JPH05292605A - Control system for electric vehicle - Google Patents

Control system for electric vehicle

Info

Publication number
JPH05292605A
JPH05292605A JP4092621A JP9262192A JPH05292605A JP H05292605 A JPH05292605 A JP H05292605A JP 4092621 A JP4092621 A JP 4092621A JP 9262192 A JP9262192 A JP 9262192A JP H05292605 A JPH05292605 A JP H05292605A
Authority
JP
Japan
Prior art keywords
inverter
wheels
electric vehicle
vehicle
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4092621A
Other languages
Japanese (ja)
Inventor
Noriaki Nakamoto
紀明 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4092621A priority Critical patent/JPH05292605A/en
Publication of JPH05292605A publication Critical patent/JPH05292605A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PURPOSE:To provide a control system for an electric vehicle employing rubber tire wheels and traveling while driving an induction motor through a VVVF inverter wherein imstability in control due to difference of the number of revolution between right and left wheels is eliminated. CONSTITUTION:Inverters 51, 52 are installed, respectively, for right and left wheels. Induction motors 1, 3 coupled with right wheels are fed with power from the inverter 51 whereas induction motors 2, 4 coupled with left wheels are fed with power from the inverter 52. Number of revolution of the induction motors 1-4 are detected, respectively, through number of revolution detectors 71-74 and then torque command values 81, 82 are delivered from an output torque commander 8 to the inverters 51, 52.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ゴムタイヤ等の車輪
を備えて案内軌道に沿って走行する電気車の制御方式に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control system for an electric vehicle equipped with wheels such as rubber tires and traveling along a guide track.

【0002】[0002]

【従来の技術】鉄道車両のメインテナンスフリー化を促
進するため、主電動機に誘導電動機を使用し、これを可
変電圧可変周波数のインバータで制御駆動する方式が従
来から種々開発され実用化されている。図2は例えば電
気車研究会発行“電気車の科学”1991年2月号Vo
l.44,No.2,P.48に開示されたこの種従来
の電気車の主回路基本構成および主電動機の配置を示す
図である。
2. Description of the Related Art In order to promote maintenance-free railway vehicles, various methods have been developed and put to practical use, in which an induction motor is used as a main motor, and the induction motor is controlled and driven by an inverter having a variable voltage and a variable frequency. Figure 2 shows, for example, "Science of Electric Vehicles", February 1991, Vol.
l. 44, No. 2, P.I. It is a figure which shows the main circuit basic structure of this kind of conventional electric vehicle disclosed by 48, and arrangement | positioning of a main motor.

【0003】同図(1)において、1ないし4は主電動
機である誘導電動機、5は直流電源6からの直流電力を
可変電圧可変周波数の3相交流電力に変換して誘導電動
機1〜4を駆動制御するインバータである。同図(2)
は、電気車に主電動機を実装した状態を示す平面図で、
4台の誘導電動機1〜4がそれぞれ減速機21〜24を
介して車輪(車軸)11〜14に連結されている。誘導
電動機1〜4はインバータ5によって推進制御に必要な
電圧、周波数に変換された電源が供給され、所望の回転
出力トルクを得る。この出力トルクは、減速機21〜2
4により回転数を減速し車輪11〜14を回転させる。
In FIG. 1A, 1 to 4 are induction motors which are main motors, and 5 are induction motors 1 to 4 by converting DC power from a DC power supply 6 into three-phase AC power of variable voltage variable frequency. It is an inverter for drive control. Same figure (2)
Is a plan view showing a state in which a main motor is mounted on an electric vehicle,
Four induction motors 1 to 4 are connected to wheels (axles) 11 to 14 via reduction gears 21 to 24, respectively. The induction motors 1 to 4 are supplied with power converted into a voltage and a frequency required for propulsion control by the inverter 5 to obtain a desired rotation output torque. This output torque is applied to the speed reducers 21 to 2
The rotation speed is reduced by 4 to rotate the wheels 11 to 14.

