JPH0528974B2 - - Google Patents

Info

Publication number
JPH0528974B2
JPH0528974B2 JP63093244A JP9324488A JPH0528974B2 JP H0528974 B2 JPH0528974 B2 JP H0528974B2 JP 63093244 A JP63093244 A JP 63093244A JP 9324488 A JP9324488 A JP 9324488A JP H0528974 B2 JPH0528974 B2 JP H0528974B2
Authority
JP
Japan
Prior art keywords
sheet
mold
polypropylene
thickness
vacuum forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63093244A
Other languages
Japanese (ja)
Other versions
JPH01263024A (en
Inventor
Tooru Yoshimi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP9324488A priority Critical patent/JPH01263024A/en
Publication of JPH01263024A publication Critical patent/JPH01263024A/en
Publication of JPH0528974B2 publication Critical patent/JPH0528974B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、両面に熱可塑性樹脂フイルムを接着
した発泡ポリプロピレン系樹脂シートの両面真空
成形方法に関するものである。 (従来の技術) 従来、熱可塑性発泡樹脂よりなるシートの成形
方法としては、一次発泡した発泡シートを加熱し
て二次発泡させると共に可塑状態とし、同時に雌
型、または雄型の一方を減圧にして発泡シートを
型に密着させる方法(通常、片面真空成形方法と
いう)が知られている。しかし、通常一次発泡し
た発泡シートは径時変化により二次発泡力は低下
する。また、一次発泡シートのシート製造時の条
件変化により二次発泡力にバラツキが発生する。
このため、従来の成形方法では成形品の肉厚がバ
ラツキ、引いては成形品の強度不足あるいは成形
品間の嵌合性が不良となつて良品の収得率が低下
する。殊に、発泡ポリプロピレンシートは発泡力
が弱いためにこの片面真空成形ではポリプロピレ
ン発泡シートは潰れ成形後、厚みが著しく減少す
るのである。この片面真空成形方法の問題点を解
決する方法として、例えば雌雄両金型の間に所定
の空隙を有し、金型外周部分にクランプを設け、
且つ雄型を50〜60℃に温調した雄金型を用いて加
熱可塑化された熱可塑性発泡樹脂シートを型締め
したのち、雌雄両型より真空度−500mmHg(ゲー
ジ圧)以上で真空減圧してシートを空隙内いつぱ
いに断熱膨張させて所定の形状に成形したのち冷
却し、金型内に気体を導入して常圧に戻し、次い
で型を開いて成形品を取りだすことを特徴とする
熱可塑性発泡樹脂シートの両面真空成形方法が知
られている(特公昭59−1184号参照)。そして、
この両面真空成形方法によつてポリスチレン、ス
チレン、を主体とし、スチレンと共重合し得るブ
タジエン、メチルメタアクリレート等の発泡成形
品を成形することができる。しかし、この方法に
よつてポリプロピレンの一次発泡シートを両面真
空成形した場合にはポリスチレンまたはスチレン
を主体としたスチレン共重合体のように二次発泡
成形品が得られない。その理由としてはポリプロ
ピレンの一次発泡シートは気泡がシートの厚み方
向に並び易いために連通化しやすく、そのため二
次発泡の際に気泡が連通化すると共に発泡ガスが
表面より散逸し二次発泡により目的とする発泡倍
率の成形品が得られない欠点があつた。 (解決すべき問題点) 本発明は上記の欠点を解決し、ポリプロピレン
発泡シートより、強度、耐熱性の良い寸法及び形
状の安定した成形品を成形する方法を種々検討し
た結果、本発明を完成するに至つたもので、本発
明の目的はポリプロピレン発泡シートより強度、
寸法及び形状の安定した成形品を成形するための
積層シートの両面真空成形方法を提供するにあ
る。 (問題点を解決するための手段) すなわち、本発明は真空成形可能な雌雄型の金
型による発泡ポリプロピレン系樹脂シートを両面
真空成形方法であつて、前記発泡ポリプロピレン
系樹脂シートとして発泡倍率5.5倍以下の両面に
熱可塑性樹脂フイルムを接着した積層シートを使
用し、金型の間隙を該積層シートの加熱軟化後の
厚みの1.0〜2.5倍とすることを特徴とする積層シ
ートの両面真空成形方法である。 本発明について更に詳細に説明する。 先ず、本発明で使用できる発泡ポリプロピレン
系樹脂はポリプロピレンを主成分とするが、これ
と混和可能な熱可塑性樹脂又は無機充填剤を含有
したものも含まれる。そして、熱可塑性樹脂とし
ては耐熱性ポリスチレン、ポリメチルメタアクリ
レートなどがある。また、無機充填剤としてはタ
ルク、二酸化チタン、クレー、シリカ及びアルミ
ナなどである。そして、本発明における原料であ
る発泡ポリプロピレン系樹脂シートは発泡倍率が
5.5以下でなければならない。その理由として発
泡倍率5.5以上のものであつては押出し成形によ
つて波縞模様が発生し、熱成形の際に伸びのバラ
ツキが生じ、成形品の厚さが不均一になり、又亀
裂が生ずるからである。好適には発泡倍率2.5倍
以下のものが好ましい。また、本発明においては
一次発泡シートが低倍率で薄いために、これを輸
送する際の輸送効率を高め、成形品において所望
の発泡倍率を有する成形品を得ることができる。 また、本発明における原料である低発泡ポリプ
ロピレン系シートの両面には熱可塑性樹脂シート
を接着することが必要である。すなわち、先に述
べたように、一次発泡シートの気泡は連通化して
おり、その為に二次加熱において気体が表面より
散逸し所望の発泡倍率の成形品が得られない。そ
こで、一次発泡シートの両面に熱可塑性フイルム
を接着することにより気体散逸を防止し、所望の
発泡倍率の成形品が得られることを見出したので
ある。使用する熱可塑性樹脂シートとしてはポリ
エチレン、ポリプロピレン、ポリメチルペンテ
ン、ポリエチレンテレフタレート、ポリブチレン
テレフタレート等であり、接着手段としては一次
発泡シートと熱可塑性樹脂フイルムとを熱接着し
たり、接着剤により接着したり等何れの方法でも
良い。そして、この熱可塑性フイルムの厚さとし
ては通常40〜80ミクロン程度である。 次に、本発明で使用する金型は通常の真空成形
で使用する雌型及び雄型よりなる金型であるが、
両面に真空減圧できるように細孔を設ける必要が
ある。細孔の孔径としては0.6mm程度で、これを
真空吸引装置に接続できるようにする。 次に成形条件について述べる。雌型及び雄型の
両者の金型の間隙を加熱軟化後の積層シートの厚
さの1.0〜2.5倍にすることが必要である。本発明
においては通常積層シートは予め四方をクランプ
して160〜190℃の温度範囲に加熱軟化させる。そ
して、この積層シートは両金型間に移送する。そ
の際の両金型の間隙は、前述したように四方クラ
ンプした加熱軟化後の積層シートの厚みの1.0〜
2.5倍にしておくことが必要である。この間隙は
二次発泡後の成形品の強度に影響し、2.5倍を越
えると発泡層の倍率が上がり、極端に曲げ強度が
低下する。また、1.0倍未満では曲げ強度の向上
に寄与しない。金型の温度としては50℃以下が好
ましい。先に述べたポリスチレン系樹脂の両面真
空成形法では金型面より真空減圧して三次発泡さ
せるために可塑化状態を維持する必要上50〜60℃
に加熱保持するのであるが、本発明ではポリプロ
ピレンシートの両面に熱可塑性フイルムを積層し
ているが、ポリプロピレン系樹脂は比熱が大きく
冷却が悪いので金型の温度を50℃以上にすると変
形してしまい、サイクルアツプにならない。ただ
金型の温度があまり低温になると加熱軟化したシ
ートを冷却することとなり、可塑性が失われて充
分な真空成形ができないこととなる。このような
点を考慮すると約35〜45℃の温度範囲が好適であ
る。また、両面金型における真空度としては、真
空度500mmHg以上が用いられる。 本発明の成形方法を図面について説明する。第
1図は本発明の成形過程を示したもので、先づポ
リプロピレンフイルムを両面に接着した発泡ポリ
プロピレンシート1をヒーター温度300℃の遠赤
外線ヒーターで45〜50秒加熱して軟化させる。こ
の発泡シートを雌雄型2,3間に移行する(参
照)。金型はマツチモールド式両面真空成形金型
でその雌型2の形状は100×60m/m、深さ15
m/mである。次に雌型2を真空源につなぎ減圧
にして先づ雌型真空成形する(参照)。ついで
金型の外周部をマツチイング後(参照)雄型3
より減圧にして型内発泡して成形品11を得る
(参照)型の温度は50℃以下、好ましくは40℃
に保つ。完全に発泡した後、型内を常圧に戻して
成形品11を型より取り出す。 なお、雄型でもつて積層シートを突出しながら
