JPH05288556A - Semiconductor laser gyroscope - Google Patents

Semiconductor laser gyroscope

Info

Publication number
JPH05288556A
JPH05288556A JP8408892A JP8408892A JPH05288556A JP H05288556 A JPH05288556 A JP H05288556A JP 8408892 A JP8408892 A JP 8408892A JP 8408892 A JP8408892 A JP 8408892A JP H05288556 A JPH05288556 A JP H05288556A
Authority
JP
Japan
Prior art keywords
light
gain waveguide
semiconductor
light output
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8408892A
Other languages
Japanese (ja)
Other versions
JP3221576B2 (en
Inventor
Satoru Oku
哲 奥
Masahiro Ikeda
正宏 池田
Yasuo Shibata
泰夫 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP08408892A priority Critical patent/JP3221576B2/en
Publication of JPH05288556A publication Critical patent/JPH05288556A/en
Application granted granted Critical
Publication of JP3221576B2 publication Critical patent/JP3221576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Gyroscopes (AREA)

Abstract

PURPOSE:To provide a small-sized, high-precision semiconductor laser gyroscope reducing the deterioration of the positional precision of optical components by the aging change. CONSTITUTION:A ring-like gain wave guide path 11 having the function of a ring resonator is formed on a p-n junction semiconductor substrate 10, a current is fed via an electrode 22, and a carrier is injected into the gain wave guide path 11 to generate a laser oscillation. Laser beams propagated clockwise and counterclockwise in the gain wave guide path 11 are partially extracted from light output faces 13, 14 to interfere with each other in a light absorption region 17, and the coherent light intensity is extracted via an electrode 23 as a photoelectric current. Optical components are integrally formed on the same semiconductor substrate 10, they can be integrated, the positional precision of the optical components can be strictly set, and a small-sized, high-precision gyroscope can be constituted at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザジャイロ
に関し、特に半導体基板上に集積された小型、高精度で
安価な半導体レーザジャイロに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser gyro, and more particularly to a small-sized, highly accurate and inexpensive semiconductor laser gyro integrated on a semiconductor substrate.

【0002】[0002]

【従来の技術】従来、移動する物体の角速度を検出する
ためのジャイロとしては、回転子をもつ機械的ジャイロ
や光ファイバを用いた光ファイバジャイロが知られてい
る。特に光ファイバジャイロは、軽量化が図れる利点を
有するため精力的に開発が進められている。
2. Description of the Related Art Conventionally, as a gyro for detecting the angular velocity of a moving object, a mechanical gyro having a rotor and an optical fiber gyro using an optical fiber are known. In particular, the optical fiber gyro has been energetically developed because it has the advantage of being lightweight.

