JPH052905B2 - - Google Patents

Info

Publication number
JPH052905B2
JPH052905B2 JP61219058A JP21905886A JPH052905B2 JP H052905 B2 JPH052905 B2 JP H052905B2 JP 61219058 A JP61219058 A JP 61219058A JP 21905886 A JP21905886 A JP 21905886A JP H052905 B2 JPH052905 B2 JP H052905B2
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
valve
time
suction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61219058A
Other languages
Japanese (ja)
Other versions
JPS6375445A (en
Inventor
Akitoshi Ueno
Nobuo Domyo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP21905886A priority Critical patent/JPS6375445A/en
Publication of JPS6375445A publication Critical patent/JPS6375445A/en
Publication of JPH052905B2 publication Critical patent/JPH052905B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started

Landscapes

  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷凍装置に備えられる圧縮機のポン
プダウン運転制御装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a pump-down operation control device for a compressor included in a refrigeration system.

(従来の技術) 従来より、冷凍装置の冷媒回路中の冷媒を回収
するポンプダウン運転の制御装置として、例えば
実開昭57−55454号公報に開示される如く、ポン
プダウン運転時、サーモスタツトの切換えによ
り、吸入圧力が所定値以下に低下するか、ポンプ
ダウン運転の開始後一定時間が経過したときにポ
ンプダウン運転を停止させることにより、ポンプ
ダウン運転中における冷媒の減少で圧縮機が焼損
するのを防止しようとするものは公知の技術であ
る。
(Prior Art) Conventionally, as a control device for pump-down operation to recover refrigerant in a refrigerant circuit of a refrigeration system, as disclosed in Japanese Utility Model Application Publication No. 57-55454, for example, there is a control device for controlling a thermostat during pump-down operation. By switching, pump-down operation is stopped when the suction pressure drops below a predetermined value or a certain period of time has passed after the start of pump-down operation, thereby preventing the compressor from burning out due to a decrease in refrigerant during pump-down operation. There are known techniques to prevent this.

(発明が解決しようとする問題点) ところで、冷凍装置の室内機の移設あるいは交
換時に、冷凍装置内のレシーバあるいは凝縮器に
冷凍を回収するためのポンプダウン運転を行うに
当つては、通常は液側の手動閉鎖弁を閉めて圧縮
機を運転し、冷媒をほぼ回収できたと見られる時
を見はからつてガス側の手動閉鎖弁を閉め圧縮機
を停止させるという手順で行われている。
(Problems to be Solved by the Invention) By the way, when relocating or replacing the indoor unit of a refrigeration system, it is normal to perform a pump-down operation to recover frozen water to the receiver or condenser in the refrigeration system. The procedure is to close the liquid-side manual shut-off valve and operate the compressor, and when it appears that most of the refrigerant has been recovered, the gas-side manual shut-off valve is closed and the compressor is stopped.

しかしながら、この方法によるものでは、冷媒
の回収が終つた時の判定は作業者の熟練度に頼る
のみであつて、そのために、ガス側閉鎖弁を閉
じ、圧縮機を止めるのが早すぎると冷媒の回収が
不十分であつたり、逆に冷媒の回収率を上げよう
としてポンプダウン運転時間が長すぎた時には圧
縮機に吸入される冷媒が減少しすぎて、冷媒によ
る圧縮機の冷却効果が低下し、圧縮機の内部温度
が急上昇するために、圧縮機の焼付事故を生ずる
などの問題がある。
However, with this method, the determination of when refrigerant recovery is complete relies only on the skill of the operator, and for this reason, if the gas side closing valve is closed and the compressor is stopped too early, the refrigerant If the recovery of refrigerant is insufficient, or if the pump-down operation time is too long in an attempt to increase the refrigerant recovery rate, the amount of refrigerant sucked into the compressor decreases too much, and the cooling effect of the refrigerant on the compressor decreases. However, since the internal temperature of the compressor rises rapidly, there are problems such as seizure of the compressor.

