JPH05291371A - Method of evaluating surface of inp semiconductor and interface - Google Patents

Method of evaluating surface of inp semiconductor and interface

Info

Publication number
JPH05291371A
JPH05291371A JP11853292A JP11853292A JPH05291371A JP H05291371 A JPH05291371 A JP H05291371A JP 11853292 A JP11853292 A JP 11853292A JP 11853292 A JP11853292 A JP 11853292A JP H05291371 A JPH05291371 A JP H05291371A
Authority
JP
Japan
Prior art keywords
epitaxial layer
interface
inp
substrate
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11853292A
Other languages
Japanese (ja)
Other versions
JP3218374B2 (en
Inventor
Misao Takakusaki
操 高草木
Tsutomu Ozaki
勉 尾崎
Kazuhiro Akamatsu
和弘 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP11853292A priority Critical patent/JP3218374B2/en
Publication of JPH05291371A publication Critical patent/JPH05291371A/en
Application granted granted Critical
Publication of JP3218374B2 publication Critical patent/JP3218374B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To provide a method of evaluating the surface condition of an InP semiconductor such as finished condition, preprocessed condition, etc., and the interface property between the InP semiconductor and an epitaxial layer simply. CONSTITUTION:An InGaAs epitaxial layer, which does not substantially contain impurities and the lattice of which matches with that of InP, is grown on the surface of an InP semiconductor substantially being an insulator into the thickness not more than that of the depletion layer formed by the surface level of the epitaxial layer, and at least either the mobility of the carriers in that epitaxial layer, which includes the interface with the InP semiconductor, or the concentration of carriers per unit area is measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、InP半導体基板上に
形成された種々のエピタキシャル層の特性に多くの影響
を与えるInP半導体基板の表面状態、およびそのエピ
タキシャル層とInP半導体基板との界面の特性を評価
する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface state of an InP semiconductor substrate, which has many influences on characteristics of various epitaxial layers formed on the InP semiconductor substrate, and an interface between the epitaxial layer and the InP semiconductor substrate. The present invention relates to a method for evaluating a characteristic.

【0002】[0002]

【従来の技術】従来、半導体表面の一般的な評価とし
て、表面の原子の結合状態を調べるXPS(X線光電子
分光法)や、表面の結晶性を調べるRHEED(反射型
高エネルギ−電子線回折法)、LEED(低エネルギ−
電子線回折法)、表面の不純物を調べるAES(オ−ジ
ェ電子分光法)などの手法が用いられていた。通常、半
導体デバイスとしてInP基板を利用する場合、そのI
nP基板上に動作層となるエピタキシャル層を成長す
る。このような半導体デバイスの特性は、エピタキシャ
ル成長した後のInP基板とエピタキシャル層の界面の
不純物や欠陥に大きく影響される。特に、HEMT(高
電子移動度トランジスタ)などの半導体デバイスでは、
この界面を流れる電流がリ−ク電流となりピンチオフ特
性を劣化させることが知られている。このため、基板と
エピタキシャル層の界面を評価することが必要となる。
このようなエピタキシャル成長した後の基板とエピタキ
シャル層の界面の評価としては、SIMS(二次イオン
質量分析)法や、DLTS(ディ−プレベルトランジェ
ントスペクトロスコピ−)法、C−V法などが用いられ
ている。
2. Description of the Related Art Conventionally, as a general evaluation of a semiconductor surface, XPS (X-ray photoelectron spectroscopy) for examining the bonding state of atoms on the surface and RHEED (reflection high energy electron beam diffraction for examining the crystallinity of the surface) have been used. Method), LEED (low energy-
Methods such as electron beam diffraction) and AES (Auger electron spectroscopy) for examining impurities on the surface have been used. Normally, when an InP substrate is used as a semiconductor device, its I
An epitaxial layer serving as an operating layer is grown on the nP substrate. The characteristics of such a semiconductor device are greatly affected by impurities and defects at the interface between the InP substrate and the epitaxial layer after epitaxial growth. In particular, in semiconductor devices such as HEMT (High Electron Mobility Transistor),
It is known that the current flowing through this interface becomes a leak current and deteriorates the pinch-off characteristic. Therefore, it is necessary to evaluate the interface between the substrate and the epitaxial layer.
SIMS (Secondary Ion Mass Spectroscopy) method, DLTS (Deep Level Transient Spectroscopy) method, CV method, etc. are used for the evaluation of the interface between the substrate and the epitaxial layer after such epitaxial growth. There is.

