JPH05290416A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH05290416A
JPH05290416A JP11302992A JP11302992A JPH05290416A JP H05290416 A JPH05290416 A JP H05290416A JP 11302992 A JP11302992 A JP 11302992A JP 11302992 A JP11302992 A JP 11302992A JP H05290416 A JPH05290416 A JP H05290416A
Authority
JP
Japan
Prior art keywords
layer
recording
intermediate layer
auxiliary
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11302992A
Other languages
Japanese (ja)
Inventor
Yoshiko Kurosawa
美子 黒沢
Atsuyuki Watada
篤行 和多田
Toshiaki Tokita
才明 鴇田
Motoharu Tanaka
元治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP11302992A priority Critical patent/JPH05290416A/en
Publication of JPH05290416A publication Critical patent/JPH05290416A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the sure execution of overwriting without increasing the influence on an intermediate layer by external magnetic fields at the time of recording even if the film thickness of the intermediate layer is increased and the magnetic field for initialization is decreased in an overwriting system by a change in light intensity using multilayered films. CONSTITUTION:This recording medium has the magnetic films constituted of three layers; a recording layer 1, the intermediate layer 2 and an auxiliary layer 3 from the incident direction of a laser beam. All of the recording layer 1, the intermediate layer 2 and the auxiliary layer 3 consist of amorphous alloy films of rare earth metals and transition metals. The recording layer 1 and the intermediate layer 2 as well as the intermediate layer 2 and the auxiliary layer 3 are respectively exchange bonded. At least the recording layer 1 and the auxiliary layer 3 are perpendicularly magnetized films. Further, the recording layer 1, the intermediate layer 2 and the auxiliary layer 3 satisfy the following conditions: Tcomp2 Tc1, Ku2<Ku1, Ku2<Ku3, Hc3<Hc1 at room temp., where Ku1, Ku2, Ku3 are respectively the perpendicular magnetic anisotropy constants of the recording layer, the intermediate layer and the auxiliary layer 3; Tc1 is the Curie temp. of the recording layer; Tcomp2 is the compensation temp. of the intermediate layer; Hc1, Hc3 are the coercive forces of the recording layer and the auxiliary layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はダイレクトオーバーライ
ト可能な光磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct overwritable magneto-optical recording medium.

【0002】[0002]

【従来の技術】近年、光磁気記録は従来の磁気記録に比
べて大容量であり、しかも情報の書き換えが可能である
ことから活発な開発がなされており、一部では既に市販
されてもいる。しかしながら現在市販されている光磁気
記録装置の多くは、情報を書き換える際に元の情報を予
め消去しその後に新しい情報を書く、という行程を踏む
必要があるため消去操作に時間がかかり時間的なロスと
なっている。またオーバーライトを可能とする光磁気記
録方法も種々提案されているが問題点が多い。
2. Description of the Related Art In recent years, magneto-optical recording has been actively developed because it has a larger capacity than conventional magnetic recording and can rewrite information, and some have already been commercially available. .. However, many of the magneto-optical recording devices currently on the market require a step of erasing the original information in advance and then writing new information when rewriting the information, so the erasing operation is time-consuming and time-consuming. It's a loss. Various magneto-optical recording methods that allow overwriting have been proposed, but there are many problems.