そこで、上記公報によるものを利用して、圧縮
機の過熱を防止しながら冷媒の回収を確実に行う
ことが考えられる。しかるに、上記公報のもの
は、冷凍装置の据付や移設時等の閉鎖弁の操作を
前提としたものではなく、つまり、冷媒回路の開
放を前提としたものでないために、そのままでは
十分な冷媒回収率が得られない。すなわち、吸入
圧力の低下と同時に、ポンプダウン運転を停止し
ても、その後閉鎖弁を閉じるまでに所定の時間を
要するので、その間冷媒が貯蔵側から逆流して、
一定の未回収冷媒が発生する。なお、ポンプダウ
ン運転開始後一定時間が経過したときにポンプダ
ウン運転を終了させるのは、単に圧力スイツチが
作動しなかつたときのバツクアツプと解される。
Therefore, it is conceivable to use the method disclosed in the above publication to reliably recover the refrigerant while preventing the compressor from overheating. However, the above publication does not assume that the closing valve will be operated when installing or relocating the refrigeration system, and in other words, it does not assume that the refrigerant circuit will be opened. I can't get the rate. In other words, even if the pump-down operation is stopped at the same time as the suction pressure decreases, it takes a certain amount of time to close the closing valve, so during that time the refrigerant flows back from the storage side.
A certain amount of unrecovered refrigerant is generated. Note that terminating the pump-down operation after a certain period of time has elapsed after the start of the pump-down operation is simply understood as back-up when the pressure switch is not activated.

本発明は斯かる点に鑑みてなされたものであ
り、その目的は、ポンプダウン運転時、吸入ガス
圧力の低下に応じてガス側の手動閉鎖弁の開閉操
作を行うべき時を作業者に報せる一方、その後一
定時間が経過してから圧縮機を停止させることに
より、圧縮機の焼付等の事故を防止しながら、冷
媒の回収率の向上を図ることにある。
The present invention has been made in view of the above, and its purpose is to notify the operator when to open/close the manual shutoff valve on the gas side in response to a drop in suction gas pressure during pump down operation. The objective is to improve the refrigerant recovery rate while preventing accidents such as seizure of the compressor by stopping the compressor after a certain period of time has elapsed.

(問題点を解決するための手段) 上記目的を達成するため、本発明の解決手段
は、第1図に示すように、冷媒回路に冷媒貯蔵機
器4、液側の手動閉鎖弁10aおよびガス側の手
動閉鎖弁10bを配置した冷凍装置を対象とす
る。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention, as shown in FIG. The target is a refrigeration system equipped with a manual shutoff valve 10b.

そして、冷凍装置に、上記液側の手動閉鎖弁1
0aが閉じられた後、圧縮機1への吸入ガス冷媒
の圧力を検出する吸入ガス圧力検出手段LPSと、
該吸入ガス圧力検出手段LPSの信号を受け、吸入
ガス圧力が所定値以下になると、作業者にガス側
の手動閉鎖弁10bを閉じるべき警報を出力する
警報出力手段BZと、該警報出力手段BZによる警
報出力時からの圧縮機1の過熱時期に対応する一
定時間を計測する計時手段13と、該計時手段1
3の出力を受けたとき、圧縮機1の運転を停止さ
せる運転制御手段12とを設ける構成としたもの
である。
Then, the manual shutoff valve 1 on the liquid side is installed in the refrigeration equipment.
0a is closed, suction gas pressure detection means LPS detects the pressure of the suction gas refrigerant to the compressor 1;
Alarm output means BZ that receives a signal from the suction gas pressure detection means LPS and outputs a warning to the operator to close the manual shutoff valve 10b on the gas side when the suction gas pressure falls below a predetermined value; and the alarm output means BZ. a time measuring means 13 for measuring a certain period of time corresponding to the overheating period of the compressor 1 from the time when an alarm is output by the time measuring means 1;
The compressor 1 is configured to include an operation control means 12 that stops the operation of the compressor 1 when the compressor 1 receives the output No. 3.

(作用) 以上の構成により、本発明では、冷凍装置の移
設時等でのポンプダウン運転を行う場合、液側閉
鎖弁10aを閉じた状態で圧縮機1の運転が行わ
れ、冷媒が冷媒貯蔵機器4に貯溜されて行く。そ
して、回収される冷媒が減少してゆき吸入ガス圧
力が所定値以下になると、それが吸入ガス圧力検
出手段LPSで検出され、さらに警報出力手段BZ
により作業者にガス側の手動閉鎖弁10bを閉じ
るよう警告する警報が出力される。
(Function) With the above configuration, in the present invention, when performing pump down operation when relocating a refrigeration system, the compressor 1 is operated with the liquid side closing valve 10a closed, and the refrigerant is stored in the refrigerant storage. It is stored in device 4. When the recovered refrigerant decreases and the suction gas pressure becomes less than a predetermined value, it is detected by the suction gas pressure detection means LPS, and the alarm output means BZ
An alarm is output to warn the operator to close the gas-side manual shutoff valve 10b.

