JPH05291034A - Superconducting magnet device - Google Patents

Superconducting magnet device

Info

Publication number
JPH05291034A
JPH05291034A JP11233292A JP11233292A JPH05291034A JP H05291034 A JPH05291034 A JP H05291034A JP 11233292 A JP11233292 A JP 11233292A JP 11233292 A JP11233292 A JP 11233292A JP H05291034 A JPH05291034 A JP H05291034A
Authority
JP
Japan
Prior art keywords
superconducting
coil
cylinder
superconducting coil
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11233292A
Other languages
Japanese (ja)
Inventor
Junji Sakuraba
順二 桜庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP11233292A priority Critical patent/JPH05291034A/en
Publication of JPH05291034A publication Critical patent/JPH05291034A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To manufacture a compact superconducting magnet device exhibiting excellent performances by a method wherein a superconductive coil is self-contained in a space adiabatically expanding the gas inside the cylinder of a heat regenerating refrigerator while an insulation sealed electrode is taken out so as to directly cool down the superconducting coil using the refrigerator actuating gas. CONSTITUTION:A superconducting coil 21 is self-contained inside a cylinder 26 reciprocating a displacer 25 containing a heat regenerating material 27. Besides, an electrode 23 for conduction is protrusively provided out of the semiconducting coil 21 passing through a part of the cylinder 26 to be led out of the cylinder 26 after it is electrically insulation-sealed. Furthermore, a magnetic field generating space 29 is allotted in the superconducting coil 21. On the other hand, an adiabatic expansion chamber 28 is located on the position held by the displacer 25 and the superconductive coil 21. Through these procedures, the title super conductive magnet device can function as a magnetic field generating device capable of stably sustaining the superconducting state for shorter initial cooling down time at lower attaining temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導マグネット装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnet device.

【0002】[0002]

【従来の技術】図3は本発明の原理となるギフォ−ドマ
クマホンサイクル(以下GMサイクルという)の動作原
理を示す。GMサイクルは、シリンダSとシリンダ内の
ガスの移動を行うためのディスプレ−サDとガスの冷却
・加熱を媒体を介して行う蓄冷器R及びガスの吸気・排
気を行う吸気弁V1と排気弁V2、更に高圧ガスを発生す
る圧縮機Cで構成されている。(a)→(b)では排気弁V
2を閉じ吸気弁V1を開いて圧縮機より高圧ガスをシリン
ダ上部の室温空間Wに充填する。そして、吸気弁V1
開いたままでディスプレ−サDを最高位置に移動させる
と、室温空間Wの高圧ガスは蓄冷器Rを通って冷却され
シリンダ下部の低温空間Eに移る。この過程では、不足
分の高圧ガスが吸気弁V1を通って補給される。(b)→
(a)では、吸気弁V1を閉じ排気弁V2を開いて低温空
間Eの高圧ガスを放出させる。その結果、断熱膨張が行
われて寒冷(低温の低圧ガス)が発生する。寒冷は冷凍
負荷(LOAD)を吸収した後、蓄冷器Rを冷却して圧縮機
Cの吸込み側にもどっていく。(c)→(d)では、排気
弁V2を開いたままでディスプレ−サDを最低位置に移
動させる。この時、低温空間Eの寒冷は蓄冷器Rを冷却
して(ガス自身は加熱されて)室温空間Wに移り、一部
は圧縮機Cへもどっていく。(d)→(a)では、排気弁を
閉じ吸気弁を開いて高圧ガスを室温空間に充填して1サ
イクルが終る。
2. Description of the Related Art FIG. 3 shows the principle of operation of a Gifford McMahon cycle (hereinafter referred to as GM cycle) which is the principle of the present invention. The GM cycle includes a cylinder S, a displacer D for moving the gas in the cylinder, a regenerator R for cooling and heating the gas through a medium, and an intake valve V 1 and an exhaust valve for intake and exhaust of the gas. It is composed of a valve V 2 and a compressor C that generates high-pressure gas. Exhaust valve V in (a) → (b)
2 is closed and the intake valve V 1 is opened to fill the room-temperature space W above the cylinder with high-pressure gas from the compressor. Then, when the displacer D is moved to the highest position while the intake valve V 1 is open, the high pressure gas in the room temperature space W is cooled through the regenerator R and moved to the low temperature space E below the cylinder. In this process, a shortage of high pressure gas is replenished through the intake valve V 1 . (b) →
In (a), the intake valve V 1 is closed and the exhaust valve V 2 is opened to release the high pressure gas in the low temperature space E. As a result, adiabatic expansion is performed and cold (low-temperature low-pressure gas) is generated. After absorbing the refrigeration load (LOAD), the cold cools the regenerator R and returns to the suction side of the compressor C. In (c) → (d), the displacer D is moved to the lowest position while the exhaust valve V 2 is open. At this time, the cold of the low temperature space E cools the regenerator R (the gas itself is heated), moves to the room temperature space W, and partly returns to the compressor C. In (d) → (a), the exhaust valve is closed and the intake valve is opened to fill the room temperature space with high-pressure gas to complete one cycle.