【0003】ここで従来の光磁気記録方法としては以下
のものが知られている。 一般的光変調方式(例えば応用磁気学会誌Vol.8、No.
5(1984)等)。 固定磁石による磁界変調方式(電気学会マグネティッ
クス研究会資料MAG-86-95(1986)等)。 浮上ヘッドによる磁界変調方式(電気学会マグネティ
ックス研究会資料MAG-87-178(1987)、特開昭63-204532
号公報、特開昭63-217548号公報等)。 共振回路を持つ磁気ヘッド及びパルス状レーザを使用
したオーバーライト方式(IEEE Trans. Magn.24,P.666(1
988)、特開昭63−37842号公報)。 2層膜を使用した光強度変化によるオーバーライト方
式(H. Iida et. al.:J.J. of Appl. Phys., Vol.28(19
89),P367、Y. Mutoh et. al.:第14回応用磁気学会学術
講演概要集(1990)376)。 2層膜を使用した光強度変化によるオーバーライト方
式であって、膜厚方向の温度分布に変化を与える事でオ
ーバーライトを行い、磁界による初期化行程を不要とし
た方式(T. Fukami et. al.:J.J. of Appl. Phys., Vol.
28(1989),P.371〜374)。
The following are known conventional magneto-optical recording methods. General optical modulation method (for example, Journal of Applied Magnetics Vol.8, No.
5 (1984) etc.). Magnetic field modulation method using a fixed magnet (Materials MAG-86-95 (1986) etc. of the Institute of Electrical Engineers of Japan, Magnetics Research Group). Magnetic field modulation method by flying head (Materials MAG-87-178 (1987) of the Institute of Electrical Engineers of Japan Magnetic Research Group, JP-A-63-204532)
JP-A-63-217548, etc.). Overwrite method using a magnetic head with a resonant circuit and a pulsed laser (IEEE Trans.Magn.24, P.666 (1
988), JP-A-63-37842). Overwrite method by changing the light intensity using a two-layer film (H. Iida et. Al .: JJ of Appl. Phys., Vol.28 (19
89), P367, Y. Mutoh et. Al .: Proceedings of the 14th Japan Society for Applied Magnetics (1990) 376). This is an overwrite method that uses a two-layer film to change the light intensity, and overwrites by changing the temperature distribution in the film thickness direction, eliminating the need for a magnetic field initialization process (T. Fukami et. al.:JJ of Appl. Phys., Vol.
28 (1989), P.371-374).

【0004】[0004]

【発明が解決しようとする課題】上記従来の光磁気記録
方法のうちの光変調方式は一般にオーバーライトがで
きないために消去動作を必要とし、書き換えに時間がか
かるという欠点がある。従ってハードディスクの代替な
どの使用は不可能である。
Among the above-mentioned conventional magneto-optical recording methods, the optical modulation method generally has a drawback that an erasing operation is required because overwriting cannot be performed and rewriting takes a long time. Therefore, it is impossible to use the hard disk as a substitute.

【0005】またの固定磁石による磁界変調方式で
は、磁石にある程度の大きさのものが必要となり消費電
力が大きくなる。また高速化が非常に困難で1MHz程
度のデジタル記録が限界と思われる。
Further, in the magnetic field modulation method using a fixed magnet, the magnet needs to have a certain size, resulting in a large power consumption. Further, it is very difficult to increase the speed, and it seems that digital recording of about 1 MHz is the limit.

【0006】またの浮上磁気ヘッドによる磁界変調方
式では磁気ヘッドを媒体にほぼ接触させる形となり、光
ディスクの非接触というメリットがなくなる。また単板
にする必要があり、記憶容量、基板のそり及び磁性膜の
保護の点で問題がある。
Further, in the magnetic field modulation method using the floating magnetic head, the magnetic head is brought into contact with the medium almost, and the merit of non-contact of the optical disk is lost. Moreover, it is necessary to use a single plate, and there are problems in terms of storage capacity, substrate warpage, and protection of the magnetic film.

【0007】またの共振回路を持つ磁気ヘッド及びパ
ルス状レーザを使用する方式では、上記の方式よりは
よいが同じ課題を持つ。
The method using the magnetic head having the resonance circuit and the pulsed laser has the same problem as the above method, although it is better than the above method.