金型の外周部をマツチングし、しかる後、両型よ
り減じても良いし、或は雄型真空成形した後、金
型の外周部をマツチングし、しかる後、雌型より
真空成形しても良い。 更に実施例をもつて本発明を具体的に説明す
る。 実施例 1 厚さ875μのポリプロピレン発泡シート(発泡
シートの坪量405g/m2、発泡倍率2.25)を中心発
泡層とし、外側に厚さ80μのポリプロピレンフイ
ルムを、内側に厚さ55μのポリプロピレンフイル
ムを接着し、全肉厚1.01m/m、全坪量526.5g/
m2の積層シートを使用した。この積層シートの四
方をクランプして300℃の遠赤外線ヒーターによ
り約50秒間加熱して軟化する。この加熱軟化後の
シートの厚みは約1.0m/mとなつた。これをマ
ツチモールド式両面真空成形金型を使用して容器
を成形した。このときの雌型の寸法は100×60
m/mで深さ15m/mである。又、金型の間隙と
しては底部が2.2m/m、側壁部が1.7m/mであ
る。前記積層シートを先づ雌型を40℃に冷却され
ている雌型で真空成形を行い、次いで外周部を40
℃に冷却された雄型でマツチング後、金型の細孔
により窩内を−550mmHg(ゲージ圧)に減圧して
両型真空成形をする。 得られた容器は底部の厚みは2.3m/m、側壁
部の厚みは1.8m/mであつた。 実施例 2 実施例1において金型の間隙を変えて容器の厚
みを変えた以外は同様に行つた。得られた容器の
底部の厚みに対応する曲げ強度は第1表のように
なつた。
(Industrial Application Field) The present invention relates to a method for double-sided vacuum forming of a foamed polypropylene resin sheet having thermoplastic resin films adhered to both sides. (Prior art) Conventionally, the method of molding sheets made of thermoplastic foam resin involves heating a primarily foamed sheet to cause secondary foaming and making it plastic, and at the same time reducing the pressure in either the female mold or the male mold. A method is known in which a foamed sheet is brought into close contact with a mold (usually referred to as a one-sided vacuum forming method). However, the secondary foaming power of a foamed sheet that has been subjected to primary foaming usually decreases due to changes over time. Furthermore, variations in the secondary foaming power occur due to changes in conditions during the production of the primary foam sheet.
For this reason, in conventional molding methods, the thickness of the molded products varies, resulting in insufficient strength of the molded products or poor fitting between the molded products, resulting in a decrease in the yield of non-defective products. In particular, since the foaming power of the foamed polypropylene sheet is weak, the thickness of the foamed polypropylene sheet is significantly reduced after the single-sided vacuum forming process collapses the sheet. As a method to solve the problems of this one-sided vacuum forming method, for example, a predetermined gap is provided between the male and female molds, a clamp is provided on the outer periphery of the mold,
In addition, after clamping the heat-plasticized thermoplastic foamed resin sheet using a male mold whose temperature is controlled at 50 to 60℃, the male and female molds are vacuum depressurized at a vacuum level of -500 mmHg (gauge pressure) or higher. The sheet is then adiabatically expanded to fill the void, formed into a predetermined shape, cooled, gas is introduced into the mold to return it to normal pressure, and then the mold is opened to take out the molded product. A double-sided vacuum forming method for thermoplastic foam resin sheets is known (see Japanese Patent Publication No. 1184/1984). and,
By this double-sided vacuum forming method, it is possible to form a foam molded product mainly composed of polystyrene, styrene, butadiene, methyl methacrylate, etc., which can be copolymerized with styrene. However, when a primary foamed sheet of polypropylene is vacuum-formed on both sides by this method, a secondary foamed molded product cannot be obtained unlike polystyrene or a styrene copolymer mainly composed of styrene. The reason for this is that in the primary foamed polypropylene sheet, the air bubbles are easily lined up in the thickness direction of the sheet, making them easy to communicate with each other. Therefore, during secondary foaming, the air bubbles become interconnected and the foaming gas dissipates from the surface. The disadvantage was that molded products with the desired expansion ratio could not be obtained. (Problems to be Solved) The present invention solves the above-mentioned drawbacks, and the present invention was completed as a result of various studies on methods for molding molded products with good strength, heat resistance, and stable dimensions and shape from polypropylene foam sheets. The purpose of the present invention is to provide stronger and stronger polypropylene foam sheets than polypropylene foam sheets.