一方、その間冷媒の減少によつて圧縮機1の内
部温度が急上昇し、圧縮機1の内部温度が過熱危
険値に達しようとするが、計時手段13により圧
縮機1の過熱時期に対応する一定時間の経過が計
測され、この一定時間が経過すると、運転制御手
段12により圧縮機1の運転が停止される。
Meanwhile, due to the decrease in refrigerant, the internal temperature of the compressor 1 rises rapidly, and the internal temperature of the compressor 1 is about to reach the overheating danger value. The passage of time is measured, and when this certain period of time has passed, the operation of the compressor 1 is stopped by the operation control means 12.

そのとき、圧縮機1の停止と手動によるガス側
の手動閉鎖弁10bの閉鎖とのタイミングを合わ
せることが可能になり、圧縮機1停止後に冷媒貯
蔵機器4から圧縮機1を介し逆流して未回収とな
る冷媒量がほとんどなくなる。したがつて、圧縮
機1の焼損等の事故が防止されるとともに、冷媒
の回収率が向上する。
At that time, it becomes possible to synchronize the timing of the stop of the compressor 1 and the manual closing of the gas side manual shut-off valve 10b, so that after the compressor 1 is stopped, the refrigerant flows backward from the refrigerant storage device 4 through the compressor 1 and becomes unused. Almost no refrigerant will be recovered. Therefore, accidents such as burnout of the compressor 1 are prevented, and the refrigerant recovery rate is improved.

(実施例) 以下、本発明の実施例を第2図以下の図面に基
づいて詳細に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings from FIG. 2 onwards.

第2図は本発明をセパレート型空気調和装置に
適用した場合の冷媒配管系統を示し、Aは室外ユ
ニツト、Bは室内ユニツトであつて、該室外ユニ
ツトAには、周波数を可変にするインバータ9に
より容量が調整される圧縮機1と、冷房運転時に
は第2図実線に示すごとく切換わり暖房運転時に
は破線に示すごとく切換わる四路切換弁2と、ア
キユムレータ3と、冷房運転時に凝縮器、暖房運
転時に蒸発器となり、ポンプダウン運転時には冷
媒貯蔵器となる室外熱交換器4と、冷媒流量を調
整して冷媒の絞り作用を行う電動膨張弁5および
キヤピラリーチユーブ7とが主要機器として、ま
た上記室内ユニツトBには、冷房運転時に蒸発
器、暖房運転時に凝縮器となる室内熱交換器6が
主要機器として各々配設されており、上記各主要
機器はサービスポートを付設している液側閉鎖弁
10aおよびガス側閉鎖弁10bを介して冷媒配
管8によつてそれぞれ冷媒の流通可能に接続され
ている。また、TH1は室内温度を検出する室温
サーモスタツト、TH2は圧縮機1の吐出管に配
置されて吐出ガス冷媒の温度T2(以下吐出管温度
と呼ぶ)を検知する温度センサ、LPSは吸入ガス
冷媒の圧力LPを検知してLPが所定の値Po(0.9
Kg/cm2G程度)より低くなると閉作動し、通常は
開状態にある圧力スイツチ、11はコントロール
ユニツトである。
FIG. 2 shows a refrigerant piping system when the present invention is applied to a separate air conditioner, where A is an outdoor unit and B is an indoor unit. a compressor 1 whose capacity is adjusted by a compressor 1, a four-way selector valve 2 which switches as shown by the solid line in FIG. The outdoor heat exchanger 4 serves as an evaporator during operation and serves as a refrigerant storage during pump-down operation, and an electric expansion valve 5 and capillary reach tube 7 that adjust the refrigerant flow rate and throttle the refrigerant are used as main equipment. The indoor unit B is equipped with an indoor heat exchanger 6, which serves as an evaporator during cooling operation and a condenser during heating operation, as main equipment, and each of the above-mentioned main equipment has a liquid side equipped with a service port. They are connected to each other by a refrigerant pipe 8 via the shutoff valve 10a and the gas side shutoff valve 10b so that refrigerant can flow therethrough. In addition, TH1 is a room temperature thermostat that detects the room temperature, TH2 is a temperature sensor placed in the discharge pipe of compressor 1 and detects the temperature T2 of the discharge gas refrigerant (hereinafter referred to as discharge pipe temperature), and LPS is the temperature sensor of the suction gas refrigerant. Detects the pressure LP of LP and reaches the predetermined value Po (0.9
The pressure switch 11 is a control unit which closes when the pressure becomes lower than the pressure (approximately Kg/cm 2 G) and is normally in the open state.

