JPH05288671A - Measuring method by infrared spectroscopy method for surface of steel plate - Google Patents

Measuring method by infrared spectroscopy method for surface of steel plate

Info

Publication number
JPH05288671A
JPH05288671A JP8536592A JP8536592A JPH05288671A JP H05288671 A JPH05288671 A JP H05288671A JP 8536592 A JP8536592 A JP 8536592A JP 8536592 A JP8536592 A JP 8536592A JP H05288671 A JPH05288671 A JP H05288671A
Authority
JP
Japan
Prior art keywords
roughness
steel plate
infrared
light
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8536592A
Other languages
Japanese (ja)
Inventor
Hiromasa Nomura
野村広正
Kimitaka Hayashi
公隆 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8536592A priority Critical patent/JPH05288671A/en
Publication of JPH05288671A publication Critical patent/JPH05288671A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain the measuring method for the roughness (roughness and waviness) of the surfaces of various kinds of steel plates. CONSTITUTION:Infrared rays in an s-polarized light state (the polarized light orthogonal to a plane formed of incident light and the surface of a steel plate) is cast on the surface of a steel plate, and the reflected spectrum of the infrared rays is obtained. The reflectivity at the specified wave number in the reflected spectrum of the infrared rays is obtained. The roughness of the surface of the steel plate is estimated based on the correlation with the reflectivity and the roughness (roughness and waviness) of the surface of the steel plate, which are obtained beforehand.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鋼板表面の粗度(粗さと
うねり)の測定法に関するものであり、自動車用や家庭
用電気機器類を始めとする加工性や塗装鮮映性が要求さ
れる分野に適用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the roughness of a steel sheet surface (roughness and waviness), and is required to have workability and sharpness of paint for automobiles and household electric appliances. It is applied to the field.

【0002】[0002]

【従来の技術】自動車や家庭用電気機器等に使用される
鋼板の必要条件は耐食性と同時に、加工性や塗装鮮映性
といった分野まで広がっており、中でも塗装鮮映性は消
費者の趣味の多様化とあいまって、その重要性を増して
いる。
2. Description of the Related Art The requirements for steel sheets used for automobiles and household electric appliances have expanded to fields such as corrosion resistance as well as workability and paint clarity, among which paint clarity is a consumer hobby. Together with diversification, its importance is increasing.

【0003】塗装鮮映性や加工性を支配するのは鋼板表
面の粗度(粗さとうねり)であり、これを制御するため
に鉄鋼メーカーでは、ロールにレーザーや放電でパター
ンを付け、このロールで調質圧延することで表面に適度
な粗度を付けた鋼板の製造を行っている。いずれの方法
を用いても、重要なのは鋼板表面の粗度をコントロール
する点であり、粗度が小さい場合にはプレス加工の際に
型かじり等の障害があり、一方、粗度が大きい場合には
塗装鮮映性が劣化する。従って、鋼板の製造現場では表
面の粗度を一定範囲に管理する必要がある。
It is the roughness (roughness and waviness) of the steel sheet surface that controls the paint clarity and workability, and in order to control this, steel manufacturers put a pattern on the roll with a laser or electric discharge, In this way, steel sheets with appropriate surface roughness are manufactured by temper rolling at. Regardless of which method is used, it is important to control the roughness of the steel sheet surface.If the roughness is low, there are obstacles such as die scuffing during press working, while if the roughness is high, The coating clarity deteriorates. Therefore, it is necessary to control the surface roughness within a certain range at the steel sheet manufacturing site.

【0004】鋼板表面の粗度の測定法としては、先端を
尖らせたチップを表面に接触させて走査する事で粗度を
測定する接触法と、光を表面に照射して反射光強度の変
化や表面に結ばれた焦点の変化から粗度を測定する非接
触法(光学法)が広く使用されている。
The roughness of the surface of the steel sheet can be measured by a contact method in which a tip having a sharp tip is brought into contact with the surface for scanning to measure the roughness, and a method of irradiating the surface with light to measure the intensity of reflected light. A non-contact method (optical method) for measuring roughness based on a change or a change in focus attached to a surface is widely used.