An object of the present invention is to provide a double-sided vacuum forming method for a laminated sheet for forming a molded article with stable dimensions and shape. (Means for Solving the Problems) That is, the present invention is a double-sided vacuum forming method for forming a foamed polypropylene resin sheet using male and female molds capable of vacuum forming, and in which the foamed polypropylene resin sheet is formed at a foaming ratio of 5.5 times. A method for double-sided vacuum forming of a laminate sheet, characterized by using the following laminate sheet with a thermoplastic resin film adhered to both sides, and making the gap between the molds 1.0 to 2.5 times the thickness of the laminate sheet after being heated and softened. It is. The present invention will be explained in more detail. First, the foamed polypropylene resin that can be used in the present invention has polypropylene as its main component, but it also includes those containing thermoplastic resins or inorganic fillers that are miscible with polypropylene. Examples of thermoplastic resins include heat-resistant polystyrene and polymethyl methacrylate. Inorganic fillers include talc, titanium dioxide, clay, silica, and alumina. The foamed polypropylene resin sheet, which is the raw material in the present invention, has a foaming ratio of
Must be 5.5 or less. The reason for this is that if the foaming ratio is 5.5 or more, a wave striped pattern will occur during extrusion molding, elongation will vary during thermoforming, the thickness of the molded product will be uneven, and cracks will occur. This is because it occurs. The foaming ratio is preferably 2.5 times or less. Further, in the present invention, since the primary foam sheet is thin with a low expansion ratio, the transportation efficiency when transporting the sheet is increased, and a molded article having a desired expansion ratio can be obtained. Further, it is necessary to adhere thermoplastic resin sheets to both sides of the low-foam polypropylene sheet, which is a raw material in the present invention. That is, as mentioned above, the cells in the primary foam sheet are interconnected, and therefore, gas dissipates from the surface during secondary heating, making it impossible to obtain a molded product with the desired expansion ratio. Therefore, they discovered that by adhering thermoplastic films to both sides of the primary foam sheet, gas dissipation can be prevented and a molded product with a desired expansion ratio can be obtained. The thermoplastic resin sheets used are polyethylene, polypropylene, polymethylpentene, polyethylene terephthalate, polybutylene terephthalate, etc., and the adhesive means is thermal bonding of the primary foam sheet and thermoplastic resin film, or bonding with an adhesive. Any method is fine. The thickness of this thermoplastic film is usually about 40 to 80 microns. Next, the mold used in the present invention is a mold consisting of a female mold and a male mold used in ordinary vacuum forming.
It is necessary to provide pores on both sides to allow vacuum reduction. The diameter of the pores is approximately 0.6 mm, which can be connected to a vacuum suction device. Next, the molding conditions will be described. It is necessary that the gap between both the female and male molds be 1.0 to 2.5 times the thickness of the laminated sheet after being heated and softened. In the present invention, the laminated sheet is usually clamped on all sides in advance and softened by heating to a temperature range of 160 to 190°C. This laminated sheet is then transferred between both molds. At that time, the gap between the two molds should be 1.0 to 1.0 of the thickness of the laminated sheet after heating and softening, which was clamped on all sides as described above.