第3図は該コントロールユニツト11のプリン
ト基板の主要機器との接続を示す概略配線図であ
つて、該コントロールユニツト11には、室温サ
ーモスタツトTH1、温度センサTH2、圧力ス
イツチLPSおよびポンプダウン操作時に指令を出
す外部スイツチSW1が入力側に接続されてい
る。そして、該コントロールユニツト11の内部
には運転制御手段としてのマイコン12が内蔵さ
れており、該マイコン12の記憶部には、通常運
転時圧縮機が過熱危険温度に達しているときの吐
出管温度Tc1(第1設定値)(例えば130℃程度)、
適正範囲の上限設定値Tc2(例えば120℃程度)、
適正範囲の下限設定値Tc3(例えば110℃程度)お
よびLP<Poのときの吐出管温度の低圧時過熱限
界温度TL1(第2設定値)(例えば110℃程度)が
予め記憶されている。また、出力側端子には、電
動膨張弁5の開度を調節するパルスモータEVと、
インバータ9と、警報音を連続して発する警報出
力手段としてのブザーBZと、設定時間to(30秒程
度)のタイマ13とが接続されている。そして、
上記マイコン12は、上記各センサおよび外部ス
イツチSW1の出力を受けて、出力側端子に接続
された電動膨張弁5のパルスモータEV、インバ
ータ9およびポンプダウン警報ブザーBZの作動
を制御するようになされている。
FIG. 3 is a schematic wiring diagram showing the connection with the main equipment on the printed circuit board of the control unit 11. The control unit 11 includes a room temperature thermostat TH1, a temperature sensor TH2, a pressure switch LPS, and a An external switch SW1 that issues commands is connected to the input side. A microcomputer 12 as an operation control means is built into the control unit 11, and the memory of the microcomputer 12 stores the discharge pipe temperature when the compressor reaches the dangerous overheating temperature during normal operation. Tc1 (first setting value) (e.g. around 130℃),
The upper limit setting value Tc2 of the appropriate range (for example, about 120℃),
The lower limit set value Tc3 of the appropriate range (for example, about 110°C) and the low pressure overheating limit temperature TL1 (second set value) of the discharge pipe temperature when LP<Po (for example, about 110°C) are stored in advance. In addition, the output side terminal is equipped with a pulse motor EV that adjusts the opening degree of the electric expansion valve 5,
The inverter 9, a buzzer BZ as an alarm output means that continuously emits an alarm sound, and a timer 13 for a set time to (about 30 seconds) are connected. and,
The microcomputer 12 receives the outputs of the sensors and the external switch SW1, and controls the operation of the pulse motor EV of the electric expansion valve 5, the inverter 9, and the pump-down alarm buzzer BZ connected to the output side terminal. ing.

そして、冷房運転時、冷媒の流れは第2図の実
線矢印で示すようになり、圧縮機1から吐出され
た冷媒は室外熱交換器4(凝縮器)にて凝縮液化
された後、電動膨張弁5およびキヤピラリーチユ
ーブ7によつて絞り作用を受けて室内熱交換器6
(蒸発器)で気化され、アキユムレータ3を経て
再び圧縮機1に戻る。また、暖房運転時、冷媒の
流れは破線矢印で示すようになり、圧縮機1から
吐出された冷媒は、室内熱交換器6にて凝縮液化
後、電動膨張弁5およびキヤピラリーチユーブ7
によつて絞り作用を受けて室外熱交換器4で気化
され、アキユムレータ3を経て再び圧縮機1に戻
る。
During cooling operation, the flow of refrigerant becomes as shown by the solid arrow in Fig. 2, and the refrigerant discharged from the compressor 1 is condensed and liquefied in the outdoor heat exchanger 4 (condenser), and then electrically expanded. The indoor heat exchanger 6 is subjected to a throttling action by the valve 5 and the capillary reach tube 7.
(evaporator), passes through the accumulator 3, and returns to the compressor 1 again. Further, during heating operation, the flow of refrigerant is as shown by the broken line arrow, and the refrigerant discharged from the compressor 1 is condensed and liquefied in the indoor heat exchanger 6, and then transferred to the electric expansion valve 5 and the capillary reach tube 7.
It is subjected to a throttling action and vaporized in the outdoor heat exchanger 4, and returns to the compressor 1 via the accumulator 3.

