JPH0529244A - Manufacture of semiconductor diamond - Google Patents

Manufacture of semiconductor diamond

Info

Publication number
JPH0529244A
JPH0529244A JP18607691A JP18607691A JPH0529244A JP H0529244 A JPH0529244 A JP H0529244A JP 18607691 A JP18607691 A JP 18607691A JP 18607691 A JP18607691 A JP 18607691A JP H0529244 A JPH0529244 A JP H0529244A
Authority
JP
Japan
Prior art keywords
diamond
implanted
ions
semiconductor
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18607691A
Other languages
Japanese (ja)
Inventor
Makoto Kitahata
真 北畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18607691A priority Critical patent/JPH0529244A/en
Publication of JPH0529244A publication Critical patent/JPH0529244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a method of manufacturing a semiconductor diamond of P-type or N-type through an ion implantation process which causes a little damage that can be recovered through a heat treatment. CONSTITUTION:Particles 2 of element other than carbon are ion-implanted into a diamond crystal in a <110> direction. The (110) plane of diamond is large in gap between carbons, and the projected ions are implanted channeling through the gaps. A diamond where ions are implanted in a <110> direction is thermally treated at a temperature of 140 deg.C, whereby the damage of the diamond is compensated, and the implanted ions are located at lattice points, and in result the diamond concerned starts to function as a semiconductor diamond. The same channeling phenomenon is ascertained both in a <100> direction and in a <121> direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐環境性素子として期
待される半導体ダイヤモンドの製造方法に関するもの
で、特にn型、p型の半導体を得るためのダイヤモンド
へのドーパントのイオン打ち込みの方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing semiconductor diamond expected as an environment-resistant element, and more particularly to a method for ion-implanting a dopant into diamond to obtain an n-type or p-type semiconductor. It is a thing.

【0002】[0002]

【従来の技術】従来半導体ダイヤモンドとしては、Bを
含む天然のp型の半導体ダイヤモンド及びBをドープし
た合成ダイヤモンドが報告されているが、n型の半導体
ダイヤモンドの確かな報告はない。また、イオン注入に
よるダイヤモンドの伝導型の制御も達成されていない。
これは、イオンの照射により破壊されたダイヤモンド構
造を熱処理により元に戻すことが困難であることに起因
している。つまり、炭素の平衡状態は黒鉛構造でありダ
イヤモンド構造は準安定状態である為、通常の熱処理に
依って黒鉛が生成されてしまう。
2. Description of the Related Art Conventionally, as semiconductor diamonds, natural p-type semiconductor diamonds containing B and synthetic diamonds doped with B have been reported, but no n-type semiconductor diamonds have been reported. Moreover, control of the conductivity type of diamond by ion implantation has not been achieved.
This is because it is difficult to restore the diamond structure destroyed by the ion irradiation by heat treatment. That is, since the equilibrium state of carbon is a graphite structure and the diamond structure is a metastable state, graphite is generated by a normal heat treatment.

【0003】[0003]

【発明が解決しようとする課題】半導体ダイヤモンドを
形成するためには、イオン打ち込みに依ってドーパント
を打ち込む場合にイオンによる損傷をできるだけ小さく
保ち、打ち込まれたイオンが効率的に格子位置に入るよ
うにする事が必要である。
In order to form a semiconductor diamond, the ion damage should be kept as small as possible when implanting a dopant by ion implantation, and the implanted ions should efficiently enter the lattice position. It is necessary to do.

【0004】本発明は、熱処理に依って回復可能な低損
傷のイオン打ち込み方法による半導体ダイヤモンドの製
造方法を提供することを目的とする。
It is an object of the present invention to provide a method for producing a semiconductor diamond by a low damage ion implantation method which can recover by heat treatment.

【0005】[0005]

【課題を解決するための手段】本発明はダイヤモンドの
<110>、<100>、<121>方向などのチャン
ネリング方向にイオン照射を行なうことにより低損傷の
効率的なイオン打ち込みを達成し、上記課題を解決する
ものである。
The present invention achieves efficient ion implantation with low damage by irradiating ions in the channeling direction such as <110>, <100>, <121> direction of diamond, This is to solve the above problem.

【0006】[0006]

【作用】チャンネリング方向にイオン照射を行なうこと
により、ダイヤモンドの原子同士の大きな間隙をイオン
がチャンネリングして打ち込まれることになる。このた
めダイヤモンドの炭素原子には最小限の運動エネルギ−
しか伝達されず損傷が小さく保たれる。このようにして
イオン打ち込みされたダイヤモンドは、熱処理により、
損傷はコンペンセートされ、打ち込まれたイオンは格子
位置に入り半導体ダイヤモンドとして機能する。
By performing ion irradiation in the channeling direction, ions are channeled and implanted into a large gap between diamond atoms. Therefore, the carbon atom of diamond has a minimum kinetic energy
Only transmitted and the damage is kept small. The ion-implanted diamond is heat treated to
The damage is compensated and the implanted ions enter lattice positions and function as semiconductor diamonds.