【0008】またの2層膜を使用した光強度変化によ
るオーバーライト方式では、大きな初期化磁界が必要で
あり、そのための磁石がかなり大きく装置の大型化とい
うことが問題であった。この問題を解決するために2層
間の間にFeCo等の面内磁化膜からなる中間層を挾
み、その膜厚を厚くすることによって界面磁壁エネルギ
ーを下げ初期化磁界を小さくする試みがなされている
が、一方で中間層の飽和磁化が大きいため記録時に中間
層が外部磁界の影響を受けオーバーライトの確実性が下
がる、といった問題がある。
Further, in the overwrite method using the change in light intensity using the two-layer film, a large initializing magnetic field is required, and there is a problem that the magnet for that is considerably large and the apparatus is large. In order to solve this problem, an attempt has been made to lower the interfacial domain wall energy and lower the initializing magnetic field by sandwiching an intermediate layer made of an in-plane magnetized film such as FeCo between the two layers and increasing the film thickness. However, since the saturation magnetization of the intermediate layer is large, there is a problem in that the intermediate layer is affected by an external magnetic field during recording and reliability of overwriting is lowered.

【0009】本発明はこのような従来技術の実情に鑑み
てなされたもので、上記の方式において中間層膜厚を
厚くして初期化磁界を小さくしても、記録時の外部磁界
による中間層への影響が大きくならないで確実にオーバ
ーライトが行える光磁気記録媒体を提供することを目的
とする。
The present invention has been made in view of the above-mentioned circumstances of the prior art. Even when the initializing magnetic field is reduced by increasing the thickness of the intermediate layer in the above method, the intermediate layer due to the external magnetic field during recording is used. SUMMARY OF THE INVENTION An object of the present invention is to provide a magneto-optical recording medium that can surely perform overwriting without increasing the influence on the recording medium.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明によれば、レーザ光の入射方向より少なくと
も記録層、中間層及び補助層の3層から構成される磁性
膜を有し、記録層、中間層及び補助層はいずれも希土類
金属−遷移金属非晶質合金膜からなり、かつ、記録層と
中間層、中間層と補助層はそれぞれ交換結合しており、
少なくとも記録層及び補助層は垂直磁化膜であり、さら
に記録層、中間層及び補助層が下記の条件を満足してい
ることを特徴とする光磁気記録媒体が提供される。 Tcomp2≒Tc1 Ku2<Ku1 Ku2<Ku3 室温においてHc3<Hc1 (但し、Ku1,Ku2,Ku3はそれぞれ記録層、中間層及
び補助層の垂直磁気異方性定数、Tc1は記録層のキュリ
ー温度、Tcomp2は中間層の補償温度、Hc1,Hc3は記
録層及び補助層の保磁力である)
[Means for Solving the Problems]
Therefore, according to the present invention, the number of laser beams should be less than the incident direction of laser light.
Is composed of three layers, a recording layer, an intermediate layer and an auxiliary layer.
It has a film, and the recording layer, intermediate layer and auxiliary layer are all rare earth
A metal-transition metal amorphous alloy film, and a recording layer
The intermediate layer, the intermediate layer and the auxiliary layer are exchange-coupled,
At least the recording layer and the auxiliary layer are perpendicular magnetic films, and
The recording layer, intermediate layer and auxiliary layer meet the following conditions.
A magneto-optical recording medium is provided. Tcomp2≒ Tc1 Ku2<Ku1 Ku2<Ku3  Hc at room temperature3<Hc1 (However, Ku1, Ku2, Ku3Are the recording layer, intermediate layer and
And auxiliary magnetic layer perpendicular magnetic anisotropy constant, Tc1Is the recording layer curly
-Temperature, Tcomp2Is the compensation temperature of the intermediate layer, Hc1, Hc3Is
(Coercive force of recording layer and auxiliary layer)