【0005】接触法は測定精度が触針の先端の極率半径
に左右されるため、0.1μm以下程度の粗度の測定が
困難であり、測定精度も低い。また、局所的な測定であ
るので測定回数を増やしても誤差が大きい欠点があるの
で、現在は非接触法に置き変わりつつある。
Since the measuring accuracy of the contact method depends on the polar radius of the tip of the stylus, it is difficult to measure the roughness of about 0.1 μm or less, and the measuring accuracy is low. Further, since it is a local measurement, there is a drawback that the error is large even if the number of times of measurement is increased. Therefore, the non-contact method is currently being replaced.

【0006】非接触法は光を媒体として使用するため接
触法より感度は高い。しかし、被測定面に存在する物
質、例えば潤滑油や防錆油等による光の吸収が測定値に
大きな誤差を与える事になるので、表面が清浄な状態で
なければ適用が困難である。例えば、特開昭62−21
11号に反射光による表面粗さ計として、鏡面反射光と
散乱反射光の比から粗度を測定する装置が開示されてい
る。しかし、この装置では測定面の油等の汚れによって
反射光が減衰されるため、鋼板表面等の潤滑油や防錆油
が塗布された試料に適用した場合、誤差が大きくなる欠
点がある。
Since the non-contact method uses light as a medium, it has higher sensitivity than the contact method. However, since the absorption of light by a substance existing on the surface to be measured, such as a lubricating oil or an anticorrosive oil, causes a large error in the measured value, it is difficult to apply it unless the surface is clean. For example, JP-A-62-21
No. 11 discloses, as a surface roughness meter using reflected light, a device for measuring roughness from the ratio of specular reflected light and scattered reflected light. However, in this device, since the reflected light is attenuated by dirt such as oil on the measurement surface, when it is applied to a sample such as a steel plate surface coated with lubricating oil or rust-preventing oil, there is a drawback that the error becomes large.

【0007】以上のように、現在使用されている鋼板表
面粗度の測定法は製造現場で必要とされる高精度、簡易
迅速、鋼板表面の潤滑油や防錆油による妨害を受けな
い、という要件を満たしていない。
As described above, the method of measuring the surface roughness of the steel sheet currently used is said to be highly accurate, simple and quick, which is required at the manufacturing site, and is not affected by the lubricating oil or rust preventive oil on the surface of the steel sheet. Does not meet the requirements.

【0008】[0008]

【発明の目的】本発明の目的は、上記従来技術の問題点
を解決し、鋼板表面の粗度を鋼板表面に存在する潤滑油
や防錆油等による妨害を受けず、簡易迅速かつ高精度に
提供する点にある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems of the prior art, to prevent the roughness of the steel sheet surface from being obstructed by the lubricating oil or rust preventive oil present on the steel sheet surface, and to simply, quickly and with high accuracy. There is a point to provide.

【0009】[0009]

【発明の構成】本発明は、鋼板表面の粗度をs−偏光状
態の赤外光(入射光と鋼板面の法線とのなす面に垂直な
偏光)を入射して赤外反射スペクトルを測定し、その赤
外反射スペクトル中の特定の波数における反射率を求
め、予め求めてある反射率と粗度の相関関係を基に、鋼
板表面の粗度を測定する方法である。
According to the present invention, an infrared reflection spectrum is obtained by injecting infrared light in the s-polarized state (polarized light perpendicular to the plane formed by the incident light and the normal to the steel plate surface) to the roughness of the steel plate surface. It is a method of measuring the roughness at a specific wave number in the infrared reflection spectrum, and measuring the roughness of the surface of the steel sheet based on the correlation between the reflectance and the roughness that is obtained in advance.

【0010】本発明の特徴は赤外光の反射挙動が鋼板表
面の粗度に影響されることを利用する点と、赤外光の反
射により鋼板表面に形成される定常波の電場強度がその
偏光状態に依存することを利用する点にある。
The features of the present invention are that the reflection behavior of infrared light is affected by the roughness of the steel plate surface, and that the electric field strength of the standing wave formed on the steel plate surface by the reflection of infrared light is its polarization. It depends on the state.