【0004】図3は図2(2)とは異なる構成の電気車
における実装状態を示す平面図で、例えば低公害の新交
通システム等、都会近郊で高度な自動運転方式や無人運
転方式等を採用するシステムに適用されるもので、図4
に示すように、ゴムタイヤ等低剛性材からなる車輪1
1,12等を使用し、コンクリート製の軌道中央に設置
された案内軌道31に沿って走行する。軌道の曲線部に
おいては、案内軌道31の凸部に対向して車体32の下
部に形成された凹部33が案内軌道31の凸部に摺動す
ることにより、車両はその向きを案内軌道31に沿わせ
て走行していく。この種の車両では、左右の車輪の回転
数に差が生じ易いので、図3では、左右の車輪11と1
2および車輪13と14の間に差動調整器(デイファレ
ンシャル)41,42を備えて、その回転数差を吸収可
能な構造が採用されている。
FIG. 3 is a plan view showing a mounting state in an electric vehicle having a configuration different from that shown in FIG. 2 (2). For example, a new transportation system with low pollution, an advanced automatic driving method or an unmanned driving method in the suburbs of the city, etc. It is applied to the adopted system.
As shown in FIG. 1, a wheel 1 made of a low-rigidity material such as a rubber tire
1, 2, etc. are used to run along a guide track 31 installed at the center of a concrete track. In the curved portion of the track, the concave portion 33 formed in the lower portion of the vehicle body 32 is opposed to the convex portion of the guide track 31 and slides on the convex portion of the guide track 31, so that the direction of the vehicle is changed to the guide track 31. Drive along. In this type of vehicle, the left and right wheels 11 and 1 are different from each other in FIG.
2 and the differential adjusters (differential) 41 and 42 are provided between the wheels 13 and 14 to adopt a structure capable of absorbing the difference in rotational speed.

【0005】[0005]

【発明が解決しようとする課題】従来の電気車の制御方
式は以上のように、特に、図4に示すように車輪がゴム
タイヤ等の剛性の比較的低い材料で構成されている場
合、車両が曲線部分を走行すると、左右の車輪の直径に
差が生じ易い。この場合、図3に示すように、差動調整
器を採用することにより左右車輪の直径差に基づく車輪
軸のネジリ力は補償することが可能であるが、それぞれ
回転数が異なる誘導電動機1〜4に対して共通のインバ
ータ5から同一の周波数の電源を供給することになる。
この結果、加速力を得る電動機と減速力を発生させる電
動機とが混在する状態となり、制御不能となり易いとい
う問題点があった。
As described above, the conventional electric vehicle control system, particularly when the wheel is made of a material having a relatively low rigidity such as a rubber tire as shown in FIG. When traveling on a curved portion, a difference in diameter between left and right wheels is likely to occur. In this case, as shown in FIG. 3, by adopting a differential adjuster, it is possible to compensate the twisting force of the wheel shaft based on the diameter difference between the left and right wheels, but the induction motors 1 to 1 having different rotational speeds are different. The common inverter 5 supplies the power of the same frequency to each of the four.
As a result, there is a problem that an electric motor that obtains an acceleration force and an electric motor that produces a deceleration force are mixed, and control is apt to occur.

【0006】もっとも、誘導電動機を使用した電気車に
おいて、4台の誘導電動機を2台毎に分けて2台のイン
バータにより電源を供給する方式のものが例えば特開昭
61−88704号公報に開示されている。しかし、こ
の方式は、各インバータ間に位相差を設けて直流回路へ
の交流電流成分を低減させることを目的とするもので図
2(2)で示したような、レール上を走行する通常の車
輪を使用した電気車で特に左右の車輪の回転数差を考慮
して誘導電動機を左右で区分するものではない。
However, an electric vehicle using an induction motor is disclosed in, for example, Japanese Patent Application Laid-Open No. 61-88704, in which four induction motors are divided into two and electric power is supplied by two inverters. Has been done. However, this system aims to reduce the alternating current component to the direct current circuit by providing a phase difference between the respective inverters, and it is a common practice to run on a rail as shown in FIG. 2 (2). In an electric vehicle using wheels, the induction motor is not divided into left and right in consideration of the rotational speed difference between the left and right wheels.