【0011】図1は本発明に係る光磁気記録媒体の磁性
層の層構成例を模式的に示す断面図であり、記録層1、
中間層2及び補助層3を積層した3層構造で、記録再生
用レーザ光は記録層1側から入射するようになってい
る。記録層1は、少なくとも2値のレベルでレーザパワ
ーを変化させることによって与えられた信号を、初期化
磁界によって消去されることなく記憶する。補助層3
は、少なくとも2値のレベルでレーザパワーを変化させ
ることによって与えられた信号を中間層2を介して記録
層1へ転写し、その後初期化磁界によって磁気モーメン
トが一方向に揃えられ次のオーバーライトに備える。中
間層2は磁壁エネルギーを下げ、初期化磁界を小さくす
る役割を行う。これらの層のうち少なくとも記録層1と
補助層3は垂直磁化膜であり、記録層1と中間層2、中
間層2と補助層3はそれぞれ交換結合している。記録層
1、中間層2及び補助層3はいずれも希土類金属−遷移
金属非晶質合金膜からなり、記録層1、補助層3として
特に好ましいものとしては、TbDyFeCo、TbG
dFeCo等が挙げられる。中間層2は必ずしも垂直磁
化膜である必要はないが、希土類金属としてGd,N
d,Dy等と、遷移金属としてFe,Co等とを組合せ
たもの、例えばGdCo,GdFe等が好ましく使用さ
れる。また記録層1、中間層2及び補助層3は下記の条
件を満足する必要がある。なお、以下においてKu は垂
直磁気異方性定数、Tc はキュリー温度、Ms は飽和磁
化、Hc は保磁力を表わし、添字の1は記録層、2は中
間層、3は補助層を表わす。 (a)Tcomp2≒Tc1 (b)Ku2<Ku1 (c)Ku2<Ku3 (d)室温においてHc3<Hc1 Tcomp2はほぼTc1と等しい値であり、温度がTc1のと
きMs2が200(emu/cc)を越えない値であれば、Tc1
との差があってもかまわない。Tc1付近においてMs2
200(emu/cc)以上であると、中間層2の磁化が外部
磁界の影響を受け、補助層3から記録層1への信号転写
の妨げになる。Ku2がKu1以上であると、界面磁壁が記
録層1へ移動する可能性があり、信号の記憶に不安定性
を招く。Ku2がKu3以上であると、界面磁壁が補助層3
へ移動する可能性があり、次回の信号の記録に不安定性
を招く。室温においてHc3がHc1以上であると初期化磁
界Hi(Hc3<Hi<Hc1)が設定できなくなる。図2
に記録層1、中間層2及び補助層3の磁気温度特性の一
例を示す。なお、膜厚は記録層1及び補助層3が30n
m〜500nm、中間層2が100nm以下であるのが
好ましい。
FIG. 1 is a sectional view schematically showing an example of the layer structure of a magnetic layer of a magneto-optical recording medium according to the present invention.
It has a three-layer structure in which the intermediate layer 2 and the auxiliary layer 3 are laminated, and the recording / reproducing laser beam is incident from the recording layer 1 side. The recording layer 1 stores a signal given by changing the laser power at at least a binary level without being erased by the initializing magnetic field. Auxiliary layer 3
Is to transfer a signal given by changing the laser power at least at a binary level to the recording layer 1 through the intermediate layer 2 and then the magnetic moment is aligned in one direction by the initialization magnetic field and the next overwrite is performed. Prepare for The intermediate layer 2 lowers the domain wall energy and reduces the initializing magnetic field. Of these layers, at least the recording layer 1 and the auxiliary layer 3 are perpendicular magnetization films, and the recording layer 1 and the intermediate layer 2, and the intermediate layer 2 and the auxiliary layer 3 are exchange-coupled, respectively. The recording layer 1, the intermediate layer 2 and the auxiliary layer 3 are all made of a rare earth metal-transition metal amorphous alloy film, and particularly preferable as the recording layer 1 and the auxiliary layer 3 are TbDyFeCo and TbG.
Examples thereof include dFeCo. The intermediate layer 2 does not necessarily have to be a perpendicularly magnetized film, but rare earth metals such as Gd, N
A combination of d, Dy, etc. and Fe, Co, etc. as a transition metal, such as GdCo, GdFe, etc. is preferably used. The recording layer 1, the intermediate layer 2 and the auxiliary layer 3 must satisfy the following conditions. In the following, Ku is the perpendicular magnetic anisotropy constant, Tc is the Curie temperature, Ms is the saturation magnetization, Hc is the coercive force, and the subscript 1 is the recording layer, 2 is the intermediate layer, and 3 is the auxiliary layer. (a) Tcomp 2 ≒ Tc 1 (b) Ku 2 <Ku 1 (c) Ku 2 <Ku 3 (d) Hc 3 at room temperature <Hc 1 Tcomp 2 is substantially Tc 1 and equal, the temperature Tc 1 If Ms 2 does not exceed 200 (emu / cc), then Tc 1
It doesn't matter if there is a difference. If Ms 2 is 200 (emu / cc) or more near Tc 1 , the magnetization of the intermediate layer 2 is affected by the external magnetic field, which hinders signal transfer from the auxiliary layer 3 to the recording layer 1. If Ku 2 is Ku 1 or more, the interface domain wall may move to the recording layer 1, which causes instability in signal storage. When Ku 2 is Ku 3 or more, the interfacial domain wall is the auxiliary layer 3
May result in instability in the next signal recording. If Hc 3 is higher than Hc 1 at room temperature, the initialization magnetic field Hi (Hc 3 <Hi <Hc 1 ) cannot be set. Figure 2
An example of the magnetic temperature characteristics of the recording layer 1, the intermediate layer 2 and the auxiliary layer 3 is shown in FIG. The thickness of the recording layer 1 and the auxiliary layer 3 was 30 n.
It is preferable that m-500 nm and the thickness of the intermediate layer 2 are 100 nm or less.