そして、空気調和装置の冷暖房運転時の通常運
転においては、室温サーモスタツトTH1の設定
値と吸込空気温度の偏差(Ts−Tn)に応じてイ
ンバータ9の周波数が変更され、圧縮機1の容量
制御が行われる。また、その出力周波数の値に応
じて電動膨張弁5の開度があらかじめマイコン1
2の記憶部に記憶された値に設定され、運転開始
時から常に湿り運転域に入ることがないようにな
されている。このとき、上記通常運転では冷媒の
過熱度が上昇して、空調能力が十分発揮されない
状況あるいは圧縮機1が焼付きを生ずる危険性が
生ずるのでコントロールユニツト11によつて、
吐出管温度T2の信号に応じて、予め設定された
吐出管温度の過熱限界温度Tc1、適正範囲の上限
設定値Tc2、適正範囲の下限設定値Tc3と比較
し、T2>Tc2となつて冷媒が過熱領域に入つた
場合には上記電動膨張弁5の開度をインバータ9
の周波数で決まる設定値から増大修正して、吐出
管温度が適正範囲Tc3〜Tc2になるような冷媒の
過熱運転解消制御を行うようになされている。ま
た、吸入ガス圧力Lpが圧力スイツチLPSの設定
値Po以上であるLp≧Poの場合には、吐出ガス温
度T2がTc1以上のとき、Lp<Poの場合にはT2≧
Tc3のときにそれぞれ圧縮機1を停止して、圧縮
機1の過熱による焼付き等を防止するようになさ
れている。
During normal cooling/heating operation of the air conditioner, the frequency of the inverter 9 is changed according to the deviation (Ts - Tn) between the set value of the room temperature thermostat TH1 and the intake air temperature, and the capacity of the compressor 1 is controlled. will be held. In addition, the opening degree of the electric expansion valve 5 is set in advance by the microcomputer 1 according to the value of the output frequency.
This is set to the value stored in the storage unit No. 2, so that it does not always enter the wet operation range from the start of operation. At this time, in the above-mentioned normal operation, the degree of superheating of the refrigerant increases and there is a risk that the air conditioning capacity will not be fully utilized or that the compressor 1 will seize, so the control unit 11
According to the signal of the discharge pipe temperature T2, the discharge pipe temperature is compared with the superheating limit temperature Tc1, the upper limit setting value of the appropriate range Tc2, and the lower limit setting value Tc3 of the appropriate range, and if T2>Tc2, the refrigerant is When the temperature reaches the overheating region, the opening degree of the electric expansion valve 5 is controlled by the inverter 9.
By increasing the set value determined by the frequency of , refrigerant overheating operation cancellation control is performed so that the discharge pipe temperature falls within the appropriate range Tc3 to Tc2. Furthermore, when Lp≧Po, in which the suction gas pressure Lp is greater than the set value Po of the pressure switch LPS, when the discharge gas temperature T2 is greater than Tc1, and when Lp<Po, T2≧
At Tc3, the compressor 1 is stopped to prevent seizure or the like due to overheating of the compressor 1.

そして、冷凍装置の室内ユニツトBの移設ある
いは交換等の必要が生じ、冷媒回収を行う必要が
生じたときには、第4図のフローチヤートに示す
手順でポンプダウン運転が行われる。
When it becomes necessary to relocate or replace the indoor unit B of the refrigeration system and it becomes necessary to recover the refrigerant, the pump-down operation is performed in accordance with the procedure shown in the flowchart of FIG.