【0003】光ファイバジャイロは図2に示すごとく、
基本的にはレーザ光源1、ハーフミラー2、ファイバリ
ング干渉計3、光検出器4より構成される。レーザ光源
1より出射されたレーザ光5は、ハーフミラー2におい
て2方向に分岐され、ファイバリング干渉計3の相対す
る2方向から入射される。ファイバリング干渉計3を時
計回転方向、及び反時計回転方向に伝搬したレーザ光
は、ファイバリング干渉計3より出射された後、再びハ
ーフミラー2により加え合わされて光検出器4の位置で
干渉させられる。この時、ファイバリング干渉計3が回
転運動をうけると、ファイバリング内を時計回転方向、
及び反時計回転方向に伝搬するそれぞれのレーザ光は、
サグナック効果により伝搬後に位相差を生じる。この位
相差は、干渉フリンジ6のシフト量Zとなってあらわ
れ、回転運動の角速度が大きくなると位相差が増加し、
シフト量Zの増加となって測定される。実際には干渉面
に配置した光検出器4から出力される信号の強度変化に
よりシフト量を算出し、この光ファイバジャイロを取付
けた物体の移動を検知することができる。
An optical fiber gyro is, as shown in FIG.
Basically, it comprises a laser light source 1, a half mirror 2, a fiber ring interferometer 3, and a photodetector 4. The laser light 5 emitted from the laser light source 1 is branched into two directions in the half mirror 2 and is incident from two opposite directions of the fiber ring interferometer 3. The laser light propagated in the clockwise and counterclockwise directions through the fiber ring interferometer 3 is emitted from the fiber ring interferometer 3 and then added again by the half mirror 2 to cause interference at the position of the photodetector 4. Be done. At this time, when the fiber ring interferometer 3 receives a rotational movement, the fiber ring interferometer 3 rotates clockwise in the fiber ring.
And the respective laser lights propagating in the counterclockwise direction,
A phase difference occurs after propagation due to the Sagnac effect. This phase difference appears as the shift amount Z of the interference fringe 6, and the phase difference increases as the angular velocity of the rotary motion increases,
It is measured as the shift amount Z increases. Actually, the shift amount can be calculated from the intensity change of the signal output from the photodetector 4 arranged on the interference surface, and the movement of the object to which this optical fiber gyro is attached can be detected.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前述し
た従来の光ファイバジャイロにおいてはレーザ光源、ハ
ーフミラー、光ファイバ、光検出器といった光学部品
を、高い位置精度でもって配置することが要求され、装
置としては大型で高価なものとなっていた。また、経時
変化による光学部品の位置精度劣化が問題となってい
た。
However, in the above-mentioned conventional optical fiber gyro, it is required that optical components such as a laser light source, a half mirror, an optical fiber, and a photodetector be arranged with high positional accuracy. As a result, it was large and expensive. In addition, the deterioration of the positional accuracy of the optical component due to changes over time has been a problem.

【0005】本発明の目的は上記の問題点に鑑み、経時
変化による光学部品の位置精度劣化を低減した半導体レ
ーザジャイロを提供すること、さらには、小型で高精度
な半導体レーザジャイロを提供することにある。
In view of the above problems, it is an object of the present invention to provide a semiconductor laser gyro which reduces deterioration in the positional accuracy of optical components due to changes over time, and further to provide a small and highly accurate semiconductor laser gyro. It is in.

【0006】[0006]

【課題を解決するための手段】本発明は、上記の目的を
達成するために、請求項1では、移動する物体の角速度
を検出するための半導体レーザジャイロであって、リン
グ形状の共振器構造をなす半導体利得導波路と、該半導
体利得導波路内にキャリアを注入するキャリア注入手段
と、前記半導体利得導波路内を時計回転方向、及び反時
計回転方向に伝搬する光の一部をそれぞれ出力するため
の光出力手段とを具備し、該光出力手段から出射された
前記時計回転方向、及び反時計回転方向に伝搬する光が
重なり合う位置に、受光強度に対応した電気信号を出力
する光検出器を設けた半導体レーザジャイロを提案す
る。
To achieve the above object, the present invention provides, in claim 1, a semiconductor laser gyro for detecting an angular velocity of a moving object, which is a ring-shaped resonator structure. Forming a semiconductor gain waveguide, carrier injection means for injecting carriers into the semiconductor gain waveguide, and outputting a part of light propagating in the semiconductor gain waveguide in the clockwise and counterclockwise directions, respectively. Light detection means for outputting electric signals corresponding to the received light intensity at a position where lights propagating in the clockwise and counterclockwise directions emitted from the light output means are overlapped with each other. We propose a semiconductor laser gyro equipped with a heater.

【0007】また、請求項2では、請求項1記載の半導
体レーザジャイロにおいて、前記リング形状の半導体利
得導波路、キャリア注入手段、光出力手段、及び光検出
器が同一の半導体基板上に形成されてなる半導体レーザ
ジャイロを提案する。
According to a second aspect, in the semiconductor laser gyro according to the first aspect, the ring-shaped semiconductor gain waveguide, carrier injection means, light output means, and photodetector are formed on the same semiconductor substrate. We propose a semiconductor laser gyro.