It is necessary to increase it by 2.5 times. This gap affects the strength of the molded product after secondary foaming, and if it exceeds 2.5 times, the magnification of the foam layer will increase and the bending strength will extremely decrease. Moreover, if it is less than 1.0 times, it does not contribute to improvement in bending strength. The temperature of the mold is preferably 50°C or less. In the above-mentioned double-sided vacuum forming method for polystyrene resin, the pressure is reduced from the mold surface to achieve tertiary foaming, which requires maintaining the plasticized state at 50 to 60°C.
In the present invention, thermoplastic films are laminated on both sides of the polypropylene sheet, but since polypropylene resin has a large specific heat and is difficult to cool, it will deform if the mold temperature is raised to 50°C or higher. It won't cause a cycle up. However, if the temperature of the mold becomes too low, the heated and softened sheet will have to be cooled down, which will result in loss of plasticity and insufficient vacuum forming. Considering these points, a temperature range of about 35 to 45°C is suitable. Further, as the degree of vacuum in the double-sided mold, a degree of vacuum of 500 mmHg or more is used. The molding method of the present invention will be explained with reference to the drawings. FIG. 1 shows the molding process of the present invention. First, a foamed polypropylene sheet 1 with polypropylene films adhered to both sides is heated for 45 to 50 seconds with a far infrared heater at a heater temperature of 300°C to soften it. This foam sheet is transferred between male and female molds 2 and 3 (see). The mold is a Matuchimold type double-sided vacuum forming mold, and the female mold 2 has a shape of 100 x 60 m/m and a depth of 15.
m/m. Next, the female mold 2 is connected to a vacuum source and the pressure is reduced to vacuum form the female mold (see). Then, after matching the outer periphery of the mold (see) male mold 3
The molded product 11 is obtained by foaming in the mold at a lower pressure (see).The temperature of the mold is 50°C or less, preferably 40°C.
Keep it. After complete foaming, the inside of the mold is returned to normal pressure and the molded product 11 is taken out from the mold. In addition, it is also possible to match the outer periphery of the mold while protruding the laminated sheet with the male mold, and then reduce it from both molds, or after vacuum forming the male mold, match the outer periphery of the mold, After that, vacuum forming may be performed using a female mold. Further, the present invention will be specifically explained with reference to Examples. Example 1 A polypropylene foam sheet with a thickness of 875 μm (basis weight of the foam sheet 405 g/m 2 , foaming ratio 2.25) was used as the central foam layer, a polypropylene film with a thickness of 80 μm was placed on the outside, and a polypropylene film with a thickness of 55 μm was placed on the inside. Glued, total wall thickness 1.01m/m, total basis weight 526.5g/
A laminated sheet of m 2 was used. This laminated sheet is clamped on all sides and heated for about 50 seconds using a far-infrared heater at 300°C to soften it. The thickness of the sheet after being heated and softened was approximately 1.0 m/m. This was molded into a container using a Matsuchimold type double-sided vacuum forming mold. The dimensions of the female mold at this time are 100 x 60
m/m and depth 15m/m. The gap between the molds is 2.2 m/m at the bottom and 1.7 m/m at the side walls. The laminated sheet is first vacuum-formed in a female mold that has been cooled to 40°C, and then the outer periphery is molded at 40°C.
After matching with a male mold cooled to ℃, the pressure inside the cavity is reduced to -550 mmHg (gauge pressure) through the pores of the mold, and vacuum forming of both molds is performed. The resulting container had a bottom thickness of 2.3 m/m and a side wall thickness of 1.8 m/m. Example 2 The same procedure as in Example 1 was carried out except that the gap between the molds was changed and the thickness of the container was changed. The bending strength corresponding to the thickness of the bottom of the obtained container was as shown in Table 1.