第4図のフロートチヤートにおいて、ステツプ
S1でスイツチSW1が閉じられてポンプダウン指
令が出されると、手動により液側の閉鎖弁10a
等が閉じられてポンプダウン運転を開始する。そ
して、ステツプS2で圧縮機1の吸入ガス圧力LP
が所定値Poより小さいか否かを判定し、LP<Po
であるYESとなるとステツプS3に移行して、圧
力スイツチLPSをオンに切換える。このとき、同
時にステツプS4で警報ブザーが鳴るので、作業
者はガス側の閉鎖弁10bあるいは圧縮機1の吸
入側閉鎖弁等を順次閉じて冷媒回収操作を完了さ
せて行くことができる。そして、ステツプS5で
設定時間to(30秒程度)経過したか否かが判定さ
れ、タイマ13が作動後設定時間to秒経過した
YESになるとブザーBZが警報音を停止するとと
もに停止信号を出力してステツプS6に進み圧縮
機1を停止させてポンプダウン操作を終了する。
In the float chart of Figure 4, the steps
When the switch SW1 is closed in S1 and a pump down command is issued, the shutoff valve 10a on the liquid side is manually operated.
etc. are closed and pump down operation begins. Then, in step S2, the suction gas pressure LP of compressor 1 is
is smaller than a predetermined value Po, and determines whether LP<Po
When the result is YES, the process moves to step S3 and the pressure switch LPS is turned on. At this time, an alarm buzzer sounds at the same time in step S4, so that the operator can complete the refrigerant recovery operation by successively closing the gas side closing valve 10b or the suction side closing valve of the compressor 1, etc. Then, in step S5, it is determined whether or not the set time to (approximately 30 seconds) has elapsed, and the timer 13 is activated and the set time to seconds has elapsed.
If YES, the buzzer BZ stops the alarm sound and outputs a stop signal, and the process proceeds to step S6, where the compressor 1 is stopped and the pump-down operation is completed.

なお、上記実施例では、四路切換弁2は図中実
線側に切換えられており、室外熱交換器4に冷媒
を回収するようになされている。したがつて、室
外熱交換器4が冷媒貯蔵機器として機能するが、
レシーバを設け、レシーバに冷媒を回収するよう
にしてもよい。
In the above embodiment, the four-way switching valve 2 is switched to the solid line side in the figure, so that the refrigerant is recovered to the outdoor heat exchanger 4. Therefore, although the outdoor heat exchanger 4 functions as a refrigerant storage device,
A receiver may be provided and the refrigerant may be collected in the receiver.

上記実施例では、ポンプダウン運転を行うとき
に吸入ガス圧力が所定値Poになる時と、その時
点からの時間の経過とによつて圧縮機1の過熱危
険状態を検知している。すなわち、ポンプダウン
開始後の時間の推移に対する吸入ガス圧力、吐出
管温度および吐出ポート温度の変化特性はその例
を第5図に示すように、機種および冷媒の種類に
よつて一定の特性曲線を有している。第5図にお
いて、TM1は液側閉鎖弁10aを閉じてから吸
入ガス圧力がPoより低くなつた時を、TM2は
TM1からto秒経過した時をそれぞれ示してい
る。第5図において、TM1は、ポンプダウン運
転開始前に室内ユニツトBに存在する冷媒量など
の条件により差が生ずるために一定とは限らない
が、TM1からTM2までの時間toはほぼ一定で
あつて、吸入ガス圧力LPがPoに達するとto秒後
には吐出ポート温度が過熱危険温度に達すること
が実験的にも確認されている。したがつて、LP
<Poになつてからto秒後に圧縮機1を停止させ
ることにより圧縮機1の過熱上昇による焼付事故
を有効に防止することができる。また、to秒は、
ガス側閉鎖弁10bを閉じる等冷媒回収の最終操
作を行うのに十分な時間で定められており、TM
1時に警報を発することにより、作業者が圧縮機
1の停止に合わせて、ガス側の手動閉鎖弁10b
を閉じることができる。
In the embodiment described above, the danger of overheating of the compressor 1 is detected based on when the suction gas pressure reaches a predetermined value Po during pump-down operation and the passage of time from that point on. In other words, the change characteristics of the suction gas pressure, discharge pipe temperature, and discharge port temperature with respect to time changes after the start of pump down have a constant characteristic curve depending on the model and the type of refrigerant, as shown in Figure 5. have. In Fig. 5, TM1 indicates the time when the suction gas pressure becomes lower than Po after closing the liquid side closing valve 10a, and TM2 indicates the time when the suction gas pressure becomes lower than Po.
Each shows the time when to seconds have passed since TM1. In Fig. 5, TM1 is not necessarily constant because it varies depending on conditions such as the amount of refrigerant present in indoor unit B before pump-down operation starts, but the time to from TM1 to TM2 is almost constant. It has been experimentally confirmed that when the suction gas pressure LP reaches Po, the discharge port temperature reaches the dangerous overheating temperature in to seconds. Therefore, LP
By stopping the compressor 1 to seconds after reaching <Po, it is possible to effectively prevent a seizure accident due to an increase in overheating of the compressor 1. Also, to seconds is
TM
By issuing an alarm at 1:00 o'clock, the operator can shut down the gas-side manual shut-off valve 10b when the compressor 1 is stopped.
can be closed.