【0003】[0003]

【発明が解決しようとする課題】優れた特性の半導体デ
バイスの製造およびそれに用いるエピタキシャル層の製
造には、基板とエピタキシャル層の界面およびInP半
導体の表面状態の評価が不可欠となる。しかしながら、
従来用いられているこれらの評価方法は、煩雑な測定手
順が必要であったり、測定結果の解析が難しいことから
頻繁に利用されるものではなく、製造工程における定期
的なエピタキシャル層の成長条件のチェック手段として
の利用は困難であった。
Evaluation of the interface between the substrate and the epitaxial layer and the surface state of the InP semiconductor is indispensable for manufacturing a semiconductor device having excellent characteristics and for manufacturing an epitaxial layer used therefor. However,
These conventionally used evaluation methods are not frequently used because they require complicated measurement procedures or because it is difficult to analyze the measurement results. It was difficult to use as a check means.

【0004】本発明は、上記の課題を解決するためにな
されたもので、その目的は、InP半導体基板の表面仕
上げ状態や、前処理状態、清浄化状態などのInP半導
体表面の状態およびInP半導体とエピタキシャル層と
の界面特性を簡便に評価する方法を提供するものであ
る。
The present invention has been made to solve the above-mentioned problems, and its purpose is to provide a surface finish state of an InP semiconductor substrate, a pretreatment state, a cleaned state and the like of the InP semiconductor surface and the InP semiconductor. It is intended to provide a method for easily evaluating the interface characteristics between the epitaxial layer and the epitaxial layer.

【0005】[0005]

【課題を解決するための手段および作用】本発明による
InP半導体表面および界面の評価方法は、実質的に絶
縁体であるInP半導体の表面に、実質的に不純物を含
有せず、InPに格子整合するInGaAsエピタキシ
ャル層を、該エピタキシャル層の表面準位により形成さ
れる空乏層の厚さ以下の厚さに成長し、前記InP半導
体との界面を含んだ該エピタキシャル層におけるキャリ
アの移動度および単位面積あたりのキャリア濃度の少な
くとも一方を測定するものである。
Means and Actions for Solving the Problems A method for evaluating the surface and interface of an InP semiconductor according to the present invention is such that the surface of the InP semiconductor, which is substantially an insulator, contains substantially no impurities and is lattice-matched to InP. The InGaAs epitaxial layer is grown to a thickness equal to or less than the thickness of the depletion layer formed by the surface level of the epitaxial layer, and the carrier mobility and unit area in the epitaxial layer including the interface with the InP semiconductor are grown. At least one of the carrier concentrations is measured.

【0006】通常、前記InP半導体は、Feド−プな
どの高抵抗の半絶縁性InP基板であり、前記InGa
Asエピタキシャル層はMBE(分子線エピタキシャル
成長)法、MOCVD(有機金属気相成長)法などで成
長したアンド−プのIn0.53Ga0.47Asの単層からな
り、n型伝導を示し、残留不純物(キャリア)濃度は1
×1015/cm3以下となる。エピタキシャル成長時の
InP基板温度は、MBE法では480〜520℃、M
OCVD法では600〜650℃が通常用いられる。
Usually, the InP semiconductor is a high-resistance semi-insulating InP substrate such as Fe-doped, and the InGa semiconductor is
The As epitaxial layer consists of a single layer of In-doped In 0.53 Ga 0.47 As grown by MBE (Molecular Beam Epitaxial Growth) method, MOCVD (Metal Organic Chemical Vapor Deposition) method, etc. ) Concentration is 1
× 10 15 / cm 3 or less. The InP substrate temperature during the epitaxial growth is 480 to 520 ° C. by the MBE method, and M
In the OCVD method, 600 to 650 ° C. is usually used.

