as shown in FIG. 8 due to the capability of the distributed power source 9b. As a result, in the distribution line 7b, the effective current from the connection point to the upper system side is reduced to 275A, and the voltage drop ΔV p2 to the connection point is improved by that amount as shown in FIG.

【0020】同様に、S9で無効電流Idq2 が140A
供給され、その分だけ接続点までの電圧降下ΔVq2も図
9に示すように改善される。
Similarly, the reactive current I dq2 is 140 A in S9.
The voltage drop ΔV q2 to the connection point is also improved as shown in FIG.

【0021】以上で、分散電源9bの制御が終了し、S
10では分散電源9bの制御終了信号が協調指令装置1
6に伝送される。協調指令装置16は、分散電源9bの
制御終了信号を受信した後、分散電源9bより上位系統
に近い側の分散電源すなわち分散電源9aに対して制御
指令を送信する。分散電源9aの制御装置は、制御を介
し指令信号受信後、図3と同様な手順により分散電源9
aを制御する。
With the above, control of the distributed power source 9b is completed, and S
In 10, the control end signal of the distributed power source 9b is the cooperation command device 1
6 is transmitted. After receiving the control end signal of the distributed power source 9b, the cooperation command device 16 transmits a control command to the distributed power source closer to the upper system than the distributed power source 9b, that is, the distributed power source 9a. After receiving the command signal through the control, the control device of the dispersed power source 9a operates in the same procedure as in FIG.
control a.

【0022】分散電源9aを制御したときの様子を図1
0から図12に示す。この場合、配電線7bにおける分
散電源9aの接続点までの電圧降下ΔVq1の値が小さく
なっているため無効電流の制御は必要なしと判断され、
有効電流の制御だけが実施されるものとする。その結
果、図11に示すように接続点までの電圧降下ΔVp
改善され、図12に示すようにΔV(=ΔVp+ΔVq)
は、図5の電圧降下ΔV=1099Vに対して、378
Vとなり大幅に改善される。
FIG. 1 shows how the distributed power source 9a is controlled.
Shown from 0 to FIG. In this case, since the value of the voltage drop ΔV q1 in the distribution line 7b to the connection point of the distributed power source 9a is small, it is determined that the reactive current control is not necessary.
Only active current control shall be implemented. As a result, the voltage drop ΔV p to the connection point is improved as shown in FIG. 11, and ΔV (= ΔV p + ΔV q ) as shown in FIG.
Is 378 for the voltage drop ΔV = 1099V in FIG.
It becomes V and is greatly improved.

【0023】以上述べたように、分散電源による電圧制
御では、分散電源の接続点より上位系統側の配電線の電
圧降下ΔVが小さくなるため、まず配電線の末端側に位
置する分散電源に対して配電用変圧器二次側の電圧に近
づけるように制御した後に、末端側から上位系統側に向
かって、複数の分散電源に対して同様な制御を繰り返す
ことにより、制御を効率的に行なうことができる。これ
に対して、上位系統側に位置する分散電源を先に制御す
ると、その接続点の電圧は末端側に位置する分散電源制
御の影響を受けて変化してしまうため、再制御が必要に
なり制御の効率が低下することになる。
As described above, in the voltage control by the distributed power source, the voltage drop ΔV of the distribution line on the higher system side from the connection point of the distributed power source becomes smaller. Control to make it close to the voltage on the secondary side of the distribution transformer, and then to perform efficient control by repeating the same control for multiple distributed power sources from the terminal side to the upper system side. You can On the other hand, if the distributed power supply located on the upper system side is controlled first, the voltage at the connection point will change under the influence of the distributed power supply control located on the terminal side, so re-control is necessary. The control efficiency will decrease.