すなわち、警報出力と同時に(つまり、従来の
もののように、吸入圧力の低下と同時に)圧縮機
1を停止させると、圧縮機1の停止に伴う高圧側
圧力の低下によつて、ガス側の手動閉鎖弁10b
を閉じるまでの間に冷媒貯蔵機器である室外熱交
換器4側から冷媒が逆流し、その分冷媒の回収量
が少くなることになるが、警報出力後に圧縮機1
の停止に合わせてガス側の手動閉鎖弁10bを閉
じることにより、圧縮機1停止後における冷媒の
逆流をほとんど無くすことができ。冷媒の回収率
が極めて向上するのである。
In other words, if the compressor 1 is stopped at the same time as the alarm is output (that is, at the same time as the suction pressure decreases as in the conventional system), the gas side manual Closing valve 10b
Until the compressor 1 is closed, the refrigerant will flow back from the outdoor heat exchanger 4 side, which is a refrigerant storage device, and the amount of refrigerant recovered will decrease accordingly.
By closing the manual shutoff valve 10b on the gas side when the compressor 1 is stopped, backflow of refrigerant after the compressor 1 is stopped can be almost eliminated. This greatly improves the refrigerant recovery rate.

尚、警報出力手段は上記実施例に限定されるも
のではなく、表示ランプ等何らの警報を作業者に
与えるものであればよい。
Note that the warning output means is not limited to the above embodiments, and may be any device that provides any warning to the operator, such as an indicator lamp.

(発明の効果) 以上説明したように、本発明では、冷凍装置の
ポンプダウン運転時、作業者により液側の手動閉
鎖弁が閉じられてからの吸入ガス圧力の低下を検
出し、吸入ガス圧力が所定値以下に低下すると警
報を発するとともに、警報の出力後、圧縮機内部
の過熱時期に対応する一定時間が経過したときに
圧縮機を停止させるようにしたので、圧縮機が冷
媒の過少によつて過熱し焼付事故を生ずるのを有
効に防止しつつ、冷媒回収率の向上を図ることが
できる。
(Effects of the Invention) As explained above, in the present invention, during pump-down operation of a refrigeration system, a decrease in suction gas pressure after the operator closes the liquid side manual shutoff valve is detected, and the suction gas pressure is When the amount of refrigerant falls below a predetermined value, an alarm is issued, and the compressor is stopped when a certain period of time corresponding to the overheating period inside the compressor has elapsed after the alarm is output, so the compressor does not have too much refrigerant. Therefore, it is possible to effectively prevent overheating and seizure accidents while improving the refrigerant recovery rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロツク図であ
る。第2図〜第5図は本発明の実施例を示し、第
2図はその冷媒系統図、第3図はコントロールユ
ニツトのプリント基板の結線図、第4図はポンプ
ダウン運転の手順を示すフローチヤート図、第5
図はポンプダウン開始後の時間に対する冷媒の状
態量変化を示す特性図である。 1……圧縮機、4……室外熱交換器(冷媒貯蔵
器)、10a……液側閉鎖弁、10b……ガス側
閉鎖弁、12……マイコン(運転制御手段)、1
3……タイマ(計時手段)、LPS……圧力スイツ
チ(吸入ガス圧力検出手段)、BZ……ブザー(警
報出力手段)。
FIG. 1 is a block diagram showing the configuration of the present invention. Figures 2 to 5 show an embodiment of the present invention, with Figure 2 being a refrigerant system diagram, Figure 3 being a wiring diagram for the control unit's printed circuit board, and Figure 4 being a flowchart showing the pump-down operation procedure. Chart diagram, 5th
The figure is a characteristic diagram showing changes in the state quantity of the refrigerant with respect to time after the start of pump down. 1...Compressor, 4...Outdoor heat exchanger (refrigerant storage), 10a...Liquid side closing valve, 10b...Gas side closing valve, 12...Microcomputer (operation control means), 1
3...Timer (timekeeping means), LPS...pressure switch (suction gas pressure detection means), BZ...buzzer (alarm output means).