【0007】前記InGaAsエピタキシャル層の厚さ
は、仮にInGaAsエピタキシャル層を充分に厚く
(たとえば、10μm以上)成長した場合にエピタキシ
ャル層表面の表面準位(表面のビルトインポテンシャ
ル)により形成される空乏層の厚さよりも薄い厚さとす
る。エピタキシャル層を薄くすることで、理想的にはエ
ピタキシャル層内は全て空乏層となる。しかし、InP
半導体とエピタキシャル層との界面での不純物や欠陥に
よりキャリアが発生するため、InP半導体との界面を
含んだエピタキシャル層の電気特性であるキャリアの移
動度および単位面積あたりのキャリア濃度は、このIn
P半導体とエピタキシャル層との界面での特性を反映し
たものとなる。
The thickness of the InGaAs epitaxial layer is a depletion layer formed by the surface level (built-in potential of the surface) of the epitaxial layer surface when the InGaAs epitaxial layer is grown sufficiently thick (for example, 10 μm or more). It should be thinner than the thickness. By making the epitaxial layer thin, ideally the entire epitaxial layer becomes a depletion layer. However, InP
Since carriers are generated by impurities and defects at the interface between the semiconductor and the epitaxial layer, the carrier mobility and the carrier concentration per unit area, which are the electrical characteristics of the epitaxial layer including the interface with the InP semiconductor, are
This reflects the characteristics at the interface between the P semiconductor and the epitaxial layer.

【0008】このような空乏層の厚さ(Wd)は、 Wd2=2εε0bi/qNd (ただし、εはエピタキシャル層の比誘電率、ε0は真
空の誘電率、Vbiは表面のビルトインポテンシャル、q
は電荷素量、Ndは充分厚いエピタキシャル層における
キャリア濃度である。)と表すことができる。InGa
Asエピタキシャル層の表面のビルトインポテンシャル
biを0.35eVと仮定し、キャリア濃度Ndが1×
1014〜1×1015/cm3の範囲で空乏層の厚さを計
算すると、0.6μm〜2.0μmとなる。したがっ
て、残留不純物(キャリア)濃度Ndが1×1015/c
3以下のエピタキシャル成長が可能であれば、本評価
に用いるエピタキシャル層の厚さは1μm以下で良い。
The thickness (Wd) of such a depletion layer is Wd 2 = 2εε 0 V bi / qN d (where ε is the relative dielectric constant of the epitaxial layer, ε 0 is the vacuum dielectric constant, and V bi is the surface). Built-in potential of q
Is the elementary charge and N d is the carrier concentration in a sufficiently thick epitaxial layer. )It can be expressed as. InGa
The built-in potential V bi on the surface of the As epitaxial layer is assumed to be 0.35 eV, and the carrier concentration N d is 1 ×.
When the thickness of the depletion layer is calculated in the range of 10 14 to 1 × 10 15 / cm 3 , it becomes 0.6 μm to 2.0 μm. Therefore, the residual impurity (carrier) concentration N d is 1 × 10 15 / c.
If the epitaxial growth of m 3 or less is possible, the thickness of the epitaxial layer used for this evaluation may be 1 μm or less.

【0009】実際の測定結果として、InP基板上にI
0.53Ga0.47Asエピタキシャル層を成長した構造で
の深さ方向のキャリア濃度プロファイルを図1に示す。
キャリアは表面空乏化により、表面から約0.3μmま
ではほとんどキャリアが存在せず、そこからエピタキシ
ャル層と基板との界面近傍にキャリアが存在している。
このキャリアは、基板とエピタキシャル層の界面の不純
物や欠陥により生じたものであり、このキャリアを電気
的特性として評価することにより、InP半導体の表面
状態や、前処理、清浄化処理条件などの評価が可能とな
る。
As an actual measurement result, I on the InP substrate
FIG. 1 shows the carrier concentration profile in the depth direction in the structure in which the n 0.53 Ga 0.47 As epitaxial layer is grown.
Due to surface depletion, carriers hardly exist up to about 0.3 μm from the surface, and carriers exist near the interface between the epitaxial layer and the substrate.
This carrier is generated due to impurities or defects at the interface between the substrate and the epitaxial layer. By evaluating the carrier as an electrical characteristic, the surface state of the InP semiconductor, the pretreatment, the cleaning treatment conditions, etc. can be evaluated. Is possible.