【0003】本出願人は先に超電導マグネットを超電導
状態に冷却する方式として、このような信頼性の高いギ
フォ−ド・マクマホンサイクル方式の蓄冷式ヘリウム冷
凍機のコ−ルドヘッドに、超電導マグネットを熱接触さ
せて伝導冷却する方式を開示した((特願平3−104
042号)以下先発明という)。これはコ−ルドヘッド
からコイル巻枠,電気絶縁材を通して超電導コイル巻線
部を伝導で冷却するものであるが、定常冷却に時間が
かかる、超電導コイル内に発生する磁気的・機械的撹
乱による熱の除去に時間がかかり、超電導状態を安定に
保つために超電導コイルの臨界温度に対して十分余裕を
とる必要がある等の問題がある。
The applicant of the present invention has previously proposed a method for cooling a superconducting magnet to a superconducting state by heating the superconducting magnet in a cold head of a cold storage helium refrigerator of such a highly reliable Giford-McMahon cycle system. A method of conducting and cooling by contact is disclosed ((Japanese Patent Application No. 3-104).
No. 042) hereinafter referred to as the prior invention). This is to cool the superconducting coil winding by conduction from the cold head through the coil winding frame and the electric insulating material, but it takes time for steady cooling, and heat generated by magnetic and mechanical disturbance generated in the superconducting coil. Takes a long time to remove, and there is a problem that it is necessary to have a sufficient margin with respect to the critical temperature of the superconducting coil in order to keep the superconducting state stable.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記問題点を
改善し、コンパクトで優れた性能を有する超電導マグネ
ット装置を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a compact superconducting magnet device having excellent performance by solving the above problems.

【0005】[0005]

【課題を解決するための手段】蓄冷式冷凍機のシリンダ
−内のガスを断熱膨張させる空間29に超電導コイル2
1を内蔵させ、電極23を絶縁シ−ル24して取り出す
ことにより、冷凍機作動ガスによる超電導コイル21の
直接冷却を行うことを特徴とする。冷凍機39と超電導
コイル30を電流リ−ド37、熱シ−ルド板34、真空
容器36、圧縮機40、電源42と組合せることによ
り、磁場発生装置とした。
A superconducting coil 2 is provided in a space 29 for adiabatic expansion of gas in a cylinder of a cold storage refrigerator.
1 is built in, and the electrode 23 is taken out through the insulating seal 24, whereby the superconducting coil 21 is directly cooled by the working gas of the refrigerator. The refrigerator 39 and the superconducting coil 30 are combined with the current lead 37, the heat shield plate 34, the vacuum container 36, the compressor 40, and the power source 42 to form a magnetic field generator.