【0024】[0024]

【発明の効果】以上に説明したように、本発明の配電系
統分散電源制御システムによれば、分散電源と前記配電
系統の接続点の電圧が、前記配電用変圧器の配電系統側
の電圧に近づけるように制御する構成としたので、分散
電源が配電系統に接続され配電系統との間に電力の授受
をもって運用される際に、あるいは静電容量の大きい配
電系統が軽負荷で運用される際に、配電電圧を適正範囲
に維持できる配電系統分散電源制御システムを得ること
ができる。
As described above, according to the distribution system distributed power supply control system of the present invention, the voltage at the connection point between the distributed power supply and the distribution system is equal to the voltage on the distribution system side of the distribution transformer. Since the configuration is such that they are controlled closer to each other, when a distributed power source is connected to a distribution system and is operated by exchanging power with the distribution system, or when a distribution system with a large capacitance is operated with a light load. Moreover, it is possible to obtain a distribution system distributed power supply control system capable of maintaining a distribution voltage within an appropriate range.

【0025】また、本発明の配電系統分散電源制御シス
テムでは配電系統の末端側に接続された分散電源から、
上位電力系統に近い側の分散電源に向かって制御するよ
うに構成したので効率的な制御が可能になる。
Further, in the distribution system distributed power supply control system of the present invention, from the distributed power supply connected to the terminal side of the distribution system,
Since it is configured to control the distributed power sources on the side closer to the upper power system, efficient control is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る配電系統分散電源制御システムの
基本的構成を示す図である。
FIG. 1 is a diagram showing a basic configuration of a distribution system distributed power supply control system according to the present invention.

【図2】図1における制御装置の具体的構成を示すブロ
ック図である。
FIG. 2 is a block diagram showing a specific configuration of a control device in FIG.

【図3】図2における制御装置の制御ロジックを示す流
れ図である。
FIG. 3 is a flowchart showing a control logic of the control device in FIG.

【図4】図3における制御ロジックを実施する前の配電
線皮相電流の分布を示す図である。
FIG. 4 is a diagram showing a distribution of distribution line apparent current before the control logic in FIG. 3 is executed.

【図5】図3における制御ロジックを実施する前の配電
線の電圧降下を示す図である。
5 is a diagram showing a voltage drop of a distribution line before the control logic in FIG. 3 is implemented.

【図6】有効電流及び無効電流の分布を示す図である。FIG. 6 is a diagram showing distributions of active currents and reactive currents.

【図7】有効電流及び無効電流によるそれぞれの電圧降
下を示す図である。
FIG. 7 is a diagram showing respective voltage drops due to active current and reactive current.

【図8】図3における制御ロジックを実施したときの配
電線の有効電流及び無効電流の分布を示す図である。
8 is a diagram showing distributions of active current and reactive current in a distribution line when the control logic in FIG. 3 is executed.

【図9】図3における制御ロジックを実施したときの配
電線の有効電流及び無効電流によるそれぞれの電圧降下
を示す図である。
9 is a diagram showing respective voltage drops due to an active current and a reactive current of a distribution line when the control logic in FIG. 3 is implemented.

【図10】図3における制御ロジックを実施したときの
配電線の有効電流及び無効電流の分布を示す図である。
10 is a diagram showing distributions of active currents and reactive currents of a distribution line when the control logic in FIG. 3 is implemented.

【図11】図3における制御ロジックを実施したときの
配電線の有効電流及び無効電流によるそれぞれの電圧降
下を示す図である。
11 is a diagram showing respective voltage drops due to an active current and a reactive current of a distribution line when the control logic in FIG. 3 is implemented.

【図12】図3における制御ロジックを実施したときの
配電線の電圧降下を示す図である。
12 is a diagram showing a voltage drop of a distribution line when the control logic in FIG. 3 is implemented.