【0008】また、請求項3では、請求項1又は2記載
の半導体レーザジャイロにおいて、前記光出力手段が、
前記半導体利得導波路に形成された部分的透過鏡からな
る半導体レーザジャイロを提案する。
According to a third aspect, in the semiconductor laser gyro according to the first or second aspect, the light output means is
A semiconductor laser gyro composed of a partially transmissive mirror formed in the semiconductor gain waveguide is proposed.

【0009】さらに、請求項4では、請求項1又は2記
載の半導体レーザジャイロにおいて、前記光出力手段
が、方向性結合器からなる半導体レーザジャイロを提案
する。
Further, a fourth aspect of the present invention proposes the semiconductor laser gyro according to the first or second aspect, wherein the light output means is a directional coupler.

【0010】[0010]

【作用】本発明の請求項1によれば、リング形状に構成
された半導体利得導波路内に、キャリア注入手段により
キャリアが注入される。これにより、前記半導体利得導
波路内にレーザ発振が生じ、前記半導体利得導波路内の
時計回転方向及び反時計回転方向にレーザ光が伝搬す
る。これにより、従来の光ファイバジャイロにおける光
源とリング干渉計とを一体構造とした半導体リング共振
器レーザが構成される。さらに、光出力手段により、前
記半導体利得導波路内を相反する方向に伝搬するレーザ
光のそれぞれの一部が出力光として取り出される。これ
らの出力光は、光検出器が構成された位置において干渉
し、この干渉光の強度に対応した電気信号が前記光検出
器によって出力される。
According to the first aspect of the present invention, carriers are injected by the carrier injection means into the ring-shaped semiconductor gain waveguide. As a result, laser oscillation occurs in the semiconductor gain waveguide, and the laser light propagates in the clockwise and counterclockwise directions in the semiconductor gain waveguide. As a result, a semiconductor ring resonator laser in which the light source and the ring interferometer in the conventional optical fiber gyro are integrated is constructed. Further, the light output means extracts a part of each of the laser lights propagating in the semiconductor gain waveguide in opposite directions as output light. These output lights interfere at the position where the photodetector is configured, and an electric signal corresponding to the intensity of the interference light is output by the photodetector.

【0011】また、請求項2によれば、前記リング形状
の半導体利得導波路、キャリア注入手段、光出力手段、
及び光検出器が同一の半導体基板上に形成される。
According to a second aspect, the ring-shaped semiconductor gain waveguide, carrier injection means, light output means,
And the photodetector are formed on the same semiconductor substrate.

【0012】また、請求項3によれば、前記光出力手段
が前記半導体利得導波路に形成された部分的透過鏡によ
って構成され、前記半導体利得導波路内を時計回転方向
及び反時計回転方向に伝搬するレーザ光のそれぞれの一
部が前記部分的透過鏡を介して出力光として取り出され
る。
According to a third aspect of the present invention, the light output means is constituted by a partial transmission mirror formed in the semiconductor gain waveguide, and the semiconductor gain waveguide is rotated in the clockwise direction and the counterclockwise direction in the semiconductor gain waveguide. A part of each of the propagating laser light is extracted as output light through the partial transmission mirror.

【0013】さらに、請求項4によれば、前記光出力手
段が、方向性結合器によって構成され、前記半導体利得
導波路内を時計回転方向及び反時計回転方向に伝搬する
レーザ光のそれぞれの一部が前記方向性結合器を介して
出力光として取り出される。
Further, according to a fourth aspect of the present invention, the light output means is constituted by a directional coupler, and each of the laser lights propagating in the semiconductor gain waveguide in the clockwise rotation direction and the counterclockwise rotation direction. The part is taken out as output light through the directional coupler.