【0007】[0007]

【実施例】本発明は図1に示すごとく、ダイヤモンド結
晶1の<110>方向に炭素以外の粒子2をイオン打ち
込みする。ダイヤモンドの(110)面は図2に示す様
な原子配列をしており原子同士の間隙が大きくこの間隙
を照射されたイオンがチャンネリングして打ち込まれ
る。このためダイヤモンドの炭素原子には最小限の運動
エネルギ−しか伝達されず損傷が小さく保たれる。照射
されたイオンはチャンネリングによりダイヤモンド格子
の深い位置まで打ち込まれた。このようにして<110
>方向にイオン打ち込みされたダイヤモンドは、140
0℃の熱処理により、損傷はコンペンセートされ打ち込
まれたイオンは格子位置に入り半導体ダイヤモンドとし
て機能した。同様なチャンネリングが<100>、<1
21>方向についても確認された。この場合打ち込みの
エネルギ−は50eV以上100eV以下が有効である
ことを確認した。この範囲以下ではイオンはダイヤモン
ド内に打ち込まれず、この範囲以上では損傷が大きくな
りすぎる。叉、打ち込まれるダイヤモンドを300℃以
下に保っておくとダイヤモンド内でインタースティシャ
ルのみが移動可能でベイカンシーは凍結され安定な大き
なベイカンシーは形成されないので、イオン損傷による
格子欠陥を熱処理によりコンペンセートする事ができ
る。これ以上の温度では、ベイカンシーも移動可能とな
り大きなベイカンシーがダイヤモンド中に形成され、こ
れを熱処理によりコンペンセートする事は難しい。
EXAMPLE In the present invention, as shown in FIG. 1, particles 2 other than carbon are ion-implanted in the <110> direction of a diamond crystal 1. The (110) plane of diamond has an atomic arrangement as shown in FIG. 2, and the gap between the atoms is large, and the ions irradiated in this gap are channeled and implanted. Therefore, only minimal kinetic energy is transmitted to the carbon atoms of diamond, and damage is kept small. The irradiated ions were implanted deep into the diamond lattice by channeling. In this way <110
The diamond ion-implanted in the direction> 140
By the heat treatment at 0 ° C., the damage was compensated and the implanted ions entered the lattice position and functioned as semiconductor diamond. Similar channeling is <100>, <1
The 21> direction was also confirmed. In this case, it has been confirmed that the implantation energy is effectively 50 eV or more and 100 eV or less. Below this range, the ions will not be implanted in the diamond, and above this range the damage will be too great. Moreover, if the diamond to be implanted is kept at 300 ° C or lower, only the interstitial can move inside the diamond and the vacancy is frozen and a stable large vacancy is not formed. You can At a temperature higher than this, the vacancy is also movable and a large vacancy is formed in the diamond, and it is difficult to compensate it by heat treatment.

【0008】ここで打ち込むイオンはB,Al,Ga,
In等のIII族元素叉はN,P,As,Sb等のV族
元素が有効であることを確認した。
The ions implanted here are B, Al, Ga,
It was confirmed that group III elements such as In or group V elements such as N, P, As and Sb were effective.

【0009】以下、具体的実施例を挙げて本発明をより
詳細に説明する。 実施例1 本発明の第一の実施例を図1を用いて説明する。ダイヤ
モンドの(110)面を研磨して表面とし水冷されてい
る基板ホルダーにセットする。ここに5keVのBのイ
オンビームを照射した。1x1015のドーズ量で打ち込
み後、1400℃で3分間熱処理する事により、p型の
電気伝導の半導体ダイヤモンドを得た。上記他のイオン
についても同様の結果を得た。
The present invention will be described in more detail below with reference to specific examples. First Embodiment A first embodiment of the present invention will be described with reference to FIG. The (110) surface of diamond is polished and used as the surface, and the diamond is set in a water-cooled substrate holder. This was irradiated with a 5 keV B ion beam. After implanting at a dose of 1 × 10 15 and performing heat treatment at 1400 ° C. for 3 minutes, a p-type electrically conductive semiconductor diamond was obtained. Similar results were obtained for the other ions described above.

【0010】[0010]

【発明の効果】本発明の半導体ダイヤモンドの製造方法
によりダイヤモンドのn型、p型を利用した半導体素子
の形成が可能となり、耐環境性の半導体素子が得られ本
発明の工業的価値は高い。
According to the method for producing semiconductor diamond of the present invention, it is possible to form a semiconductor element utilizing the n-type and p-type of diamond, an environment-resistant semiconductor element is obtained, and the industrial value of the present invention is high.

【図面の簡単な説明】[Brief description of drawings]

【図1】半導体ダイヤモンドへのイオン打ち込み方法の
概念図
FIG. 1 is a conceptual diagram of a method of implanting ions into semiconductor diamond.