【0010】なお、キャリアの電気的特性の評価を、Va
n der Pauw法によるホ−ル測定により行う場合には、I
nGaAs層の膜厚を0.3μm未満にすると高抵抗の
ため測定が困難となるので、膜厚を0.3μm以上とす
ることが望ましい。また、InP半導体に格子整合する
組成として移動度の比較的大きいInGaAs系エピタ
キシャル層を用いることで高い精度の評価が可能となっ
ている。
The electrical characteristics of the carrier are evaluated by Va
When performing hole measurement by the n der Pauw method, I
If the film thickness of the nGaAs layer is less than 0.3 μm, the measurement becomes difficult because of high resistance. Therefore, it is desirable to set the film thickness to 0.3 μm or more. Further, by using an InGaAs-based epitaxial layer having a relatively large mobility as a composition that lattice-matches the InP semiconductor, highly accurate evaluation is possible.

【0011】[0011]

【実施例】以下、半絶縁性Feド−プInP半導体基板
の前処理条件を評価する方法を実施例として説明する。
本発明の評価方法により、半絶縁性Feド−プInP基
板上にMBE法を用いてにIn0.53Ga0.47As層の成
長を行い、その電気的特性の評価を行った。InP基板
の前処理条件の違いによる基板とエピタキシャル層の界
面の不純物量の変化を本発明による評価とSIMS分析
による評価との比較を行った。
EXAMPLES A method for evaluating pretreatment conditions for a semi-insulating Fe-doped InP semiconductor substrate will be described below as an example.
According to the evaluation method of the present invention, an In 0.53 Ga 0.47 As layer was grown on the semi-insulating Fe-doped InP substrate using the MBE method, and its electrical characteristics were evaluated. The change in the amount of impurities at the interface between the substrate and the epitaxial layer due to the difference in the pretreatment conditions of the InP substrate was compared between the evaluation according to the present invention and the evaluation by SIMS analysis.

【0012】InP基板の前処理方法として、硫酸系の
エッチャントを用いた場合とリン酸系のエッチャントを
用いた場合について評価を行った。前処理を行った基板
をMBE装置内に導入し、前処理室において基板温度約
100℃で約1時間の脱ガス処理を行った後に成長室へ
基板を搬送した。
As a pretreatment method for the InP substrate, evaluation was carried out using a sulfuric acid-based etchant and a phosphoric acid-based etchant. The pretreated substrate was introduced into the MBE apparatus, degassed at a substrate temperature of about 100 ° C. for about 1 hour in the pretreatment chamber, and then transferred to the growth chamber.

【0013】InとGaの蒸発源セルは、Inの組成が
0.53、Gaの組成が0.47となる様に温度を調整
した。また、Asの蒸発源セルは分子線強度がフラック
スモニタの値で、2.0mPa(0.002Pa)となるように
温度を調整した。成長室に移動したInP基板にAs4
分子線を照射しながら500℃まで昇温した。この後、
基板清浄化温度まで昇温し、5分間の基板清浄化処理を
行った。基板前処理の異なる基板に対して、基板清浄化
温度を550℃および500℃とした。基板清浄化を行
ったInP基板を成長温度の500℃とし、温度が安定
してからInとGaの蒸発源セルのシャッタ−を開けて
InGaAs層の成長を行った。InGaAs層の膜厚
は0.6μmとし、組成はIn0.53Ga0.47Asであ
る。
The temperature of the evaporation source cell of In and Ga was adjusted so that the In composition was 0.53 and the Ga composition was 0.47. The temperature of the As evaporation source cell was adjusted so that the molecular beam intensity was 2.0 mPa (0.002 Pa) as the flux monitor value. As 4 is deposited on the InP substrate that has moved to the growth chamber.
The temperature was raised to 500 ° C. while irradiating with a molecular beam. After this,
The temperature was raised to the substrate cleaning temperature and the substrate cleaning process was performed for 5 minutes. The substrate cleaning temperature was set to 550 ° C. and 500 ° C. for substrates having different substrate pretreatments. The InP substrate with the cleaned substrate was set to a growth temperature of 500 ° C., and after the temperature was stabilized, the shutter of the evaporation source cell of In and Ga was opened to grow the InGaAs layer. The thickness of the InGaAs layer is 0.6 μm, and the composition is In 0.53 Ga 0.47 As.