【0006】[0006]

【実施例】本発明を説明するに先立ち、前記本出願人が
開示した先発明に係る超電導コイルの冷却装置について
概略説明する。図4で超電導コイル1は、金属系,酸化
物系などの超電導物質を電導物質を線状化して巻いたコ
イルであり、中央に貫通孔を持つ円筒形に形成されてい
る。この超電導コイル1の下端を蓄冷式冷凍機4の第二
段冷却ステ−ジ5に密接にねじ止め等によって固定す
る。真空容器2は、ステンレスなどの非磁性材製で超電
導コイル1を真空中に被包している。熱シ−ルド3は、
薄い銅などの熱伝導率の大きい材料製で形成し、超電導
コイル1を直接内包して、開口部の端部を第一段冷却ス
テ−ジ6に密着させてねじ止め等によって固定してい
る。電流リ−ド7は、超電導コイル1に接続し電流を供
給する。電流リ−ド7は外部に、保護抵抗8、遮断機
9、電源10に接続している。蓄冷式冷凍機4は、駆動
部を真空容器2の外側に出し、フレキシブルホ−ス1
1,11によって圧縮機12と接続している。たとえば
物性測定用サンプル13は超電導物質で、臨界磁場を測
定する為に超電導コイル1によって強磁場をかける。物
性測定用サンプル13は、第二段冷却ステ−ジ5に取り
外し可能に固着されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Prior to explaining the present invention, a cooling device for a superconducting coil according to the prior invention disclosed by the present applicant will be briefly described. In FIG. 4, the superconducting coil 1 is a coil formed by linearly winding a superconducting material such as a metal-based or oxide-based superconducting material, and is formed in a cylindrical shape having a through hole in the center. The lower end of the superconducting coil 1 is closely fixed to the second stage cooling stage 5 of the regenerator 4 by screwing or the like. The vacuum container 2 is made of a non-magnetic material such as stainless steel, and the superconducting coil 1 is encapsulated in vacuum. Thermal shield 3
It is made of a material having a high thermal conductivity such as thin copper, the superconducting coil 1 is directly included therein, and the end portion of the opening is brought into close contact with the first-stage cooling stage 6 and fixed by screwing or the like. .. The current lead 7 is connected to the superconducting coil 1 and supplies a current. The current lead 7 is externally connected to a protective resistor 8, a breaker 9, and a power supply 10. The regenerator 4 has a drive unit that is exposed to the outside of the vacuum container 2 and is connected to the flexible hose 1.
The compressor 12 is connected to the compressors 1 and 11. For example, the physical property measurement sample 13 is a superconducting substance, and a strong magnetic field is applied by the superconducting coil 1 to measure the critical magnetic field. The physical property measurement sample 13 is detachably fixed to the second stage cooling stage 5.

【0007】真空容器2の内部を、図示しない真空ポン
プで真空にし、空気による熱伝導を遮断する。次に蓄冷
式冷凍機4を稼働して第二段冷却ステ−ジ5を極低温と
してそれに固着した超電導コイル1を冷却する。また、
常温からの輻射熱を防ぐ為、熱シ−ルド3を第一段冷却
ステ−ジ6によって冷却する。電流リ−ド7から、電流
を流すと超電導コイル1から強磁場を発生するようにな
っている。
The inside of the vacuum container 2 is evacuated by a vacuum pump (not shown) to block heat conduction by air. Next, the regenerator 4 is operated to bring the second stage cooling stage 5 to an extremely low temperature to cool the superconducting coil 1 fixed to it. Also,
In order to prevent radiant heat from room temperature, the heat shield 3 is cooled by the first stage cooling stage 6. When a current is applied from the current lead 7, a strong magnetic field is generated from the superconducting coil 1.