【0014】[0014]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は本発明の一実施例の構成を示す平面図、
図3は一実施例における部分透過鏡の構成を示す斜視図
である。図において、10はpn接合を有する半導体基
板で、この半導体基板10上には幅4μm、一辺の長さ
600μmの四角形状の半導体利得導波路(以下、利得
導波路と称する)11が構成されている。この利得導波
路11はリング共振器の機能を有し、その四隅には、交
差する導波路の光軸に対し45度の角度をもつ面12が
形成されており、利得導波路11の基部がpn接合下1
μmになるまで反応性イオンビームエッチングで加工す
ることにより、この面12を反射鏡として作用させてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 is a plan view showing the configuration of an embodiment of the present invention,
FIG. 3 is a perspective view showing the structure of the partial transmission mirror in one embodiment. In the figure, 10 is a semiconductor substrate having a pn junction, on which a rectangular semiconductor gain waveguide (hereinafter, referred to as gain waveguide) 11 having a width of 4 μm and a side length of 600 μm is formed. There is. This gain waveguide 11 has the function of a ring resonator, and at the four corners thereof, surfaces 12 having an angle of 45 degrees with respect to the optical axes of the intersecting waveguides are formed, and the base of the gain waveguide 11 is Below pn junction 1
This surface 12 is made to act as a reflecting mirror by processing by reactive ion beam etching until it becomes μm.

【0015】また、図3に示すごとく利得導波路11の
四隅のうちの隣合う2箇所の面(反射鏡)12の一部の
領域には、その反射角が利得導波路11内を伝搬する光
の光軸に対して全反射角以下の角度を有するような面1
3、及び面14が光出力面として設けられている。この
様な構造とすることにより、面13、14を有する面1
2によって構成される反射鏡を部分透過鏡として動作さ
せている。即ち、光出力面13は利得導波路11内を時
計回転方向に伝搬する光15の一部を出力光18として
出射し、光出力面14は利得導波路11内を反時計回転
方向に伝搬する光16の一部を出力光19として出射す
る。
Further, as shown in FIG. 3, the reflection angle propagates in the gain waveguide 11 in a part of regions of two adjacent surfaces (reflecting mirrors) 12 of the four corners of the gain waveguide 11. A surface 1 having an angle equal to or less than the total reflection angle with respect to the optical axis of light
3 and surface 14 are provided as light output surfaces. With such a structure, the surface 1 having the surfaces 13 and 14 is formed.
The reflecting mirror constituted by 2 is operated as a partial transmitting mirror. That is, the light output surface 13 emits a part of the light 15 propagating in the gain waveguide 11 in the clockwise direction as the output light 18, and the light output surface 14 propagates in the gain waveguide 11 in the counterclockwise direction. A part of the light 16 is emitted as the output light 19.

【0016】これら2箇所の光出力面13,14のそれ
ぞれから出射された光18,19は半導体基板10上に
設けらた光吸収領域(光検出器)17の位置において重
ね合わされる。この光吸収領域17は利得導波路11と
同一組成の材料からなっている。さらに、利得導波路1
1と光吸収領域17にはそれぞれ独立した電極22,2
3が設けられており、この電極22を介して利得導波路
11へ電流を流すことにより利得導波路11内にキャリ
アを注入し、利得導波路11内でレーザ発振を生じさせ
る。また、光吸収領域17に電極23を設けることによ
り、周知の光検出器が構成され、前述した2箇所の光出
力面13,14から出射された光の干渉光強度を電気信
号としてモニタすることができる。
Lights 18 and 19 emitted from the two light output surfaces 13 and 14, respectively, are superposed at the position of a light absorption region (photodetector) 17 provided on the semiconductor substrate 10. The light absorption region 17 is made of a material having the same composition as the gain waveguide 11. Furthermore, the gain waveguide 1
1 and the light absorption region 17 have independent electrodes 22 and 2 respectively.
3 is provided, and carriers are injected into the gain waveguide 11 by causing a current to flow through the gain waveguide 11 via the electrode 22, and laser oscillation is generated in the gain waveguide 11. Further, by providing the electrode 23 in the light absorption region 17, a known photodetector is configured, and the interference light intensity of the light emitted from the two light output surfaces 13 and 14 described above is monitored as an electric signal. You can