【表】 第1表において(a)は5m/m荷重の値を、(b)は
最大荷重の値をそれぞれ示す。 なお、この曲げ試験の測定法は次の通りであ
る。容器の底部より巾30m/m、長さ80m/mの
試験片を切断し、エツジスパン間隙60.0m/mに
試験片を設置してクロスヘツドスピード50.0m/
m/分での耐荷量を測定したものである。 第1表のように、底部厚みが2.26〜2.27m/m
の所に最大耐荷量があることがわかる。 (効果) 以上述べたように、本発明によりポリプロピレ
ン系樹脂発泡シートを両面真空成型することによ
り、従来の片面真空成型の場合のように成形後厚
みの減少が無く、強度の増した成形品を得ること
ができる等の効果を奏するのである。
[Table] In Table 1, (a) shows the value of 5m/m load, and (b) shows the value of maximum load. The measurement method for this bending test is as follows. A test piece with a width of 30 m/m and a length of 80 m/m was cut from the bottom of the container, and the test piece was placed in an edge span gap of 60.0 m/m, and the crosshead speed was set at 50.0 m/m.
The load capacity was measured in m/min. As shown in Table 1, the bottom thickness is 2.26~2.27m/m
It can be seen that the maximum load capacity is at . (Effects) As described above, by double-sided vacuum forming a polypropylene resin foam sheet according to the present invention, there is no decrease in thickness after molding unlike in the case of conventional single-sided vacuum forming, and a molded product with increased strength can be produced. Therefore, it is possible to obtain the following effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の工程を示した説明図であ
る。 1……積層シート、2……雌型、3……雄型、
11……成形品。
FIG. 1 is an explanatory diagram showing the steps of the method of the present invention. 1... Laminated sheet, 2... Female type, 3... Male type,
11... Molded product.