【0014】成長したエピタキシャル基板(In0.53
0.47Asエピタキシャル層/InP基板)から5mm
角の試料を切り出し、Inドットを電極として、400
℃、4分間のオ−ミックアニ−ルを行なった。その試料
をVan der Pauw法によりホ−ル測定を行ない、単位面積
当たりのキャリア濃度であるシ−トキャリア濃度と移動
度を求めた。また、比較のため各々のサンプルについて
SIMS分析を行った。
A grown epitaxial substrate (In 0.53 G
a 0.47 As epitaxial layer / InP substrate) 5 mm
Cut out a corner sample and use In dots as electrodes for 400
Ohmic annealing was performed at 4 ° C. for 4 minutes. The sample was subjected to Hall measurement by the Van der Pauw method, and the sheet carrier concentration, which is the carrier concentration per unit area, and the mobility were determined. In addition, SIMS analysis was performed for each sample for comparison.

【0015】異なる基板前処理条件での基板清浄化温度
と試料のシートキャリア濃度および移動度の関係を図2
および図3に示す。この結果から、リン酸系のエッチャ
ントを用いた方がシ−トキャリア濃度が低く、かつ移動
度が大きいことがわかる。ここで、基板清浄化温度が同
一で、基板前処理条件の異なる試料のSIMS分析結果
を図4に示す。図4において、(a)はリン酸系のエッ
チャントを用いた場合、(b)は硫酸系のエッチャント
を用いた場合を示しており、リン酸系のエッチャントを
用いた試料の方が界面の酸素量は小さくなっており、良
い特性の界面が得られていることがわかる。
FIG. 2 shows the relationship between the substrate cleaning temperature and the sample sheet carrier concentration and mobility under different substrate pretreatment conditions.
And shown in FIG. From this result, it is understood that the sheet carrier concentration is lower and the mobility is higher when the phosphoric acid-based etchant is used. FIG. 4 shows SIMS analysis results of samples having the same substrate cleaning temperature and different substrate pretreatment conditions. In FIG. 4, (a) shows the case where a phosphoric acid-based etchant is used, and (b) shows the case where a sulfuric acid-based etchant is used. It can be seen that the amount is small and an interface with good characteristics is obtained.

【0016】このように、本発明による評価方法を用い
ることにより、SIMS等の煩雑な分析手段を用いるこ
となく、基板とエピタキシャル層の界面の特性および異
なった基板前処理方法によるInP基板表面の評価を簡
便に行うことができた。
As described above, by using the evaluation method according to the present invention, the characteristics of the interface between the substrate and the epitaxial layer and the evaluation of the InP substrate surface by different substrate pretreatment methods can be performed without using a complicated analysis means such as SIMS. Could be performed easily.