【0017】上記の構成からなる素子において、利得導
波路11に電流を流した状態で、いろいろな角速度で半
導体基板10を回転させたところ、光吸収領域17に流
れる電流はそれらの回転角速度に対応した周波数を示し
た。これは、利得導波路11によって構成されるリング
共振器内を時計回転方向、及び反時計回転方向に伝搬す
るレーザ光が、素子の回転によりサグナック効果を受け
たことでレーザ発振周波数シフトを生じ、これらのレー
ザ光の干渉によるビート周波数が光吸収領域17の光電
流の周波数となって測定されているからである。
In the element having the above structure, when the semiconductor substrate 10 is rotated at various angular velocities while the current is flowing in the gain waveguide 11, the current flowing in the light absorption region 17 corresponds to those rotational angular velocities. The frequency is shown. This is because the laser light propagating in the clockwise direction and the counterclockwise direction in the ring resonator formed by the gain waveguide 11 undergoes the Sagnac effect due to the rotation of the element, which causes a laser oscillation frequency shift, This is because the beat frequency due to the interference of these laser lights is measured as the frequency of the photocurrent in the light absorption region 17.

【0018】一般にビート周波数frは、リング共振器
の光路長L、光路の囲む面積をA、光の波長をλ、リン
グ面の法線と回転軸のなす角度をΦ、回転角速度をωと
すると、fr=4AωcosΦ/λLで与えられる。前
述した素子においては、一辺の長さ600μm、レーザ
の発振波長1.0 μmであり、Φ=0度の状態で回転させ
た際にfr=360KHzを観測しており、このことか
ら回転角速度ω=600sec-1であることがわかる。
Generally, the beat frequency fr is defined by the optical path length L of the ring resonator, the area surrounded by the optical path A, the wavelength of light λ, the angle between the normal of the ring surface and the rotation axis Φ, and the rotation angular velocity ω. , Fr = 4A ω cos Φ / λL. In the element described above, the length of one side is 600 μm, the oscillation wavelength of the laser is 1.0 μm, and fr = 360 KHz is observed when rotated in the state of Φ = 0 degree, and from this, the rotational angular velocity ω = 600 sec It turns out to be -1 .

【0019】前述したように本実施例によれば、リング
形状の利得導波路11内にレーザ発振が生じ、利得導波
路11内の時計回転方向及び反時計回転方向にレーザ光
を伝搬させることができ、従来の光ファイバジャイロに
おける光源とリング干渉計とを一体構造とすることがで
きるので、従来における光源とリング干渉計の高精度な
位置合わせ作業の手間を省くことができると共に、経時
変化による光学部品の位置精度劣化をなくすことができ
る。さらに、従来例における各光学部品を利得導波路1
1及び光吸収領域17として同一の半導体基板10上に
一体に形成したので、小型、且つ高精度なジャイロを構
成することができると共に、安価にて供給することがで
きる。
As described above, according to this embodiment, laser oscillation occurs in the ring-shaped gain waveguide 11, and the laser light can be propagated in the clockwise and counterclockwise directions in the gain waveguide 11. In addition, since the light source and the ring interferometer in the conventional optical fiber gyro can be integrated, it is possible to save the labor of highly accurate alignment work of the conventional light source and the ring interferometer, and to change with time. It is possible to eliminate the deterioration of the positional accuracy of the optical parts. Furthermore, each optical component in the conventional example is replaced with the gain waveguide 1.
Since the 1 and the light absorption region 17 are integrally formed on the same semiconductor substrate 10, it is possible to configure a gyro that is small in size and high in accuracy, and can be supplied at a low cost.

【0020】尚、本実施例においては、利得導波路11
を四角形状のリング共振器構造としたが、動作原理から
言って円形、または三角形といった多角形状のリング共
振器構造としても同様の効果が得られることは明らかで
ある。
In the present embodiment, the gain waveguide 11
Although the ring resonator structure has a quadrangular shape, it is clear that the same effect can be obtained by a ring resonator structure having a polygonal shape such as a circular shape or a triangular shape in view of the principle of operation.