【0007】この発明は以上ような問題点を解消するた
めになされたもので、インバータとして安定した制御特
性が得られ車輪発生トルクも安定化する電気車の制御方
式を得ることを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain an electric vehicle control system in which stable control characteristics are obtained as an inverter and wheel generated torque is also stabilized.

【0008】[0008]

【課題を解決するための手段】この発明に係る電気車の
制御方式は、その車輪を、進行方向左右の車輪の回転数
差を許容する構成で支持するとともに、インバータおよ
び誘導電動機を上記左右の車輪各別に備えたものであ
る。
In the control system for an electric vehicle according to the present invention, the wheels are supported by a structure that allows a difference in the rotational speeds of the wheels on the left and right in the traveling direction, and the inverter and the induction motor are provided on the left and right sides. It is provided for each wheel.

【0009】また、上記左右の車輪の回転数を検出して
その回転数差から車両の曲がり方向を判別し、外側車輪
用インバータと内側車輪用インバータとへのトルク指令
値を、その絶対値が、それぞれ力行時には前者が後者よ
り高く、制動時には前者が後者より低くなるよう設定す
るようにしたものである。
Further, the rotational speeds of the left and right wheels are detected, the bending direction of the vehicle is discriminated from the rotational speed difference, and the absolute values of the torque command values for the outer wheel inverter and the inner wheel inverter are determined. The former is higher than the latter during power running, and the former is lower than the latter during braking.

【0010】[0010]

【作用】車両が曲線部分を走行する場合、左右の車輪に
かなりの直径差が生じても、左右の車輪を駆動している
誘導電動機は各別のインバータで制御されるので、各々
適性な発生トルクが得られる。
When a vehicle travels on a curved portion, even if there is a considerable difference in diameter between the left and right wheels, the induction motors that drive the left and right wheels are controlled by separate inverters, so that each of them will generate an appropriate value. Torque is obtained.

【0011】また、左右の回転数差から車両の曲がり方
向を検出して左右のトルク指令値を所定の要領で調整す
るようにした場合は、曲がりの曲率半径を小さくするよ
うに制御するので、車両の曲線部分での走行が円滑とな
る。
When the vehicle bending direction is detected from the difference between the left and right rotational speeds and the left and right torque command values are adjusted in a predetermined manner, the radius of curvature of the bending is controlled to be small. Smooth running on curved parts of the vehicle.

【0012】[0012]

【実施例】実施例1.図1はこの発明の実施例1による
電気車の制御方式を示す回路構成図である。図におい
て、51,52は入力側が並列となって直流電源6に接
続された可変電圧可変周波数のインバータ、1,3は車
両進行方向に向かって右側の車輪11,13と連結され
た誘導電動機で、この2台の誘導電動機1,3が並列に
接続されてインバータ51から電力の供給を受ける。同
様に、車両進行方向に向かって左側の車輪12,14と
連結された誘導電動機2,4は、並列に接続されてイン
バータ52から電力の供給を受ける。71〜74は各誘
導電動機1〜4の回転数を検出する回転数検出器,8は
出力トルク指令器で、回転数検出器71〜74からの信
号を基に所定のトルク指令値81,82をインバータ5
1,52へ送出する。
EXAMPLES Example 1. 1 is a circuit configuration diagram showing a control system for an electric vehicle according to a first embodiment of the present invention. In the figure, 51 and 52 are variable-voltage variable-frequency inverters whose input sides are connected in parallel and are connected to the DC power supply 6, and 1 and 3 are induction motors connected to the wheels 11 and 13 on the right side in the vehicle traveling direction. The two induction motors 1 and 3 are connected in parallel to each other and supplied with electric power from the inverter 51. Similarly, the induction motors 2 and 4 connected to the wheels 12 and 14 on the left side in the vehicle traveling direction are connected in parallel and supplied with electric power from the inverter 52. 71 to 74 are rotation speed detectors that detect the rotation speeds of the induction motors 1 to 4, 8 is an output torque commander, and predetermined torque command values 81 and 82 based on signals from the rotation speed detectors 71 to 74. The inverter 5
1 to 52.