【0012】上記磁性膜は基板上に設けられるが、基板
材料としてはガラス、紫外線硬化型樹脂によりガイドト
ラックを形成したガラス、ポリカーボネート、ポリメチ
ルメタクリレート、エポキシ樹脂等が好ましい。
The above-mentioned magnetic film is provided on the substrate, and the substrate material is preferably glass, glass having guide tracks formed of an ultraviolet curable resin, polycarbonate, polymethylmethacrylate, epoxy resin or the like.

【0013】上記では媒体構成として最も基本的なもの
を示したが、必要に応じて保護層、反射層、ガイドトラ
ック層、誘電体層、第4磁性層等を設けてもよい。また
2枚の媒体を貼り合わせて両面記録タイプの媒体として
もよい。
Although the most basic medium structure has been shown above, a protective layer, a reflective layer, a guide track layer, a dielectric layer, a fourth magnetic layer and the like may be provided if necessary. Also, two media may be stuck together to form a double-sided recording type medium.

【0014】次に上記構成の光磁気記録媒体を用いた光
磁気記録方法について説明する。本方法では、予め上記
光磁気記録媒体に初期磁界Hi (Hc3<Hi <Hc1、中
間層2を入れることによって界面磁壁エネルギーを下
げ、初期化磁界を1(kOe)程度に小さくできる。)
を印加して補助層3の磁化方向を揃えておく。記録時に
はHi とは逆方向に外部磁界Hb を印加する。そして図
3に示すように、記録信号に対応させて記録レーザパワ
ーを最低2値のレベルで変化させる。2値のレベルで変
化させる場合、低レベルPl の値としては記録層1の温
度をそのキュリー温度Tc1(≒Tcomp2)付近の温度Tl
まで昇温させる値を用い、高レベルPhの値としては補
助層3の温度をほぼそのキュリー温度Tc3以上、且つ中
間層2の温度をほぼそのキュリー温度Tc2以上の温度T
h まで昇温させるような値を用いる。低レベルPl のレ
ーザ照射では記録層1の温度はそのキュリー温度Tc1
近であるから、記録層1の磁気モーメントは外部磁界H
b と同方向を向き、冷却される。高レベルPh のレーザ
照射では磁性層全体の温度はTc3以上、且つTc2以上に
なり、補助層3の磁気モーメントは外部磁界Hb と同方
向を向き、冷却過程で記録層1の遷移金属の副格子磁気
モーメントもそれに揃う。その際Tc3≒Tcomp2である
ので、中間層2の磁化の影響を受けずにすむ。
Next, a magneto-optical recording method using the magneto-optical recording medium having the above structure will be described. In this method, the initial magnetic field Hi (Hc 3 <Hi <Hc 1 , the intermediate layer 2 is inserted in the magneto-optical recording medium in advance to lower the interfacial domain wall energy, and the initializing magnetic field can be reduced to about 1 (kOe).)
Is applied to align the magnetization direction of the auxiliary layer 3. During recording, an external magnetic field Hb is applied in the direction opposite to Hi. Then, as shown in FIG. 3, the recording laser power is changed at a minimum binary level in accordance with the recording signal. When changing at two levels, the temperature of the recording layer 1 is set to the temperature Tl near the Curie temperature Tc 1 (≈Tcomp 2 ) as the value of the low level Pl.
As a value of the high level Ph, the temperature of the auxiliary layer 3 is substantially the Curie temperature Tc 3 or higher, and the temperature of the intermediate layer 2 is a temperature T that is substantially the Curie temperature Tc 2 or higher.
Use a value that raises the temperature to h. Since the temperature of the recording layer 1 is in the vicinity of the Curie temperature Tc 1 of the laser irradiation of the low level Pl, the magnetic moment of the recording layer 1 is the external magnetic field H.
It is cooled in the same direction as b. At high level Ph laser irradiation, the temperature of the entire magnetic layer becomes Tc 3 or higher and Tc 2 or higher, the magnetic moment of the auxiliary layer 3 is directed in the same direction as the external magnetic field Hb, and the transition metal of the transition layer of the recording layer 1 is cooled in the cooling process. The sublattice magnetic moment is also aligned with it. At that time, since Tc 3 ≈Tcomp 2, it is not necessary to be influenced by the magnetization of the intermediate layer 2.