【0011】一般的な赤外線分光光度計を使用した場
合、鋼板表面での赤外光の反射挙動は鋼板の粗度に影響
され、粗度が小さい場合は反射率が大きく、粗度が大き
くなると反射率が減少する傾向にある。すなわち、表面
の粗度が無い条件、例えば鏡面状態の表面に入射した赤
外光は入射角度と同一の反射角度で反射して検出器へ到
達するので、反射率の減少は金属固有の反射率のみに支
配される。一方、表面に粗度がある場合は入射した赤外
光の反射角度が様々な値となり必ずしも入射角度と同一
ではないので、反射光が検出器に到達する割合が減少す
る。この減少割合は、表面の粗度が小さい場合には反射
角度の分布が入射角度に等しい値を中心に狭い分布とな
るので、検出器の受光部に到達する赤外光の量が比較的
多く、反射率が高くなる。一方、表面の粗度が大きい場
合には、反射角度の分布が入射角度に等しい値を中心に
広い分布となるので、検出器の受光部に到達する赤外光
の量が少なく、反射率は低くなる。
When a general infrared spectrophotometer is used, the reflection behavior of infrared light on the surface of the steel sheet is affected by the roughness of the steel sheet. When the roughness is small, the reflectance is large and the roughness becomes large. The reflectance tends to decrease. That is, since there is no surface roughness, for example, infrared light incident on a mirror-finished surface is reflected at the same reflection angle as the incident angle and reaches the detector, the decrease in reflectance is due to the reflectance specific to the metal. Controlled only by. On the other hand, when the surface has roughness, the reflection angle of the incident infrared light has various values and is not necessarily the same as the incident angle, so that the ratio of the reflected light reaching the detector decreases. When the surface roughness is low, this reduction rate has a narrow distribution centered around the value equal to the incident angle, so the amount of infrared light that reaches the light receiving part of the detector is relatively large. , The reflectance is high. On the other hand, when the surface roughness is large, the distribution of the reflection angle has a wide distribution centered on the value equal to the incident angle, so the amount of infrared light reaching the light receiving part of the detector is small and the reflectance is It gets lower.

【0012】以下に、p−偏光状態の赤外光、s−
偏光状態の赤外光、偏光成分を選択的に利用しない通
常の赤外光、を光源とした場合の赤外反射スペクトルの
特徴を述べる。
Infrared light in the p-polarized state, s-
The characteristics of the infrared reflection spectrum when the light source is infrared light in a polarized state or ordinary infrared light that does not selectively use the polarization component will be described.

【0013】p−偏光状態の赤外光 金属表面での赤外光の反射挙動はその偏光状態に大きく
依存し、p−偏光状態(入射光と鋼板面の法線とのなす
面に平行な偏光)の赤外光を鋼板表面に50°以上の大
きな角度で入射すると入射光の電場と反射光の電場の干
渉により、鋼板表面に垂直に電場強度の大きな定常波が
形成される。この結果として鋼板表面に存在する防錆油
や潤滑油等の赤外活性物質の振動モードの中で鋼板表面
に垂直に振動する成分の赤外吸収スペクトルが高感度に
検出されると同時に赤外光は鋼板表面の粗度による反射
率の減少効果を受ける。
Infrared light in the p-polarization state The reflection behavior of infrared light on a metal surface depends largely on the polarization state, and is in the p-polarization state (parallel to the plane formed by the incident light and the normal to the steel plate surface). When (polarized) infrared light is incident on the surface of the steel sheet at a large angle of 50 ° or more, a standing wave having a large electric field intensity is formed vertically on the surface of the steel sheet due to the interference between the electric field of the incident light and the electric field of the reflected light. As a result, the infrared absorption spectrum of the components that oscillate perpendicularly to the steel plate surface in the vibration mode of the infrared active substances such as rust preventive oil and lubricating oil existing on the steel plate surface is detected with high sensitivity. Light undergoes the effect of reducing the reflectance due to the roughness of the steel plate surface.

【0014】s−偏光状態の赤外光 s−偏光状態(入射光と鋼板面の法線とのなす面に垂直
な偏光)の赤外光を鋼板表面に入射すると入射光の電場
と反射光の電場が鋼板表面で打ち消しあい定常波の電場
強度はほぼゼロとなる。結果として鋼板表面の潤滑油や
防錆油等の赤外活性物質の赤外吸収スペクトルは検出さ
れないが、鋼板表面の粗度による反射率の減少効果は受
ける。
Infrared light of s-polarization state When infrared light of s-polarization state (polarization perpendicular to the plane formed by the incident light and the normal to the steel plate surface) is incident on the steel plate surface, the electric field and reflected light of the incident light Of the standing wave cancels each other on the surface of the steel sheet, and the electric field strength of the standing wave becomes almost zero. As a result, the infrared absorption spectra of infrared active substances such as lubricating oil and rust preventive oil on the surface of the steel sheet are not detected, but the effect of reducing the reflectance due to the roughness of the surface of the steel sheet is received.