【0017】また、同様に測定した、種々の条件で処理
したInP基板とエピタキシャル層の界面の不純物濃度
とシートキャリア濃度との関係を図4に示す。本実施例
では、基板とエピタキシャル層の界面の主な残留不純物
は酸素であるので、界面の酸素量とシ−トキャリア濃度
の関係を示した。この図から明らかなように、界面の酸
素量とシ−トキャリア濃度はよい対応関係を示してお
り、本発明による評価方法を用いることにより、基板と
エピタキシャル層の界面の特性およびInP基板表面の
評価を簡便に行えることがわかる。
FIG. 4 shows the relationship between the impurity concentration and the sheet carrier concentration at the interface between the InP substrate and the epitaxial layer, which were similarly measured and processed under various conditions. In this embodiment, oxygen is the main residual impurity at the interface between the substrate and the epitaxial layer, so the relationship between the oxygen amount at the interface and the sheet carrier concentration is shown. As is clear from this figure, the oxygen content at the interface and the sheet carrier concentration show a good correspondence, and by using the evaluation method according to the present invention, the characteristics of the interface between the substrate and the epitaxial layer and the InP substrate surface It can be seen that the evaluation can be performed easily.

【0018】[0018]

【発明の効果】以上説明したように、本発明によるIn
P半導体表面および界面の評価方法は、実質的に絶縁体
であるInP半導体の表面に、実質的に不純物を含有せ
ず、InPに格子整合するInGaAsエピタキシャル
層を、該エピタキシャル層の表面準位により形成される
空乏層の厚さ以下の厚さに成長し、前記InP半導体と
の界面を含んだ該エピタキシャル層におけるキャリアの
移動度および単位面積あたりのキャリア濃度の少なくと
も一方を測定するものである。
As described above, In according to the present invention
The method for evaluating the P semiconductor surface and the interface is as follows. An InGaAs epitaxial layer that does not substantially contain impurities and lattice-matches to InP is formed on the surface of the InP semiconductor that is substantially an insulator by the surface level of the epitaxial layer. At least one of the carrier mobility and the carrier concentration per unit area in the epitaxial layer including the interface with the InP semiconductor, which is grown to a thickness equal to or less than the thickness of the depletion layer to be formed, is measured.

【0019】測定されるキャリアの移動度および単位面
積あたりのキャリア濃度は、エピタキシャル層成長前の
InP半導体表面およびInP半導体とエピタキシャル
層との界面での特性を反映したものである。したがっ
て、SIMS分析等の煩雑な分析手段を用いることな
く、InP半導体表面およびInP半導体とエピタキシ
ャル層との界面での特性を簡便に評価することができ
る。
The measured carrier mobility and carrier concentration per unit area reflect the characteristics of the InP semiconductor surface before the growth of the epitaxial layer and the interface between the InP semiconductor and the epitaxial layer. Therefore, the characteristics at the surface of the InP semiconductor and at the interface between the InP semiconductor and the epitaxial layer can be easily evaluated without using a complicated analysis means such as SIMS analysis.

【0020】特に、本発明はInP半導体基板の基板清
浄化条件などの最適化の実験において有効である。In
P半導体とエピタキシャル層の界面の不純物については
単位表面積あたりのキャリア濃度から、InP半導体と
エピタキシャル層の界面の格子欠陥などについては、そ
の移動度から評価をすることができる。
In particular, the present invention is effective in experiments for optimizing the substrate cleaning conditions for InP semiconductor substrates. In
Impurities at the interface between the P semiconductor and the epitaxial layer can be evaluated from the carrier concentration per unit surface area, and lattice defects at the interface between the InP semiconductor and the epitaxial layer can be evaluated from the mobility.

【図面の簡単な説明】[Brief description of drawings]

【図1】InP基板上にIn0.53Ga0.47Asエピタキ
シャル層を成長した構造での深さ方向のキャリア濃度プ
ロファイルを示す図である。
FIG. 1 is a diagram showing a carrier concentration profile in a depth direction in a structure in which an In 0.53 Ga 0.47 As epitaxial layer is grown on an InP substrate.

【図2】本発明の実施例による、異なった基板前処理条
件での基板清浄化温度と試料のシ−トキャリア濃度との
関係を示す図である。
FIG. 2 is a diagram showing a relationship between a substrate cleaning temperature and a sheet carrier concentration of a sample under different substrate pretreatment conditions according to an example of the present invention.