【図2】ダイヤモンドの(110)面の原子配列を示す
FIG. 2 is a diagram showing an atomic arrangement on a (110) plane of diamond.

【符号の説明】[Explanation of symbols]

1 ダイヤモンド結晶 2 炭素以外の粒子 1 diamond crystal 2 Particles other than carbon

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】加速された炭素以外の粒子を、ダイヤモン
ドの<110>、<100>、<121>方向などのチ
ャンネリング方向に照射することを特徴とする半導体ダ
イヤモンドの製造方法。
1. A method for producing semiconductor diamond, which comprises irradiating accelerated particles other than carbon in a channeling direction such as <110>, <100>, or <121> direction of diamond.
【請求項2】加速された炭素以外の粒子がB,Al,G
a,In等のIII族元素叉はN,P,As,Sb等の
V族元素であることを特徴とする請求項1に記載の半導
体ダイヤモンドの製造方法。
2. Particles other than accelerated carbon are B, Al, G.
The method for producing a semiconductor diamond according to claim 1, wherein the group III element such as a and In or the group V element such as N, P, As and Sb is a group III element.
【請求項3】加速された炭素以外の粒子のエネルギ−が
50eV以上100keV以下である事を特徴とする請
求項1に記載の半導体ダイヤモンドの製造方法。
3. The method for producing a semiconductor diamond according to claim 1, wherein the energy of the particles other than the accelerated carbon is 50 eV or more and 100 keV or less.
【請求項4】イオン打ち込みされるダイヤモンドが30
0℃以下に保たれていることを特徴とする請求項1に記
載の半導体ダイヤモンドの製造方法。
4. The number of ion-implanted diamonds is 30.
The method for producing a semiconductor diamond according to claim 1, wherein the method is kept at 0 ° C. or lower.
JP18607691A 1991-07-25 1991-07-25 Manufacture of semiconductor diamond Pending JPH0529244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18607691A JPH0529244A (en) 1991-07-25 1991-07-25 Manufacture of semiconductor diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18607691A JPH0529244A (en) 1991-07-25 1991-07-25 Manufacture of semiconductor diamond

Publications (1)

Publication Number Publication Date
JPH0529244A true JPH0529244A (en) 1993-02-05

Family

ID=16181967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18607691A Pending JPH0529244A (en) 1991-07-25 1991-07-25 Manufacture of semiconductor diamond

Country Status (1)

Country Link
JP (1) JPH0529244A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100296A (en) * 1997-09-26 1999-04-13 Sharp Corp Production of semiconductor diamond
US6376276B1 (en) 1999-08-24 2002-04-23 Sharp Kabushiki Kaisha Method of preparing diamond semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100296A (en) * 1997-09-26 1999-04-13 Sharp Corp Production of semiconductor diamond
US6376276B1 (en) 1999-08-24 2002-04-23 Sharp Kabushiki Kaisha Method of preparing diamond semiconductor

Similar Documents

Publication Publication Date Title
US4452644A (en) Process for doping semiconductors
US4571447A (en) Photovoltaic cell of semi-conducting diamond
Doyle et al. Electrically active point defects in n-type 4H–SiC
US20020187614A1 (en) Methods for forming ultrashallow junctions with low sheet resistance
JP2007176725A (en) Method for manufacturing neutron-irradiated silicon single crystal
JPH0529244A (en) Manufacture of semiconductor diamond
JP2001064094A (en) Production of semiconductor diamond
JP2734819B2 (en) Manufacturing method of semiconductor diamond
Chen et al. Orientation and temperature dependence of electron damage in n-type germaniun
JP2732741B2 (en) Manufacturing method of semiconductor diamond
JP2005132648A (en) n-TYPE SEMICONDUCTOR DIAMOND AND ITS MANUFACTURING METHOD
EP1713116A1 (en) PROCESS FOR PRODUCING n-TYPE SEMICONDUCTOR DIAMOND AND n-TYPE SEMICONDUCTOR DIAMOND
JP5142257B2 (en) Electrical activation method of impurity ion implantation layer
JPH11100296A (en) Production of semiconductor diamond
US5395794A (en) Method of treating semiconductor materials
JP3539738B2 (en) Impurity addition method
JP5317028B2 (en) Electrical activation method of impurity ion implantation layer
JPH0737835A (en) Diamond semiconductor element and formation of electrode thereof
Jaworska et al. Au gettering by Ne and Ar implantation in silicon
JP3105481B2 (en) Method for doping donor impurities into silicon carbide semiconductor
US3600236A (en) Method of obtaining type conversion in cds
Warchoł et al. Post-implantation defects instability under 1 MeV electron irradiation in GaAs
Yu et al. Enhancement of electrical activation of ion‐implanted phosphorus in Si (100) through two‐step thermal annealing
Yankov et al. High-temperature high-dose implantation of N+ and Al+ ions in 6H-SiC
JP2000272994A (en) Production of semiconductor diamond