【0015】通常の赤外光 一般的な赤外線分光法で使用される通常の赤外光は、p
−偏光成分とs−偏光成分を含有している。従って、通
常の赤外光を鋼板表面に入射すると含有されているp−
偏光成分によって鋼板表面に垂直に定常波が形成される
ため、鋼板表面に存在する防錆油や潤滑油等の赤外活性
物質の赤外吸収スペクトルが検出されると同時に、鋼板
表面の粗度による反射率の減少効果を受ける。
Normal Infrared Light Normal infrared light used in general infrared spectroscopy is p
It contains a polarized component and an s-polarized component. Therefore, when normal infrared light is incident on the surface of the steel sheet, p-
Since a standing wave is formed perpendicularly to the steel plate surface by the polarized component, the infrared absorption spectrum of infrared active substances such as rust preventive oil and lubricating oil existing on the steel plate surface is detected, and at the same time, it depends on the roughness of the steel plate surface. Receives the effect of reducing the reflectance.

【0016】以上述べたように、鋼板表面の粗度を測定
する入射赤外光として通常の赤外光(p−偏光とs−偏
光ともに含有)またはp−偏光状態の赤外光を使用する
と、反射スペクトルは鋼板表面の粗度の影響だけではな
く表面の防錆油や潤滑油等の汚れの影響をも受けてしま
うため、粗度測定の精度が低下する。これに対してs−
偏光状態の赤外光を入射すると鋼板表面の潤滑油等の汚
れの影響をほとんど受けず、反射スペクトルは鋼板表面
の粗度のみに影響されるので、粗度測定の精度がp−偏
光状態の赤外光や通常の赤外光を用いた場合より高くな
る。
As described above, when normal infrared light (including both p-polarized light and s-polarized light) or infrared light in the p-polarized state is used as incident infrared light for measuring the roughness of the steel sheet surface, Since the reflection spectrum is affected not only by the roughness of the steel plate surface but also by the contamination of the surface with rust-preventing oil, lubricating oil, etc., the accuracy of roughness measurement is reduced. On the other hand, s-
When polarized infrared light is incident, it is hardly affected by dirt such as lubricating oil on the steel plate surface, and the reflection spectrum is affected only by the roughness of the steel plate surface. It is higher than when infrared light or normal infrared light is used.

【0017】s−偏光状態の赤外光を使用した場合、入
射赤外光と反射赤外光の干渉はいずれの入射角度でも起
こり、鋼板表面の定常波の振動電場強度は常にほぼゼロ
になるので、入射角度はいずれの角度でもよい。
When infrared light in the s-polarized state is used, the interference between the incident infrared light and the reflected infrared light occurs at any incident angle, and the oscillating electric field strength of the standing wave on the surface of the steel sheet is always almost zero. The incident angle may be any angle.

【0018】本発明は、予め、接触型または非接触型の
粗度計で粗度を測定した種々の粗度の鋼板の赤外反射ス
ペクトルをs−偏光状態の赤外光を用いる赤外反射法で
測定して、特定波数における反射率と粗度の関係を求め
ておき、この関係を検量線として、粗度が未知の鋼板表
面の粗度をs−偏光状態の赤外光の反射率から推定する
ものである。
According to the present invention, the infrared reflection spectra of steel sheets of various roughness whose roughness is previously measured by a contact type or non-contact type roughness meter are measured by infrared reflection using infrared light in the s-polarized state. Method, the relationship between the reflectance at a specific wave number and the roughness is determined in advance, and the relationship is used as a calibration curve to measure the roughness of the surface of the steel sheet of unknown roughness as the reflectance of infrared light in the s-polarized state. It is estimated from.

【0019】[0019]

【実施例】本実施例では赤外分光光度計として日本分光
工業(株)製のIR810を使用し、s−偏光状態の赤
外光の入射角度は70°とした。IR810は分散型の
赤外分光光度計であるが、フーリエ変換型の赤外分光光
度計でも同じ結果を得る事ができる。感度の点ではフー
リエ変換型の方が分散型より高いので薄膜測定にはフー
リエ変換型が推奨される。
EXAMPLE In this example, IR810 manufactured by JASCO Corporation was used as an infrared spectrophotometer, and the incident angle of infrared light in the s-polarized state was 70 °. The IR 810 is a dispersion type infrared spectrophotometer, but the same result can be obtained with a Fourier transform type infrared spectrophotometer. In terms of sensitivity, the Fourier transform type is higher than the dispersion type, so the Fourier transform type is recommended for thin film measurement.