【0021】また、本実施例では、利得導波路11にp
n接合を設けて電流を流し、利得導波路11内にキャリ
アを注入してレーザ発振させているが、これに限定され
ることはなく、利得導波路11の外部から利得導波路1
1に光を照射してキャリアを注入し、レーザ発振させて
も良い。
In the present embodiment, the gain waveguide 11 is provided with p.
An n-junction is provided to flow a current, and carriers are injected into the gain waveguide 11 to cause laser oscillation. However, the present invention is not limited to this, and the gain waveguide 1 is provided from outside the gain waveguide 11.
1 may be irradiated with light to inject carriers to cause laser oscillation.

【0022】また、本実施例では光出力手段として光出
力面13,14を用いたが、これに限定されることはな
く、例えば図4に示すごとく、2個の方向性結合器2
0,21を用いることも可能である。図4において、
(a) は平面図、(b) は平面図におけるA−A’線矢視方
向の断面図である。この場合はリング状の利得導波路1
1内を時計回転方向、及び反時計回転方向に伝搬するレ
ーザ光15、16の一部が2個の方向性結合器20、2
1により出力光18,19として取り出され、光吸収領
域17に導かれる。また、方向性結合器20,21を延
ばして出力光18,19を光吸収領域17に導くことに
より、利得導波路11から光吸収領域17までの伝搬路
における外部からの影響を低減することができる。
Further, although the light output surfaces 13 and 14 are used as the light output means in this embodiment, the present invention is not limited to this. For example, as shown in FIG. 4, two directional couplers 2 are used.
It is also possible to use 0,21. In FIG.
(a) is a plan view, (b) is a cross-sectional view taken along the line AA 'in the plan view. In this case, the ring-shaped gain waveguide 1
A part of the laser beams 15 and 16 propagating in the clockwise direction and the counterclockwise direction in the two 1 are two directional couplers 20 and 2.
The light is extracted as output light 18 and 19 by 1 and guided to the light absorption region 17. Further, by extending the directional couplers 20 and 21 and guiding the output lights 18 and 19 to the light absorption region 17, it is possible to reduce the influence from the outside in the propagation path from the gain waveguide 11 to the light absorption region 17. it can.

【0023】また、本実施例では光出力面13,14か
ら出射された光は空間を伝搬した後、光検知器17の位
置で重ね合わせられているが、光出力面13,14のそ
れぞれと光検知器17の間に光導波路を形成し、光出力
面13,14のそれぞれからの出力光18,19を光導
波路内を伝搬させて光検知器17に入射させる構造とす
ることも可能である。
In this embodiment, the light emitted from the light output surfaces 13 and 14 is superposed at the position of the photodetector 17 after propagating in the space. It is also possible to form a structure in which an optical waveguide is formed between the photodetectors 17 and the output lights 18 and 19 from the light output surfaces 13 and 14 are propagated in the optical waveguides and made incident on the photodetectors 17. is there.

【0024】さらに、本実施例においては、光検出器1
7を利得導波路11の外部に設けたが、相反する方向に
伝搬するレーザ光は利得導波路11内においても干渉を
生じている。従って、光検出器を利得導波路11内に設
けること、即ちリング形状利得導波路11の一部の領域
をその他の領域から電気的に分離した構造とすることで
上記のビート周波数を検知することも可能である。
Further, in this embodiment, the photodetector 1
Although 7 is provided outside the gain waveguide 11, the laser light propagating in the opposite directions causes interference even in the gain waveguide 11. Therefore, the above-mentioned beat frequency is detected by providing a photodetector in the gain waveguide 11, that is, by making a part of the region of the ring-shaped gain waveguide 11 electrically separated from other regions. Is also possible.