【特許請求の範囲】[Claims]

1 1つの導管を介して熱空気発生器に結合し1
つの噴射口を有する1つの空気誘導装置を有する
合成材料の箔を縫目状に結合するための熱空気溶
着装置において、噴射口13は導管12の同軸延
長状の前室23及びこの前室の縦軸に交差する方
向に配置された乱流室26,34を有し、この乱
流室は前室23の壁に半径方向の孔として形成さ
れた数個の流入口25及びこれらの流入口に向き
合つている1つの流出口31を含み、この流出口
31の断面積は、熱空気が乱流室26,34内で
拡散される程度に、流入口25の断面積の全体の
和よりも大きなものになつていることを特徴とす
る熱空気溶着装置。
1 coupled to a hot air generator via one conduit;
In a hot air welding device for seam-like joining of foils of synthetic material with an air guide device having two orifices, the orifice 13 is connected to a coaxial extension of the front chamber 23 of the conduit 12 and It has a turbulence chamber 26, 34 arranged transverse to the longitudinal axis, which turbulence chamber has several inlets 25 formed as radial holes in the wall of the front chamber 23 and these inlets. The cross-sectional area of the outlet 31 is smaller than the sum of the cross-sectional areas of the inlets 25 to the extent that the hot air is diffused within the turbulence chambers 26, 34. A hot air welding device that is characterized by its large size.