【0008】さて、上述したギフォ−ド・マクマホンサ
イクル冷凍機を利用した先発明のように、蓄冷式冷凍機
のコ−ルドヘッド部に被冷却物を熱接触させることによ
ってこれを所定の温度に冷却することができる。そこ
で、本発明においては被冷却物である超電導コイルの冷
却効果を高めるために、図1に示すように蓄冷材27を
収納したディスプレ−サ−25を往復動させるシリンダ
−26内(図の上部即ちディスプレ−サ−の最低位置
側)に超電導コイル21を内蔵させる。この超電導コイ
ル21はコイル巻枠22に超電導線材を巻いて構成す
る。場合によっては、巻線後エポキシ樹脂などを含浸し
たり、巻枠22を除去した構成でもよい。また、超電導
コイル21からは通電のための電極23が設置され、シ
リンダ−26の一部を貫通させ、電気的絶縁シ−ル24
を施してシリンダ−外部へ引き出している。さらに、超
電導コイル21の内部には磁場発生空間29を設ける。
28はガスの断熱膨張室である。これはディスプレ−サ
−25と超電導コイル21にはさまれた位置となる。
[0008] Now, as in the previous invention utilizing the above-mentioned Gifford-McMahon cycle refrigerator, the cold head is cooled to a predetermined temperature by bringing the object to be cooled into thermal contact with the cold head of the regenerator. can do. Therefore, in the present invention, in order to enhance the cooling effect of the superconducting coil which is the object to be cooled, the inside of the cylinder 26 (the upper part of the figure) that reciprocates the displacer 25 containing the regenerator material 27 as shown in FIG. That is, the superconducting coil 21 is incorporated in the displacer at the lowest position). The superconducting coil 21 is formed by winding a superconducting wire around a coil winding frame 22. Depending on the case, the winding may be impregnated with epoxy resin after winding or the winding frame 22 may be removed. Further, an electrode 23 for energizing is installed from the superconducting coil 21 so as to penetrate a part of the cylinder 26, and electrically insulating seal 24.
The cylinder is pulled out to the outside. Further, a magnetic field generation space 29 is provided inside the superconducting coil 21.
28 is a gas adiabatic expansion chamber. This is a position sandwiched between the displacer 25 and the superconducting coil 21.

【0009】図2は図1に示した構成の超電導コイル3
0内蔵の冷凍機39と電流リ−ド37に熱シ−ルド板3
4、真空容器36、圧縮機40、ガス配管41、励磁電
源42等を組合わせ、磁場利用空間43を設けた超電導
マグネット装置の実施例である。図2は2段式の冷凍機
による例であり、1段式、3段式等いずれでも可能であ
る。また電流リ−ドとして、温度条件に応じてビスマス
系,イットリウム系などの酸化物超電導体、又は金属系
超電導体(Nb3Sn,Nb3Al,V3Gaなど)で構成するこ
とができる。図2ではタ−ミナル38から第一段冷却ス
テ−ジ35までは銅などの低電気抵抗材を電流リ−ド3
7として用い、第一段冷却ステ−ジ35から超電導コイ
ル30の電極31までは、ビスマス系などの酸化物電流
リ−ド32を用いた例を示す。また、超電導コイル30
を形成する超電導材料は金属系(NbTi,Nb3Snなど)、
酸化物系などいずれでも温度条件に応じて選択すること
ができる。
FIG. 2 shows a superconducting coil 3 having the structure shown in FIG.
0 built-in refrigerator 39, current lead 37, and heat shield plate 3
4, a vacuum container 36, a compressor 40, a gas pipe 41, an excitation power source 42 and the like are combined to provide a magnetic field utilization space 43. FIG. 2 shows an example of a two-stage type refrigerator, and any one-stage type, three-stage type or the like is possible. The current Li - as de, can be composed of a bismuth-based according to temperature conditions, the oxide superconductor such as yttrium-based, or metal-based superconductors (Nb 3 Sn, Nb 3 Al , V 3 Ga , etc.). In FIG. 2, a low electrical resistance material such as copper is used for the current lead 3 from the terminal 38 to the first stage cooling stage 35.
7, an oxide current lead 32 of bismuth type or the like is used from the first cooling stage 35 to the electrode 31 of the superconducting coil 30. Also, the superconducting coil 30
Superconductive material of the metallic forming the (NbTi, Nb 3 Sn, etc.),
Any oxide type or the like can be selected according to the temperature conditions.