【0015】[0015]

【実施例】以下本発明の実施例を述べる。 (実施例)図4に示すようにガラス基板4上に保護層5
としてSiN膜、記録層1としてTbDyFeCo膜
(遷移金属リッチ、膜厚80nm)、中間層2としてG
dFeCo膜(膜厚30nm)、補助層3としてTbF
eCo膜(希土類金属リッチ、膜厚200nm)、保護
層6としてSiN膜を順次積層した光磁気記録媒体を作
製した。この記録媒体の磁気温度特性を図5に示す。図
5からわかるようにTcomp2=Tc1、室温においてHc3
<Hc1である。またKu2<Ku1、Ku2<Ku3である。
EXAMPLES Examples of the present invention will be described below. (Example) As shown in FIG. 4, a protective layer 5 was formed on a glass substrate 4.
As the SiN film, the recording layer 1 as a TbDyFeCo film (transition metal rich, film thickness 80 nm), and the intermediate layer 2 as G
dFeCo film (thickness 30 nm), TbF as auxiliary layer 3
A magneto-optical recording medium was produced in which an eCo film (rare earth metal rich, film thickness 200 nm) and a SiN film as a protective layer 6 were sequentially stacked. The magnetic temperature characteristic of this recording medium is shown in FIG. As can be seen from FIG. 5, Tcomp 2 = Tc 1 , Hc 3 at room temperature
<Hc 1 . Further, Ku 2 <Ku 1 and Ku 2 <Ku 3 .

【0016】この記録媒体に対し、書き込み、消去実験
を行ったところ、以下の条件で確実にオーバーライトを
行うことができた。 初期化磁界Hi :1kOe 外部磁界Hb :200Oe 高レーザパワー:9mW 低レーザパワー:4mW
When writing and erasing experiments were conducted on this recording medium, overwriting could be reliably performed under the following conditions. Initializing magnetic field Hi: 1 kOe External magnetic field Hb: 200 Oe High laser power: 9 mW Low laser power: 4 mW

【0017】(比較例)構成は図4に示すものと同じで
あるが、磁性層(記録層、中間層及び補助層)の磁気温
度特性が図6に示すようなものである光磁気記録媒体を
作製した。図6からわかるようにTcomp2<Tc1、室温
においてHc3<Hc1である。またKu2<Ku1、Ku2<K
u3である。この記録媒体に対し書き込み、消去実験を行
ったところ、確実なオーバーライトは行えなかった。
(Comparative Example) The structure is the same as that shown in FIG. 4, but the magneto-optical recording medium has the magnetic temperature characteristics of the magnetic layers (recording layer, intermediate layer and auxiliary layer) as shown in FIG. Was produced. As can be seen from FIG. 6, Tcomp 2 <Tc 1 and Hc 3 <Hc 1 at room temperature. Also, Ku 2 <Ku 1 , Ku 2 <K
u 3 . When writing and erasing experiments were performed on this recording medium, reliable overwrite could not be performed.