【0020】検量線作成用の標準試料である冷延鋼板の
中心線平均粗さ(Ra)とろ波中心線うねり(Wca)
を表1に示す。Raは高域カットオフ値0.8mmの条
件で測定した。また、Wcaは低域カットオフ値0.8
mm、高域カットオフ値8mmの条件で測定した。いず
れの測定も接触型の粗度計である東京精密(株)製サー
フコム550Aを使用した。
Centerline average roughness (Ra) and filtered centerline waviness (Wca) of a cold-rolled steel sheet which is a standard sample for preparing a calibration curve.
Is shown in Table 1. Ra was measured under the condition that the high cutoff value was 0.8 mm. Also, Wca is a low cutoff value of 0.8.
mm and the high cutoff value was 8 mm. In each measurement, Surfcom 550A manufactured by Tokyo Seimitsu Co., Ltd., which is a contact type roughness meter, was used.

【0021】p−偏光状態の赤外光を入射して得られた
赤外反射スペクトルとs−偏光状態の赤外光を入射して
得られた赤外反射スペクトルを図1に示す。図1ではp
−偏光の赤外光を使用した条件では観察されていた表面
の潤滑油による吸収が、s−偏光の赤外光入射では観察
されていない事を示しており、s−偏光の赤外光を使用
すると表面の粗度が高精度で測定できる事がわかる。
FIG. 1 shows an infrared reflection spectrum obtained by entering infrared light in the p-polarization state and an infrared reflection spectrum obtained by entering infrared light in the s-polarization state. In Figure 1, p
-It is shown that the absorption by the lubricating oil on the surface, which was observed under the condition of using the polarized infrared light, was not observed at the incidence of the s-polarized infrared light. It can be seen that the surface roughness can be measured with high accuracy when used.

【0022】標準試料のs−偏光入射での赤外反射スペ
クトルを測定し、3800cm-1の反射率を求めた。表
2に各標準試料の反射率を示す。本実施例では反射率を
3800cm-1で測定したが、原理的にはどの波数で測
定しても問題はない。
The infrared reflectance spectrum of s-polarized light incident on the standard sample was measured to obtain the reflectance at 3800 cm -1 . Table 2 shows the reflectance of each standard sample. In this example, the reflectance was measured at 3800 cm -1 , but in principle, there is no problem with any wave number.

【0023】図2にRaと反射率の関係を示す。図2は
Raと反射率の間に相関係数r=0.990の良好な直
線関係が成り立つ事を示している。図3にWcaと反射
率の関係を示す。図3はWcaと反射率の間に相関係数
r=0.996の良好な直線関係が成り立つ事を示して
いる。従って、未知の鋼板の赤外反射スペクトルをs−
偏光状態の赤外光を使用して測定し、3800cm-1
反射率を求めれば、図2と図3を検量線として用いるこ
とでRaとWcaを測定する事が可能である。
FIG. 2 shows the relationship between Ra and reflectance. FIG. 2 shows that a good linear relationship with a correlation coefficient r = 0.990 holds between Ra and the reflectance. FIG. 3 shows the relationship between Wca and reflectance. FIG. 3 shows that a good linear relationship with a correlation coefficient r = 0.996 holds between Wca and the reflectance. Therefore, the infrared reflection spectrum of an unknown steel plate is s-
Ra and Wca can be measured by using FIG. 2 and FIG. 3 as a calibration curve by measuring using infrared light in a polarized state and determining the reflectance at 3800 cm −1 .