【0010】図3の蓄冷式冷凍機ギフォ−ドマクマホン
サイクルの動作原理に示すように、蓄冷器Rと一体のデ
ィスプレ−サ−Dの移動に伴ってガスを断熱膨張させる
ことによって温度を下げる。これによりコ−ルドヘッド
部に取り付けた被冷却物の温度をコ−ルドヘッドを通し
ての固体の熱伝導で下げることができる。ここで、図2
に示すように、ガスを断熱膨張させるシリンダ−内に超
電導コイルを内蔵させることによって冷凍機冷却作動ガ
スによって直接冷却することができる。図3の工程b→
cに至る断熱膨張過程において超電導コイルの温度を作
動ガスによって直接下げることができる。このようにし
て冷却し超電導状態を保持された超電導コイルを図2の
実施例に示す励磁電流供給システムをもつ超電導マグネ
ット装置とすることにより、初期冷却時間が速く、到達
温度も低く、超電導状態を安定して維持できる磁場発生
装置として機能させることができる。
As shown in the operating principle of the cold storage refrigerator, Gifoed McMahon cycle, shown in FIG. 3, the temperature is lowered by adiabatically expanding the gas as the disperser D integrated with the regenerator R moves. As a result, the temperature of the object to be cooled attached to the cold head portion can be lowered by the heat conduction of the solid through the cold head. Here, FIG.
As shown in (1), by incorporating a superconducting coil in a cylinder that adiabatically expands the gas, the gas can be directly cooled by the refrigerator cooling working gas. Step b of FIG. 3 →
In the adiabatic expansion process up to c, the temperature of the superconducting coil can be directly lowered by the working gas. By using the superconducting coil cooled in this way and kept in the superconducting state as the superconducting magnet device having the exciting current supply system shown in the embodiment of FIG. 2, the initial cooling time is short, the reached temperature is low, and the superconducting state is maintained. It can function as a magnetic field generator that can be stably maintained.

【0011】[0011]

【効果】【effect】

a)ガスによる直接冷却にしたため、接触熱抵抗がなく
初期冷却時間を速くし、かつ到達温度を低くできる。 b)励磁に伴う超電導コイルに発生する磁気的・機械的
撹乱による熱をすみやかに除去できる。 c)その結果、臨界電流に対する余裕が増し、コイルの
安定性を高めることができる。さらに、伝導冷却よりも
高い電流密度での励磁を可能とするので、コイルをコン
パクトにでき、装置の材料費を大巾に低減できる。
a) Since the gas is directly cooled, there is no contact heat resistance and the initial cooling time can be shortened and the ultimate temperature can be lowered. b) The heat generated by the magnetic and mechanical disturbance generated in the superconducting coil due to the excitation can be quickly removed. c) As a result, the margin for the critical current is increased, and the stability of the coil can be improved. Further, since it is possible to excite at a current density higher than that of conduction cooling, the coil can be made compact and the material cost of the device can be greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例断面図。FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】同じく第2実施例。FIG. 2 is likewise a second embodiment.

【図3】G・Mサイクルの原理説明図。FIG. 3 is an explanatory diagram of the principle of the G / M cycle.

【図4】先発明の断面図。FIG. 4 is a sectional view of the prior invention.

【符号の説明】[Explanation of symbols]

1 超電導コイル 2 真空容器 3 熱シ−ルド 4 蓄冷式冷凍機 5 第二段冷却ステ−ジ 6 第一段冷却ステ
−ジ 7 電流リ−ド 8 保護抵抗 9 遮断機 10 電源 11 フレキシブルホ−ス 12 圧縮機 13 物性測定用サンプル 21 超電導コイル 22 コイル巻枠 23 電極 24 絶縁シ−ル 25 ディスプレ−サ− 26 シリンダ− 27 蓄冷材 28 断熱膨張室 29 空間 30 超電導コイル 31 電極 32 電流リ−ド 33 第二段冷却ステ−ジ 34 熱シ−ルド板 35 第一段冷却ステ−ジ 36 真空容器 37 電流リ−ド 38 タ−ミナル 39 冷凍機 40 圧縮機 41 ガス配管 42 電源 43 空間
1 superconducting coil 2 vacuum container 3 heat shield 4 regenerative refrigerator 5 second stage cooling stage 6 first stage cooling stage 7 current lead 8 protective resistance 9 circuit breaker 10 power supply 11 flexible hose 12 Compressor 13 Sample for physical property measurement 21 Superconducting coil 22 Coil reel 23 Electrode 24 Insulation seal 25 Displacer 26 Cylinder 27 Regenerator 28 Adiabatic expansion chamber 29 Space 30 Superconducting coil 31 Electrode 32 Current lead 33 Second stage cooling stage 34 Heat shield plate 35 First stage cooling stage 36 Vacuum vessel 37 Current lead 38 Terminal 39 Refrigerator 40 Compressor 41 Gas pipe 42 Power supply 43 Space