【0018】[0018]

【発明の効果】本発明によれば、前記のごとく光磁気記
録媒体を構成したので、以下のような効果が得られる。 (1) 磁界を変化させる必要がなく、高速記録が可能であ
る。 (2) 非接触であり、信頼性が高い。 (3) 室温で補助層の保磁力が記録層の保磁力より小さ
く、また中間層の作用により界面磁壁エネルギーを小さ
くすることによって初期化磁界の大きさを小さくするこ
とができ、装置の小型化に有利である。 (4) 記録層のキュリー温度付近に中間層の補償温度を設
け、中間層の飽和磁化を小さくとることによって、記録
時に中間層に対する外部磁界からの影響を避けることが
でき、オーバーライトが確実に行えるようになる。 (5) 初期化を必要としない交換結合多層膜のオーバーラ
イト方式 (J.J. ofAppl. Phys., Vol.28 (1989) p.371)
においては記録時の外部磁界が非常に大きいのでFeC
oのような飽和磁化の大きな中間層を持ったものは使え
なかったが、本発明の記録媒体はこの方式にも適用可能
であり、優れた効果を示す。
According to the present invention, since the magneto-optical recording medium is constructed as described above, the following effects can be obtained. (1) High-speed recording is possible without changing the magnetic field. (2) Non-contact and highly reliable. (3) At room temperature, the coercive force of the auxiliary layer is smaller than that of the recording layer, and the size of the initializing magnetic field can be reduced by reducing the interfacial domain wall energy by the action of the intermediate layer. Is advantageous to. (4) By setting the compensation temperature of the intermediate layer near the Curie temperature of the recording layer and making the saturation magnetization of the intermediate layer small, the influence of the external magnetic field on the intermediate layer during recording can be avoided and overwrite can be ensured. You will be able to do it. (5) Overwrite method for exchange-coupling multilayer film that does not require initialization (JJ of Appl. Phys., Vol.28 (1989) p.371)
, The external magnetic field during recording is very large, so FeC
Although a medium having an intermediate layer with a large saturation magnetization such as o could not be used, the recording medium of the present invention can be applied to this system and exhibits an excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光磁気記録媒体の磁性膜の構成を
示す断面図である。
FIG. 1 is a sectional view showing the structure of a magnetic film of a magneto-optical recording medium according to the present invention.

【図2】上記記録媒体の磁気温度特性の一例を示す図で
ある。
FIG. 2 is a diagram showing an example of magnetic temperature characteristics of the recording medium.

【図3】レーザ照射条件の一例を示す図である。FIG. 3 is a diagram showing an example of laser irradiation conditions.

【図4】実施例の記録媒体の層構成を示す断面図であ
る。
FIG. 4 is a cross-sectional view showing the layer structure of the recording medium of the example.

【図5】実施例の記録媒体の磁気温度特性を示す図であ
る。
FIG. 5 is a diagram showing a magnetic temperature characteristic of a recording medium of an example.

【図6】比較例の記録媒体の磁気温度特性を示す図であ
る。
FIG. 6 is a diagram showing a magnetic temperature characteristic of a recording medium of a comparative example.