【0013】次に動作について説明する。今、車両が、
図4(2)に示すように、直線部分から右向きへの曲線
部分に入ったとする。この場合、車両の重心が左右中心
から右側へ移動し、この結果、右側車輪11,13の直
径は小さくなり、逆に、左側車輪12,14の直径は大
きくなる。インバータ51は回転数検出器71,73か
らの誘導電動機1,3の回転数と出力トルク指令器8の
トルク指令値81とから必要な出力周波数を決定する。
同様に、インバータ52は、回転数検出器72,74か
らの誘導電動機2,4の回転数と出力トルク指令器8の
トルク指令値82とから必要な出力周波数を決定する。
Next, the operation will be described. Now the vehicle is
As shown in FIG. 4 (2), it is assumed that a straight line portion enters a curved portion to the right. In this case, the center of gravity of the vehicle moves from the left-right center to the right, and as a result, the diameters of the right wheels 11 and 13 become smaller, while the diameters of the left wheels 12 and 14 become larger. The inverter 51 determines the required output frequency from the rotation speeds of the induction motors 1 and 3 from the rotation speed detectors 71 and 73 and the torque command value 81 of the output torque command device 8.
Similarly, the inverter 52 determines the required output frequency from the rotation speeds of the induction motors 2 and 4 from the rotation speed detectors 72 and 74 and the torque command value 82 of the output torque commander 8.

【0014】インバータ51を例にとると、この出力周
波数は以下の式に従って決定される。 f1INV=fr13+f ここで、f1INVはインバータ51の出力周波数、f
r13は誘導電動機1の回転数fr1と誘導電動機3の回転
数fr3とから決まる周波数で、両者fr1とfr3との値に
はほとんど差はないが、fr13としては、通常、力行時
は両者のうちの最低値、制動時は両者のうちの最高値を
採用する。また、fSは所要のトルクを発生するのに必
要なすべり周波数で電動機特性から一義的に決まる。
Taking the inverter 51 as an example, the output frequency is determined according to the following equation. f 1INV = f r13 + f S Here, f 1INV is the output frequency of the inverter 51, f
r13 is a frequency determined from the induction motor 3 speed f r3 Metropolitan the rotational speed f r1 of the induction motor 1 is not almost difference in value between both f r1 and f r3, as the f r13, usually, the power running The lowest value of both is adopted at the time, and the highest value of both is adopted at the time of braking. Further, f S is the slip frequency required to generate the required torque, and is uniquely determined from the motor characteristics.

【0015】インバータ52についても、上記と同様の
要領で出力周波数を決定するが、回転数差が大きくなり
得る左右の誘導電動機を、2台のインバータ51および
52を設けて各別に制御駆動するので、適切なトルク指
令を設定することにより、円滑で安定した制御特性を得
ることができる。
The output frequency of the inverter 52 is determined in the same manner as described above, but since the left and right induction motors, which may have a large difference in rotational speed, are provided with two inverters 51 and 52 to be controlled and driven individually. By setting an appropriate torque command, smooth and stable control characteristics can be obtained.

【0016】実施例2.インバータ51および52への
トルク指令を特に下記のように設定することにより、曲
線部分での走行が一層円滑となる。即ち、先ず回転数検
出器71,73と回転数検出器72,74との出力であ
る左右の誘導電動機1,3および誘導電動機2,4の回
転数の差から走行中の車両の曲がり方向を判別する。そ
して、車両が力行中の場合には、曲線部分の外側に位置
する車輪、例えば車輪12,14を駆動するインバータ
52へのトルク指令値82を、曲線部分の内側に位置す
る車輪、例えば車輪11,13を駆動するインバータ5
1への通常値のトルク指令値81より大きく設定する。
Example 2. By setting the torque command to the inverters 51 and 52 particularly as described below, traveling on a curved portion becomes smoother. That is, first, the bending direction of the running vehicle is determined based on the difference between the rotational speeds of the left and right induction motors 1 and 3 and the induction motors 2 and 4, which are the outputs of the rotation speed detectors 71 and 73 and the rotation speed detectors 72 and 74. Determine. Then, when the vehicle is in the power running state, the torque command value 82 to the wheels located outside the curved portion, for example, the wheels 12 and 14 is changed to the wheel located inside the curved portion, such as the wheel 11. Inverter 5 for driving
It is set to be larger than the torque command value 81 which is the normal value for 1.