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 蓄冷式冷凍機のシリンダ−内のガスを断
熱膨張させる空間(29)に超電導コイル(21)を内蔵させ、
電極(23)を絶縁シ−ル(24)して取り出すことにより、冷
凍機作動ガスによる超電導コイル(21)の直接冷却を行う
ことを特徴とする超電導マグネット装置。
1. A superconducting coil (21) is built in a space (29) for adiabatically expanding a gas in a cylinder of a regenerator.
A superconducting magnet device characterized in that a superconducting coil (21) is directly cooled by a working gas of a refrigerator by taking out an electrode (23) through an insulating seal (24).
【請求項2】 冷凍機(39)と超電導コイル(30)を電流リ
−ド(37)、熱シ−ルド板(34)、真空容器(36)、圧縮機(4
0)、電源(42)と組合せることにより、磁場発生装置とし
たことを特徴とする超電導マグネット装置。
2. A refrigerator (39) and a superconducting coil (30) comprising a current lead (37), a heat shield plate (34), a vacuum container (36), and a compressor (4).
0), a superconducting magnet device characterized by being a magnetic field generating device by combining with a power source (42).
JP11233292A 1992-04-06 1992-04-06 Superconducting magnet device Pending JPH05291034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11233292A JPH05291034A (en) 1992-04-06 1992-04-06 Superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11233292A JPH05291034A (en) 1992-04-06 1992-04-06 Superconducting magnet device

Publications (1)

Publication Number Publication Date
JPH05291034A true JPH05291034A (en) 1993-11-05

Family

ID=14584033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11233292A Pending JPH05291034A (en) 1992-04-06 1992-04-06 Superconducting magnet device

Country Status (1)

Country Link
JP (1) JPH05291034A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114097047A (en) * 2019-07-10 2022-02-25 三菱电机株式会社 Superconducting magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114097047A (en) * 2019-07-10 2022-02-25 三菱电机株式会社 Superconducting magnet

Similar Documents

Publication Publication Date Title
US4033734A (en) Continuous, noncyclic magnetic refrigerator and method
US5638685A (en) Superconducting magnet and regenerative refrigerator for the magnet
JP3629725B2 (en) Superconducting magnet
EP1000304A2 (en) Cooling system for superconducting magnet
JP3898231B2 (en) Current supply for cooling electrical equipment
JPH04350906A (en) Method and apparatus for cooling oxide superconducting coil
JP4512644B2 (en) Magnet magnetization system and magnetized superconducting magnet
JP5017640B2 (en) Cryogenic refrigeration method and cryogenic refrigeration system
JPH10335137A (en) Cooling method and conducting method for superconductor
JPH1012429A (en) Superconductive magnet device and method for magnetizing it
JP3180856B2 (en) Superconducting critical current measuring device
JP3285751B2 (en) Magnetic refrigerator
JP4799757B2 (en) Superconducting magnet
JPH11283822A (en) Superconducting magnet
JPH10275719A (en) Method for cooling superconductor
JP2004235653A (en) Superconductive magnet
JPH05291034A (en) Superconducting magnet device
JP3233811B2 (en) Magnetic refrigerator
JP4151674B2 (en) Magnetization method of superconducting magnet device
JP3648265B2 (en) Superconducting magnet device
JP2004233047A (en) Superconductive magnet
JPH10247753A (en) Superconducting device and control method thereof
JP3117173B2 (en) Superconducting magnet device with refrigerator
JPH084652A (en) Cryopump
JPH0918062A (en) Superconducting magnet device