【図3】本発明の実施例による、異なった基板前処理条
件での基板清浄化温度と試料の移動度との関係を示す図
である。
FIG. 3 is a diagram showing the relationship between substrate cleaning temperature and sample mobility under different substrate pretreatment conditions according to an example of the present invention.

【図4】異なる基板前処理方法による試料のSIMSに
よる深さ方向の不純物分析結果を示す図である。
FIG. 4 is a diagram showing results of SIMS analysis of impurities in a depth direction of a sample by different substrate pretreatment methods.

【図5】本発明の実施例による試料のシ−トキャリア濃
度とSIMS分析による酸素イオン濃度との関係を示す
図である。
FIG. 5 is a diagram showing a relationship between a sheet carrier concentration of a sample according to an example of the present invention and an oxygen ion concentration by SIMS analysis.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年6月16日[Submission date] June 16, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】また、同様に測定した、種々の条件で処理
したInP基板とエピタキシャル層の界面の不純物濃度
とシートキャリア濃度との関係を図5に示す。本実施例
では、基板とエピタキシャル層の界面の主な残留不純物
は酸素であるので、界面の酸素量とシートキャリア濃度
の関係を示した。この図から明らかなように、界面の酸
素量とシートキャリア濃度はよい対応関係を示してお
り、本発明による評価方法を用いることにより、基板と
エピタキシャル層の界面の特性およびInP基板表面の
評価を簡便に行えることがわかる。
FIG. 5 shows the relationship between the impurity concentration and the sheet carrier concentration at the interface between the InP substrate processed under various conditions and the epitaxial layer, which was similarly measured. In this example, oxygen is the main residual impurity at the interface between the substrate and the epitaxial layer, so the relationship between the oxygen amount at the interface and the sheet carrier concentration is shown. As is clear from this figure, the oxygen amount at the interface and the sheet carrier concentration show a good correspondence, and by using the evaluation method according to the present invention, the characteristics of the interface between the substrate and the epitaxial layer and the InP substrate surface can be evaluated. You can see that it can be done easily.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 実質的に絶縁体であるInP半導体の表
面に、実質的に不純物を含有せず、InPに格子整合す
るInGaAsエピタキシャル層を、該エピタキシャル
層の表面準位により形成される空乏層の厚さ以下の厚さ
に成長し、前記InP半導体との界面を含んだ該エピタ
キシャル層におけるキャリアの移動度および単位面積あ
たりのキャリア濃度の少なくとも一方を測定することを
特徴としたInP半導体表面および界面の評価方法。
1. A depletion layer formed on a surface of an InP semiconductor, which is substantially an insulator, by forming an InGaAs epitaxial layer which does not substantially contain impurities and lattice-matches with InP by a surface level of the epitaxial layer. And a carrier concentration per unit area in the epitaxial layer including an interface with the InP semiconductor, and at least one of the carrier concentration per unit area is measured. Interface evaluation method.
JP11853292A 1992-04-13 1992-04-13 Evaluation method for InP semiconductor surface and interface Expired - Lifetime JP3218374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11853292A JP3218374B2 (en) 1992-04-13 1992-04-13 Evaluation method for InP semiconductor surface and interface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11853292A JP3218374B2 (en) 1992-04-13 1992-04-13 Evaluation method for InP semiconductor surface and interface

Publications (2)

Publication Number Publication Date
JPH05291371A true JPH05291371A (en) 1993-11-05
JP3218374B2 JP3218374B2 (en) 2001-10-15

Family

ID=14738929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11853292A Expired - Lifetime JP3218374B2 (en) 1992-04-13 1992-04-13 Evaluation method for InP semiconductor surface and interface

Country Status (1)

Country Link
JP (1) JP3218374B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210811A (en) * 1999-11-17 2001-08-03 Denso Corp Method for manufacturing semiconductor substrate
CN1298037C (en) * 2002-07-24 2007-01-31 住友电气工业株式会社 Indium-containing wafer and method for production thereof
US7737043B2 (en) 1920-05-17 2010-06-15 Sumitomo Electric Industries, Ltd. Inspection method of compound semiconductor substrate, compound semiconductor substrate, surface treatment method of compound semiconductor substrate, and method of producing compound semiconductor crystal
JP2011179990A (en) * 2010-03-02 2011-09-15 Canon Inc Photoconductive element
CN117476816A (en) * 2023-12-28 2024-01-30 苏州焜原光电有限公司 Interface processing method for epitaxial growth of InGaAs/InP by molecular beam