JP9324488A 1988-04-15 1988-04-15 Vacuum molding method for both-sides of laminated sheet Granted JPH01263024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9324488A JPH01263024A (en) 1988-04-15 1988-04-15 Vacuum molding method for both-sides of laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9324488A JPH01263024A (en) 1988-04-15 1988-04-15 Vacuum molding method for both-sides of laminated sheet

Publications (2)

Publication Number Publication Date
JPH01263024A JPH01263024A (en) 1989-10-19
JPH0528974B2 true JPH0528974B2 (en) 1993-04-28

Family

ID=14077099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9324488A Granted JPH01263024A (en) 1988-04-15 1988-04-15 Vacuum molding method for both-sides of laminated sheet

Country Status (1)

Country Link
JP (1) JPH01263024A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143125A (en) * 2006-12-13 2008-06-26 Sumitomo Chemical Co Ltd Manufacturing method of thermoplastic resin foam molded body
JP2008238442A (en) * 2007-03-26 2008-10-09 Sumitomo Chemical Co Ltd Method for manufacturing thermoplastic resin-made foam molding

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102608B2 (en) * 1992-01-17 1995-11-08 ニッポー株式会社 Method for manufacturing polyester molded products
JP2009029021A (en) * 2007-07-27 2009-02-12 Sumitomo Chemical Co Ltd Method for producing composite molded product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54148863A (en) * 1978-05-15 1979-11-21 Kanegafuchi Chem Ind Co Ltd Doubleeside vacuum forming method of foamed thermoplastic resin sheet
JPS60166449A (en) * 1984-02-09 1985-08-29 住友化学工業株式会社 Multilayer sheet made of polypropylene
JPS62261433A (en) * 1986-05-09 1987-11-13 三井化学株式会社 Polypropylene group molding laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54148863A (en) * 1978-05-15 1979-11-21 Kanegafuchi Chem Ind Co Ltd Doubleeside vacuum forming method of foamed thermoplastic resin sheet
JPS60166449A (en) * 1984-02-09 1985-08-29 住友化学工業株式会社 Multilayer sheet made of polypropylene
JPS62261433A (en) * 1986-05-09 1987-11-13 三井化学株式会社 Polypropylene group molding laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143125A (en) * 2006-12-13 2008-06-26 Sumitomo Chemical Co Ltd Manufacturing method of thermoplastic resin foam molded body
JP2008238442A (en) * 2007-03-26 2008-10-09 Sumitomo Chemical Co Ltd Method for manufacturing thermoplastic resin-made foam molding

Also Published As

Publication number Publication date
JPH01263024A (en) 1989-10-19

Similar Documents

Publication Publication Date Title
EP0344726B1 (en) Polyolefin resin foamed laminate sheet and double-side vacuum forming of the same
US3396062A (en) Method for molding a composite foamed article
JPH05212775A (en) Method for producing shaped article from thermoplastic reinforced sheet
JP2001121561A (en) Thermoplastic resin molded article and method for making the same
GB1465564A (en) Laminated article
US5571473A (en) Process for thermoforming thermoplastic resin sheet
JPH0528974B2 (en)
JPH0584729B2 (en)
JP3444409B2 (en) Method for producing blow-molded article having decorative layer and blow-molding mold
JP4689213B2 (en) Manufacturing method of composite molded product
JPH03199030A (en) Method and apparatus for thermoforming thermoplastic resin sheet
JPS5953855B2 (en) Method for manufacturing a laminate molded product
JP4278849B2 (en) Molding method of resin panel
JPS591184B2 (en) Double-sided vacuum forming method for thermoplastic foam resin sheet
JPH0211315A (en) Heat-molding of thermoplastic laminate sheet
JPH02270530A (en) Manufacture of packaging tray
JP4248076B2 (en) Foamed composite with skin and method for producing the same
JP2935066B2 (en) Hot plate molding method for food container lid
JP2557681B2 (en) Manufacturing method of foamed resin molded product with skin
JP2002292669A (en) Method for producing foamed resin molding with skin
JPS62108039A (en) Simultaneous molding method for skin material
JPS6132129B2 (en)
JP2005125608A (en) Molding method for polypropylene resin foamed sheet
JPH0771974B2 (en) Molding method for synthetic resin sheet moldings such as containers and lids
JPH05104572A (en) Manufacture of multilayer plastic vessel

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term