【符号の説明】[Explanation of symbols]

1 記録層 2 中間層 3 補助層 4 ガラス基板 5、6 保護層 1 recording layer 2 intermediate layer 3 auxiliary layer 4 glass substrate 5 and 6 protective layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 元治 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Motoharu Tanaka 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光の入射方向より少なくとも記録
層、中間層及び補助層の3層から構成される磁性膜を有
し、 記録層、中間層及び補助層はいずれも希土類金属−遷移
金属非晶質合金膜からなり、かつ、記録層と中間層、中
間層と補助層はそれぞれ交換結合しており、 少なくとも記録層及び補助層は垂直磁化膜であり、 さらに記録層、中間層及び補助層が下記の条件を満足し
ていることを特徴とする光磁気記録媒体。 Tcomp2≒Tc1 Ku2<Ku1 Ku2<Ku3 室温においてHc3<Hc1 (但し、Ku1,Ku2,Ku3はそれぞれ記録層、中間層及
び補助層の垂直磁気異方性定数、Tc1は記録層のキュリ
ー温度、Tcomp2は中間層の補償温度、Hc1,Hc3は記
録層及び補助層の保磁力である)
1. A magnetic film comprising at least three layers of a recording layer, an intermediate layer and an auxiliary layer in the direction of incidence of laser light, wherein each of the recording layer, the intermediate layer and the auxiliary layer is a rare earth metal-transition metal non-metal. It is composed of a crystalline alloy film, and the recording layer and the intermediate layer and the intermediate layer and the auxiliary layer are exchange-coupled with each other. At least the recording layer and the auxiliary layer are perpendicular magnetization films, and the recording layer, the intermediate layer, and the auxiliary layer. Satisfying the following conditions, a magneto-optical recording medium. Tcomp 2 ≈Tc 1 Ku 2 <Ku 1 Ku 2 <Ku 3 At room temperature, Hc 3 <Hc 1 (where Ku 1 , Ku 2 and Ku 3 are the perpendicular magnetic anisotropy constants of the recording layer, the intermediate layer and the auxiliary layer, respectively). , Tc 1 is the Curie temperature of the recording layer, Tcomp 2 is the compensation temperature of the intermediate layer, and Hc 1 and Hc 3 are the coercive forces of the recording layer and the auxiliary layer).
JP11302992A 1992-04-06 1992-04-06 Magneto-optical recording medium Pending JPH05290416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11302992A JPH05290416A (en) 1992-04-06 1992-04-06 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11302992A JPH05290416A (en) 1992-04-06 1992-04-06 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH05290416A true JPH05290416A (en) 1993-11-05

Family

ID=14601670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11302992A Pending JPH05290416A (en) 1992-04-06 1992-04-06 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH05290416A (en)

Similar Documents

Publication Publication Date Title
JP2910250B2 (en) Magneto-optical recording medium
US4882231A (en) Magneto-optical recording medium
US5420833A (en) Magneto-optical recording medium having first and second magnetic layers
US5283770A (en) Method of recording information on and reproducing information from magneto-optical recording medium
KR100238692B1 (en) Magneto-optical recording medium
JP3277245B2 (en) Magneto-optical recording medium and reproducing method thereof
US5502692A (en) Method and apparatus for recording, reproducing and overwriting information on or from a magnetooptic disk having three magnetic layers
US5736265A (en) Magneto-optical recording medium and recording method using the same
EP0831475B1 (en) Magneto-optic recording medium
JPH05290416A (en) Magneto-optical recording medium
JP3092363B2 (en) Magneto-optical recording medium
JPH05205330A (en) Magnetooptical recording medium
JP2942060B2 (en) Magneto-optical recording medium and method of manufacturing the same
JP3184272B2 (en) Magneto-optical recording method
JP2959646B2 (en) Magneto-optical recording medium and magneto-optical recording method
JP2893089B2 (en) Magneto-optical recording method
JP3071246B2 (en) Magneto-optical recording method
JP3000385B2 (en) Magneto-optical recording method
JP2674815B2 (en) Magneto-optical recording method
JP3184273B2 (en) Magneto-optical recording method
JPH06309710A (en) Magneto-optical recording medium
JPH05347038A (en) Medium and method for magneto-optical recording
JPH0744911A (en) Magneto-optical recording medium and recording and reproducing method
JPH0528564A (en) Magneto-optical recording medium and magneto-optical recording method
JPH11306608A (en) Magneto-optical record medium