【符号の説明】[Explanation of symbols]

1…配電変電所、2…上位電力系統、3…配電用変圧
器、4…開閉器、5…三相母線、6a,6b…開閉器、
7a,7b…配電線、8a,8b…負荷、9a,9b…
分散電源、10…交直変換装置、11…電圧センサ、1
2,13…電流センサ、14…制御装置、15…通信
線、16…協調制御指令装置、17…電圧センサ、18
a,18b,18c…入力部、19…制御信号作成部。
DESCRIPTION OF SYMBOLS 1 ... Distribution substation, 2 ... Upper power system, 3 ... Distribution transformer, 4 ... Switch, 5 ... Three-phase bus, 6a, 6b ... Switch,
7a, 7b ... Distribution line, 8a, 8b ... Load, 9a, 9b ...
Distributed power source, 10 ... AC / DC converter, 11 ... Voltage sensor, 1
2, 13 ... Current sensor, 14 ... Control device, 15 ... Communication line, 16 ... Cooperative control command device, 17 ... Voltage sensor, 18
a, 18b, 18c ... Input section, 19 ... Control signal creation section.

フロントページの続き (72)発明者 寺田 保広 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内Front page continuation (72) Inventor Yasuhiro Terada 5-2-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Omika factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】上位電力系統から配電用変圧器を介して電
力が供給される配電系統と、該配電系統中に接続される
複数の分散電源と、該分散電源の出力を制御する制御装
置とを有し、該制御装置は、前記分散電源と前記配電系
統の接続点の電圧が、前記配電用変圧器の配電系統側の
電圧に近づけるように制御することを特徴とする配電系
統分散電源制御システム。
1. A power distribution system to which power is supplied from a higher-level power system via a distribution transformer, a plurality of distributed power sources connected to the power distribution system, and a controller for controlling the output of the distributed power source. Wherein the control device controls the voltage at the connection point between the distributed power source and the power distribution system so as to approach the voltage on the power distribution system side of the power distribution transformer. system.
【請求項2】前記制御装置による制御が、前記分散電源
と前記配電系統の接続点の電圧及びあるいは電流に基づ
いて行なわれることを特徴とする請求項1に記載の配電
系統分散電源制御システム。
2. The distributed power supply system control system according to claim 1, wherein the control by the control device is performed based on a voltage and / or a current at a connection point between the distributed power supply and the power distribution system.
【請求項3】前記制御装置による制御が、前記配電系統
の末端側に接続された分散電源から、上位電力系統に近
い側の分散電源に向かって行なわれることを特徴とする
請求項1に記載の配電系統分散電源制御システム。
3. The control according to claim 1, wherein the control is performed from a distributed power source connected to a terminal side of the power distribution system toward a distributed power source near a higher power system. Power distribution system distributed power control system.
JP4090587A 1992-04-10 1992-04-10 Controlling system for dispersed power supply in distribution system Pending JPH05292670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4090587A JPH05292670A (en) 1992-04-10 1992-04-10 Controlling system for dispersed power supply in distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4090587A JPH05292670A (en) 1992-04-10 1992-04-10 Controlling system for dispersed power supply in distribution system

Publications (1)

Publication Number Publication Date
JPH05292670A true JPH05292670A (en) 1993-11-05

Family

ID=14002588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4090587A Pending JPH05292670A (en) 1992-04-10 1992-04-10 Controlling system for dispersed power supply in distribution system

Country Status (1)