【0017】これにより、車両はより小さい曲率半径で
曲線部分を曲がろうとするので、結果として、案内軌道
31とこれに摺動して車両の走行方向を案内する車体下
部の凹部33との摩擦が低減し、曲線部分での車両の走
行が円滑に行われるとともに、上記摩擦力が減少するの
で、案内軌道31や車体凹部33の摩耗、損傷が軽減し
て当該部分の保守が簡便となる。
As a result, the vehicle tries to bend the curved portion with a smaller radius of curvature, and as a result, friction between the guide track 31 and the recess 33 in the lower part of the vehicle body which slides on the guide track 31 and guides the traveling direction of the vehicle. Is reduced, the vehicle smoothly travels in the curved portion, and the frictional force is reduced. Therefore, wear and damage of the guide track 31 and the vehicle body recess 33 are reduced, and maintenance of the portion is simplified.

【0018】なお、上記トルク指令値の設定であるが、
車両が制動状態にあるときは、当然ながら、曲線部分の
外側に位置する車輪を駆動するインバータへのトルク指
令値をより小さく(その絶対値は小さく)設定すること
になる。
In the setting of the torque command value,
When the vehicle is in the braking state, naturally, the torque command value to the inverter that drives the wheels located outside the curved portion is set to be smaller (its absolute value is smaller).

【0019】実施例3.なお、上記実施例では、車両が
1両のみの場合について説明したが、左右各別に設けた
インバータから2両以上の車両にわたってその誘導電動
機に電力を供給する方式のものとしてもよい。
Example 3. In the above embodiment, the case where only one vehicle is used has been described, but a system may be used in which electric power is supplied to the induction motor from two or more vehicles provided separately for the left and right vehicles.

【0020】[0020]

【発明の効果】この発明は、以上のように、インバータ
および誘導電動機を左右の車輪各別に備えたので、左右
の車輪の回転数の偏差に基づくインバータの制御上の不
安定性を解消することができる。
As described above, according to the present invention, the inverter and the induction motor are provided for each of the left and right wheels, so that the instability of the inverter control due to the deviation of the rotational speeds of the left and right wheels can be eliminated. it can.

【0021】更に、左右の回転数の偏差から車両の曲が
り方向を検出して左右のトルク指令値に所定の偏差を設
けるようにした場合は、特に車両の曲線部分での走行が
円滑となり、案内軌道等の構造部分の負担も軽減され
る。
Further, when the curving direction of the vehicle is detected from the deviation of the left and right rotational speeds and a predetermined deviation is provided for the left and right torque command values, the vehicle smoothly runs especially in the curved portion, and the guidance is provided. The burden on structural parts such as tracks is also reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による電気車の制御方式を
示す回路構成図である。
FIG. 1 is a circuit configuration diagram showing a control system for an electric vehicle according to an embodiment of the present invention.

【図2】従来の電気車の制御方式を示す回路構成および
車両への実装状態を示す図である。
FIG. 2 is a diagram showing a circuit configuration showing a conventional electric vehicle control system and a mounting state in a vehicle.

【図3】差動調整器を設けた従来の電気車における車両
への実装状態を示す図である。
FIG. 3 is a diagram showing a state in which a conventional electric vehicle provided with a differential adjuster is mounted on a vehicle.

【図4】曲線部分を走行中の車両の案内機構を説明する
ための図である。
FIG. 4 is a diagram for explaining a guide mechanism of a vehicle traveling on a curved portion.