Claims (1)

【特許請求の範囲】[Claims] 1 冷媒回路に冷媒貯蔵機器4、液側の手動閉鎖
弁10aおよびガス側の手動閉鎖弁10bを配置
した冷凍装置において、上記液側の手動閉鎖弁1
0aが閉じられた後、圧縮機1への吸入ガス冷媒
の圧力を検出する吸入ガス圧力検出手段LPSと、
該吸入ガス圧力検出手段LPSの信号を受け、吸入
ガス圧力が所定値以下になると、作業者にガス側
の手動閉鎖弁10bを閉じるべき警報を出力する
警報出力手段BZと、該警報出力手段BZによる警
報出力時からの圧縮機1の過熱時期に対応する一
定時間を計測する計時手段13と、該計時手段1
3の出力を受けたとき、圧縮機1の運転を停止さ
せる運転制御手段12とを備えたことを特徴とす
る冷凍装置のポンプダウン運転制御装置。
1 In a refrigeration system in which a refrigerant storage device 4, a liquid-side manual shut-off valve 10a, and a gas-side manual shut-off valve 10b are arranged in a refrigerant circuit, the liquid-side manual shut-off valve 1
0a is closed, suction gas pressure detection means LPS detects the pressure of the suction gas refrigerant to the compressor 1;
Alarm output means BZ that receives a signal from the suction gas pressure detection means LPS and outputs a warning to the operator to close the manual shutoff valve 10b on the gas side when the suction gas pressure falls below a predetermined value; and the alarm output means BZ. a time measuring means 13 for measuring a certain period of time corresponding to the overheating period of the compressor 1 from the time when an alarm is output by the time measuring means 1;
3. A pump-down operation control device for a refrigeration system, comprising an operation control means 12 that stops the operation of the compressor 1 when the output of the compressor 1 is received.
JP21905886A 1986-09-17 1986-09-17 Pump-down operation controller for refrigerator Granted JPS6375445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21905886A JPS6375445A (en) 1986-09-17 1986-09-17 Pump-down operation controller for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21905886A JPS6375445A (en) 1986-09-17 1986-09-17 Pump-down operation controller for refrigerator

Publications (2)

Publication Number Publication Date
JPS6375445A JPS6375445A (en) 1988-04-05
JPH052905B2 true JPH052905B2 (en) 1993-01-13

Family

ID=16729607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21905886A Granted JPS6375445A (en) 1986-09-17 1986-09-17 Pump-down operation controller for refrigerator

Country Status (1)

Country Link
JP (1) JPS6375445A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3538936B2 (en) * 1995-01-31 2004-06-14 ダイキン工業株式会社 Refrigerant refrigerant recovery method
JP2008157512A (en) * 2006-12-22 2008-07-10 Matsushita Electric Ind Co Ltd Air conditioner
JP4926098B2 (en) * 2008-03-14 2012-05-09 三菱電機株式会社 Refrigeration equipment
JP6407522B2 (en) * 2013-12-02 2018-10-17 三菱重工サーマルシステムズ株式会社 Air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737004U (en) * 1980-08-12 1982-02-26

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155454U (en) * 1974-10-28 1976-04-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737004U (en) * 1980-08-12 1982-02-26

Also Published As

Publication number Publication date
JPS6375445A (en) 1988-04-05

Similar Documents

Publication Publication Date Title
CN105004116B (en) The coolant injection control method of air-conditioner outdoor unit, air-conditioning
KR870002423A (en) Air conditioner
JPH09178306A (en) Refrigerating cycle unit
JP2020183858A (en) Heat pump system for electric vehicle and control method for the same
JPH04240355A (en) Controlling method for electronic expansion valve of air conditioner
JPH052905B2 (en)
JP3856529B2 (en) Air conditioner
JPH11132575A (en) Air conditioner
JP2002039598A (en) Air conditioner
JPH053865U (en) Air conditioner
JPH0694954B2 (en) Refrigerator superheat control device
JP3060980B2 (en) Heat pump water heater
JPH0349016B2 (en)
JP2757900B2 (en) Air conditioner
JPH0755236A (en) Air conditioner
JPH04288438A (en) Air conditioner
JPH0527019B2 (en)
JPH1194406A (en) Air conditioner
JP3337264B2 (en) Air conditioner defroster
JPS63290355A (en) Method of controlling refrigerant for heat pump type air conditioner
JPH02208437A (en) Air conditioner
JPH078973Y2 (en) Air conditioner
JPH08128763A (en) Operation controller for air conditioner
JPH0120604Y2 (en)
JPS63201470A (en) Refrigerator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term