Country Link
JP (1) JPH05292670A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002300726A (en) * 2001-03-30 2002-10-11 Tokyo Gas Co Ltd Power supply system, reactive power supply method, independent power equipment parallel-off method and reactive power supply command device
JP2006230162A (en) * 2005-02-21 2006-08-31 Chugoku Electric Power Co Inc:The Voltage regulator, voltage regulating method, and voltage regulating program
JP2006246584A (en) * 2005-03-02 2006-09-14 Shimizu Corp Control method for distributed power supply
JP2012095464A (en) * 2010-10-27 2012-05-17 Chugoku Electric Power Co Inc:The Transmission voltage selection method of electric power substation for power distribution
JP2012182990A (en) * 2009-01-14 2012-09-20 Accenture Global Services Ltd Method for determination of distribution transformer voltage based on metered load
US8693228B2 (en) 2009-02-19 2014-04-08 Stefan Matan Power transfer management for local power sources of a grid-tied load
US9600003B2 (en) 2012-03-21 2017-03-21 Mitsubishi Electric Corporation Power-distribution-system voltage control system
US10074982B2 (en) 2013-08-12 2018-09-11 Mitsubishi Electric Corporation Transformer-type voltage controller, reactive-power-adjusting-type voltage controller, and power-distribution-system voltage control system
US10090679B2 (en) 2013-08-30 2018-10-02 Mitsubishi Electric Corporation Voltage controller and voltage monitoring device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002300726A (en) * 2001-03-30 2002-10-11 Tokyo Gas Co Ltd Power supply system, reactive power supply method, independent power equipment parallel-off method and reactive power supply command device
JP2006230162A (en) * 2005-02-21 2006-08-31 Chugoku Electric Power Co Inc:The Voltage regulator, voltage regulating method, and voltage regulating program
JP2006246584A (en) * 2005-03-02 2006-09-14 Shimizu Corp Control method for distributed power supply
JP2012182990A (en) * 2009-01-14 2012-09-20 Accenture Global Services Ltd Method for determination of distribution transformer voltage based on metered load
US8693228B2 (en) 2009-02-19 2014-04-08 Stefan Matan Power transfer management for local power sources of a grid-tied load
US9690313B2 (en) 2009-02-19 2017-06-27 Xslent Energy Technologies, Llc Power transfer management for local power sources of a grid-tied load
US10185346B2 (en) 2009-02-19 2019-01-22 Xslent Energy Technologies, Llc Power transfer management for local power sources of a grid-tied load
JP2012095464A (en) * 2010-10-27 2012-05-17 Chugoku Electric Power Co Inc:The Transmission voltage selection method of electric power substation for power distribution
US9600003B2 (en) 2012-03-21 2017-03-21 Mitsubishi Electric Corporation Power-distribution-system voltage control system
US10074982B2 (en) 2013-08-12 2018-09-11 Mitsubishi Electric Corporation Transformer-type voltage controller, reactive-power-adjusting-type voltage controller, and power-distribution-system voltage control system
US10090679B2 (en) 2013-08-30 2018-10-02 Mitsubishi Electric Corporation Voltage controller and voltage monitoring device

Similar Documents

Publication Publication Date Title
CN102047543B (en) Non-isolated charger with bi-polar inputs
CN108183486B (en) Flexible multi-state switch and control method thereof
US11192465B2 (en) Charging station for charging multiple electric vehicles, in particular electric cars
US10211721B2 (en) DC/AC converter apparatus comprising means for controlling the reactive power and power conversion and generation system comprising such DC/AC converter apparatus
US20020036430A1 (en) Local area grid for distributed power
CA2302621A1 (en) System for supplying electric-motor loads with electrical energy
JPH11289668A (en) Apparatus and method for controlling reactive power
WO2023024774A1 (en) New-energy charging system, and alternating-current charging pile and charging method therefof
JPH05292670A (en) Controlling system for dispersed power supply in distribution system
CN209963762U (en) Multiport power electronic alternating current transformer system
CN109088430A (en) Energy-storage system counterflow-preventing protects power supply system and its investigating method
US7120039B2 (en) Voltage converter
Pathan et al. Virtual Impedance-based decentralized power sharing control of an islanded AC microgrid
CN217848963U (en) Building energy router with intelligent switch array
US10965129B2 (en) Mobile micro-grid unit and micro-grid system
Singh et al. Power quality improvement in a PV based EV charging station interfaced with three phase grid
CN114204538B (en) Direct-current micro-grid interconnection converter and power coordination control method thereof
WO2022166287A1 (en) Electrical control box and power supply system
JP2000083330A (en) Distributed power supply installation
JPH05168160A (en) Ac/dc converter system
Li et al. Seamless switching power sharing control method in a hybrid DC‐AC microgrid by the isolated two‐stage converter based on SST
KR102238340B1 (en) PCS Droop Control Device and Energy Storage System using the Same
WO2012067368A2 (en) Method and device for multifunctional power conversion employing a charging device and having reactive power control
CN113690936A (en) Energy storage energy router of multiport
CN113890102A (en) Power distribution network important load smooth switching control method based on energy storage quick response