【符号の説明】[Explanation of symbols]

1等 誘導電動機 51等 インバータ 6 直流電源 8 出力トルク指令器 11等 車輪 31 案内軌道 41等 差動調整器 71等 回転数検出器 81等 トルク指令値 1 etc. Induction motor 51 etc. Inverter 6 DC power supply 8 Output torque commander 11 etc. Wheels 31 Guide track 41 etc. Differential adjuster 71 etc. Rotation speed detector 81 etc. Torque command value

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 可変電圧可変周波数のインバータ、この
インバータにより駆動される誘導電動機、およびこの誘
導電動機に連結されたゴムタイヤ等の低剛性材からなる
車輪を備え、案内軌道に沿って走行する電気車の制御方
式において、上記車輪を、進行方向左右の車輪の回転数
差を許容する構成で支持するとともに、上記インバータ
および誘導電動機を上記左右の車輪各別に備えたことを
特徴とする電気車の制御方式。
1. An electric vehicle equipped with a variable voltage variable frequency inverter, an induction motor driven by the inverter, and wheels made of a low-rigidity material such as rubber tires connected to the induction motor, the electric vehicle traveling along a guide track. Control system of the electric vehicle, wherein the wheels are supported in a configuration that allows a difference in rotational speed between the left and right wheels in the traveling direction, and the inverter and the induction motor are provided for each of the left and right wheels. method.
【請求項2】 左右の車輪の回転数を検出してその回転
数差から車両の曲がり方向を判別し、外側車輪用インバ
ータと内側車輪用インバータとへのトルク指令値を、そ
の絶対値が、それぞれ力行時には前者が後者より高く、
制動時には前者が後者より低くなるよう設定するように
したことを特徴とする請求項1記載の電気車の制御方
式。
2. The rotational speeds of the left and right wheels are detected, the bending direction of the vehicle is discriminated from the rotational speed difference, and the absolute value of the torque command value to the outer wheel inverter and the inner wheel inverter is obtained. The former is higher than the latter during powering,
The control system for an electric vehicle according to claim 1, wherein the former is set to be lower than the latter during braking.
JP4092621A 1992-04-13 1992-04-13 Control system for electric vehicle Pending JPH05292605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4092621A JPH05292605A (en) 1992-04-13 1992-04-13 Control system for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4092621A JPH05292605A (en) 1992-04-13 1992-04-13 Control system for electric vehicle

Publications (1)

Publication Number Publication Date
JPH05292605A true JPH05292605A (en) 1993-11-05

Family

ID=14059510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4092621A Pending JPH05292605A (en) 1992-04-13 1992-04-13 Control system for electric vehicle

Country Status (1)

Country Link
JP (1) JPH05292605A (en)

Similar Documents

Publication Publication Date Title
US5480220A (en) Method for inhibiting wheel slip in an electric alternating current induction motor powered vehicle
KR950015169B1 (en) Control system for induction motor driven electric car
HU225653B1 (en) Method for coordinating the drive of track-guided vehicles with independently driven wheels
JPH05292605A (en) Control system for electric vehicle
JP2835211B2 (en) On-vehicle primary magnet transport device
JPS63268405A (en) Train driving system
CN105073482B (en) The asymmetric driving of rail vehicle with longitudinal wheel group
HU212209B (en) Method for controlling individual suspension running gear of railway vehicles
JPH0274103A (en) Method of damping electric rolling stock
JPH05344611A (en) Operation control device for vehicle
JP2002095110A (en) Vehicle drive
JP2006254661A (en) Railway vehicle system
JPH10234108A (en) Railway vehicle and driving force control method therefor
JPH0721419Y2 (en) Curved carriage drive device
JPH08265908A (en) Method and apparatus for driving truck
JP2768543B2 (en) Electric car control device
CN208469817U (en) Monorail train and its bogie
JPH07227008A (en) Controller for electric rolling stock
JPH08157180A (en) Electric hoist
JPH04193006A (en) Speed controller for monorail passenger transporter
JPS61171658A (en) Suspension type monorail electric car
JPH0787612A (en) Controller for electric vehicle
JP2002369309A (en) Electric rolling stock system
JP2583887B2 (en) Electric car control device
JPS61258604A (en) Frequency controller of linear motor type electric railcar