【0024】実際にRaとWcaが未知の冷延鋼板の測
定に本法を適用を試みた。s−偏光の赤外光を使用する
赤外反射法で赤外反射スペクトルを測定し、3800c
-1の反射率がらRaとWcaを推定したところ、Ra
=0.54μm、Wca=0.46μmという値が得ら
れた。この値は接触法による値Ra=0.53μm、W
ca=0.47μmと良い一致を示している。
An attempt was made to apply this method to the measurement of a cold rolled steel sheet in which Ra and Wca are actually unknown. Infrared reflection spectrum was measured by an infrared reflection method using s-polarized infrared light, 3800c
When Ra and Wca were estimated from the reflectance of m −1 , Ra
The values of 0.54 μm and Wca = 0.46 μm were obtained. This value is a value obtained by the contact method Ra = 0.53 μm, W
It shows a good agreement with ca = 0.47 μm.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【発明の効果】本発明は、各種鋼板表面の粗度の推定
を、鋼板表面に存在する潤滑油や防錆油等の影響を受け
ずに、簡易迅速かつ高精度に可能ならしめるものであ
る。従って、自動車用鋼板や家電用鋼板の鮮映性や潤滑
性を管理する事を可能ならしめるものである。
INDUSTRIAL APPLICABILITY The present invention makes it possible to estimate the roughness of the surface of various steel plates simply, quickly and with high accuracy without being affected by the lubricating oil, rust preventive oil, etc. existing on the steel plate surface. .. Therefore, it is possible to manage the image clarity and lubricity of steel sheets for automobiles and steel sheets for home appliances.

【図面の簡単な説明】[Brief description of drawings]

【図1】p−偏光状態の赤外光とs−偏光状態の赤外光
を使用して測定した鋼板表面の赤外反射スペクトル。
FIG. 1 is an infrared reflection spectrum of a steel plate surface measured using infrared light in a p-polarization state and infrared light in a s-polarization state.

【図2】標準試料の冷延鋼板の中心線平均粗さとs−偏
光の赤外光を使用して測定した赤外反射スペクトルの3
800cm-1の反射率の関係を示した図。
FIG. 2 is a center line average roughness of a cold rolled steel sheet as a standard sample and 3 of infrared reflection spectra measured by using s-polarized infrared light.
The figure which showed the relationship of the reflectance of 800 cm- 1 .

【図3】標準試料の冷延鋼板のろ波中心線うねりとs−
偏光の赤外光を使用して測定した赤外反射スペクトルの
3800cm-1の反射率の関係を示した図。
[Fig. 3] Filter center line waviness and s- of a cold rolled steel sheet of a standard sample
The figure which showed the relationship of the reflectance of 3800 cm < -1 > of the infrared reflection spectrum measured using the polarized infrared light.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年5月11日[Submission date] May 11, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Name of item to be corrected] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】[0019]

【実施例】本実施例では赤外分光光度計として日本分光
工業(株)製のIR810を使用し、s−偏光状態の赤
外光の入射角度は70°とした。IR810は分散型の
赤外分光光度計であるが、フーリエ変換型の赤外分光光
度計でも同じ結果を得る事ができる。感度の点ではフー
リエ変換型の方が分散型より高いので微小な粗度の測定
にはフーリエ変換型が推奨される。
EXAMPLE In this example, IR810 manufactured by JASCO Corporation was used as an infrared spectrophotometer, and the incident angle of infrared light in the s-polarized state was 70 °. The IR 810 is a dispersion type infrared spectrophotometer, but the same result can be obtained with a Fourier transform type infrared spectrophotometer. In terms of sensitivity, the Fourier transform type is higher than the dispersive type, so the Fourier transform type is recommended for measuring minute roughness .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋼板表面に、s−偏光状態(入射光と鋼
板面の法線とのなす面に垂直な偏光)の赤外光を入射し
て赤外反射スペクトルを測定し、その赤外反射スペクト
ル中の特定の波数における反射率を求め、予め求めてあ
る反射率と粗度の相関関係を基に、鋼板表面の粗度を測
定することを特徴とする鋼板粗度の赤外線分光法による
測定法。
1. An infrared reflection spectrum is measured by injecting infrared light in the s-polarized state (polarized light perpendicular to the plane formed by the incident light and the normal to the steel plate surface) to the surface of the steel plate and measuring the infrared reflection spectrum. Obtain the reflectance at a specific wave number in the reflection spectrum, based on the correlation between the reflectance and the roughness obtained in advance, by infrared spectroscopy of the steel sheet roughness, characterized by measuring the roughness of the steel sheet surface Measurement method.
JP8536592A 1992-04-07 1992-04-07 Measuring method by infrared spectroscopy method for surface of steel plate Withdrawn JPH05288671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8536592A JPH05288671A (en) 1992-04-07 1992-04-07 Measuring method by infrared spectroscopy method for surface of steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8536592A JPH05288671A (en) 1992-04-07 1992-04-07 Measuring method by infrared spectroscopy method for surface of steel plate