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7737043B2 (en) 1920-05-17 2010-06-15 Sumitomo Electric Industries, Ltd. Inspection method of compound semiconductor substrate, compound semiconductor substrate, surface treatment method of compound semiconductor substrate, and method of producing compound semiconductor crystal
JP2001210811A (en) * 1999-11-17 2001-08-03 Denso Corp Method for manufacturing semiconductor substrate
CN1298037C (en) * 2002-07-24 2007-01-31 住友电气工业株式会社 Indium-containing wafer and method for production thereof
JP2011179990A (en) * 2010-03-02 2011-09-15 Canon Inc Photoconductive element
US8766188B2 (en) 2010-03-02 2014-07-01 Canon Kabushiki Kaisha Photoconductive element
CN117476816A (en) * 2023-12-28 2024-01-30 苏州焜原光电有限公司 Interface processing method for epitaxial growth of InGaAs/InP by molecular beam
CN117476816B (en) * 2023-12-28 2024-03-26 苏州焜原光电有限公司 Interface processing method for epitaxial growth of InGaAs/InP by molecular beam

Also Published As

Publication number Publication date
JP3218374B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
EP0774775A1 (en) Method of fabricating semiconductor device and semiconductor device fabricated thereby
Kazmerski et al. Vacuum‐deposited CuInTe2 thin films: Growth, structural, and electrical properties
DE202012013658U1 (en) Compound semiconductor substrate
Miller et al. Control of Be diffusion in molecular beam epitaxy GaAs
JP2001338884A (en) Manufacturing method of epitaxial substrate
Dumin Deep levels within the forbidden gap of silicon-on-sapphire films
JP3218374B2 (en) Evaluation method for InP semiconductor surface and interface
Rubinger et al. Temperature-dependent activation energy and variable range hopping in semi-insulating GaAs
US7074697B2 (en) Doping-assisted defect control in compound semiconductors
Piñero et al. Impact of thermal treatments in crystalline reconstruction and electrical properties of diamond Ohmic contacts created by boron ion implantation
Leech et al. Specific contact resistance of indium ohmic contacts to n‐type Hg1− x Cd x Te
KR101088985B1 (en) Compound semiconductor substrate, process for producing compound semiconductor substrate, and semiconductor device
Kowalczyk et al. Band discontinuities and interface Fermi‐level positions in Ge–GaAs (110) heterojunctions
Kim et al. Measurement and control of ion‐doping‐induced defects in cadmium telluride films
US4935092A (en) Method of growing CaF2 film
Farley et al. Encapsulation and annealing studies of semi-insulating InP
Ohfuji et al. Oxygen‐Doped Molybdenum Films for MOS Gate Application
Patriarche et al. Imperfections in II–VI semiconductor layers epitaxially grown by organometallic chemical vapour deposition on GaAs
US5248376A (en) Process for thermal-etching treatment of compound semiconductor substrate used in molecular beam epitaxy and apparatus for performing same
Dolle et al. Electrical and structural properties of buried CoSi2 layers in Si (100) grown by molecular beam allotaxy
Takikawa Electrical properties of interface-traps in selectively doped AlGaAs/GaAs heterostructures
Sarker Atomic Scale Characterization of Wide Bandgap Semiconductors and Superconductors for High Power Electronics and Quantum Devices
Tseng et al. The effects of ion implantation and pulsed electron beam anneal on Ge films grown epitaxially on◃ 100▹ GaAs
Strausser et al. Characterization in compound semiconductor processing
Gútai Characterization of highly compensated semi-insulated GaAs substrates

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080810

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080810

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090810

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100810

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100810

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110810

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110810

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120810