Publications (1)

Publication Number Publication Date
JPH05288671A true JPH05288671A (en) 1993-11-02

Family

ID=13856694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8536592A Withdrawn JPH05288671A (en) 1992-04-07 1992-04-07 Measuring method by infrared spectroscopy method for surface of steel plate

Country Status (1)

Country Link
JP (1) JPH05288671A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2348492A (en) * 1998-04-03 2000-10-04 Advantest Corp Surface inspection device
GB2335982B (en) * 1998-04-03 2000-12-06 Advantest Corp Surface inspection using the ratio of intensities of S-and P- polarized light components of a laser beam
JP2007225418A (en) * 2006-02-23 2007-09-06 Mitsubishi Heavy Ind Ltd Evaluation device of transparent conductive film and evaluation method of transparent conductive film
JP2019082355A (en) * 2017-10-30 2019-05-30 パナソニックIpマネジメント株式会社 Resin determination method and device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2348492A (en) * 1998-04-03 2000-10-04 Advantest Corp Surface inspection device
GB2335982B (en) * 1998-04-03 2000-12-06 Advantest Corp Surface inspection using the ratio of intensities of S-and P- polarized light components of a laser beam
GB2348492B (en) * 1998-04-03 2001-08-15 Advantest Corp Surface inspection method and device for determining the roughness of an inspected surface
US6356347B1 (en) 1998-04-03 2002-03-12 Advantest Corporation Surface inspection using the ratio of intensities of s- and p-polarized light components of a laser beam reflected a rough surface
US6433877B2 (en) 1998-04-03 2002-08-13 Advantest Corporation Surface inspection using the ratio of intensities of s- and p-polarized light components of a laser beam reflected a rough surface
JP2007225418A (en) * 2006-02-23 2007-09-06 Mitsubishi Heavy Ind Ltd Evaluation device of transparent conductive film and evaluation method of transparent conductive film
JP2019082355A (en) * 2017-10-30 2019-05-30 パナソニックIpマネジメント株式会社 Resin determination method and device

Similar Documents

Publication Publication Date Title
Hilfiker et al. Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry
US6794651B2 (en) Method of measuring chromated conversion coating amount using infrared absorbance
US6184528B1 (en) Method of spectral nondestructive evaluation
US6784431B2 (en) Method of measuring anodize coating amount using infrared absorbance
US5411890A (en) Method for measuring atmospheric corrosion
JPH05288671A (en) Measuring method by infrared spectroscopy method for surface of steel plate
US20020031164A1 (en) Method and apparatus for photothermal analysis of a layer of material, especially for thickness measurement thereof
JPH095038A (en) Chromate treatment steel plate and chromate film thickness measuring method and apparatus
Roques-Carmes et al. Potentiality of Reflectometry for the Study of the Adsorption on Dielectric and Metal Substrates: Application to the Adsorption of Polyvinylimidazole on Silica and Gold
WO2011148138A1 (en) Apparatus and method for locating the centre of a beam profile
JP2011196945A (en) Film thickness measuring method and calibration plate of coating covered with surface of banded metal material
US6797958B2 (en) Method of measuring sol-gel coating thickness using infrared absorbance
US5717490A (en) Method for identifying order skipping in spectroreflective film measurement equipment
US7119336B2 (en) Method of measuring coating using two-wavelength infrared reflectance
JPS5830605A (en) Method for measuring thickness of surface film
Duparre et al. Morphology investigations by atomic force microscopy of thin films and substrates for excimer laser mirrors
Yoshikawa et al. Fluorescence-Based Calibration Model for In-Situ Measurement of Micro-scaled Lubricant Thickness Distribution at Indentation Interface
JP2009294059A (en) Coating adhesion amount measuring method and device of galvannealed steel sheet with coating
KR20080060850A (en) Method for measuring surface roughness of coated steel
JP3614904B2 (en) Steel plate with excellent post-paint clarity and its manufacturing method
JPH0526625A (en) Oil film quantity measuring method and device
Alexander et al. Surface roughness measurement of flat and curved machined metal parts using a near infrared super-continuum laser
Honda et al. Coating thickness gauge
Davis et al. Antireflection Coatings for Semiconductor Failure Analysis
Hoffard et al. Grazing-Angle Fourier Transform Infrared Spectroscopy for Online Surface Cleanliness Verification. Year 1

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608