【0025】[0025]

【発明の効果】以上説明した如く本発明の請求項1によ
れば、従来の光ファイバジャイロにおける光源とリング
干渉計とを一体構造とすることができるので、従来にお
ける光源とリング干渉計の高精度な位置合わせ作業の手
間を省くことができると共に、経時変化による光学部品
の位置精度劣化をなくすことができる。
As described above, according to the first aspect of the present invention, since the light source and the ring interferometer in the conventional optical fiber gyro can be integrated with each other, the height of the conventional light source and the ring interferometer can be increased. It is possible to save the time and labor for the accurate alignment work, and it is possible to eliminate the deterioration of the positional accuracy of the optical component due to a change with time.

【0026】また、請求項2によれば、上記の効果に加
えて、従来例における各光学部品が同一の半導体基板上
にほぼ一体に形成されるため、集積化が可能であると共
に、各光学部品の位置精度を厳密に設定することができ
るので、小型、且つ高精度なジャイロを構成することが
できると共に、安価にて供給することができる。
Further, according to claim 2, in addition to the above effects, since the respective optical components in the conventional example are formed almost integrally on the same semiconductor substrate, they can be integrated and each optical component can be integrated. Since the positional accuracy of the parts can be set strictly, a small-sized and highly accurate gyro can be constructed and the parts can be supplied at low cost.

【0027】さらに、請求項3、4によれば、上記の効
果に加えて、簡単な構成により容易に前記半導体利得導
波路から出力光を取り出すことができるという非常に優
れた効果を奏するものである。
Further, according to the third and fourth aspects, in addition to the above effects, a very excellent effect that the output light can be easily extracted from the semiconductor gain waveguide with a simple structure is exerted. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の半導体利得導波路からなる
リング共振器を用いた半導体レーザジャイロの構成を示
す平面図
FIG. 1 is a plan view showing the configuration of a semiconductor laser gyro using a ring resonator formed of a semiconductor gain waveguide according to an embodiment of the present invention.

【図2】従来の光ファイバジャイロを示す構成図FIG. 2 is a block diagram showing a conventional optical fiber gyro.

【図3】本発明の一実施例における部分透過鏡の構成を
示す斜視図
FIG. 3 is a perspective view showing a configuration of a partial transmission mirror in one embodiment of the present invention.

【図4】光出力手段として方向性結合器を用いた場合の
構成図
FIG. 4 is a configuration diagram when a directional coupler is used as a light output unit.

【符号の説明】[Explanation of symbols]

1…レーザ光源、2…ハーフミラー、3…光ファイバ干
渉計、4…光検知器、5…レーザ光、6…干渉フリン
ジ、10…半導体基板、11…リング形状半導体利得導
波路、12…反射鏡、13,14…光出力面、15…時
計回転方向に伝搬するレーザ光、16…反時計回転方向
に伝搬するレーザ光、17…光吸収領域、18,19…
出力光、20、21…光出力用の方向性結合器22,2
3…電極。
DESCRIPTION OF SYMBOLS 1 ... Laser light source, 2 ... Half mirror, 3 ... Optical fiber interferometer, 4 ... Photodetector, 5 ... Laser light, 6 ... Interference fringe, 10 ... Semiconductor substrate, 11 ... Ring-shaped semiconductor gain waveguide, 12 ... Reflection Mirrors 13, 14 ... Light output surface, 15 ... Laser light propagating in the clockwise direction, 16 ... Laser light propagating in the counterclockwise direction, 17 ... Light absorbing regions, 18, 19 ...
Output light, 20, 21 ... Directional couplers 22 and 2 for outputting light
3 ... Electrode.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 移動する物体の角速度を検出するための
半導体レーザジャイロであって、 リング形状の共振器構造をなす半導体利得導波路と、 該半導体利得導波路内にキャリアを注入するキャリア注
入手段と、 前記半導体利得導波路内を時計回転方向、及び反時計回
転方向に伝搬する光の一部をそれぞれ出力するための光
出力手段とを具備し、 該光出力手段から出射された前記時計回転方向、及び反
時計回転方向に伝搬する光が重なり合う位置に、受光強
度に対応した電気信号を出力する光検出器を設けた、 ことを特徴とする半導体レーザジャイロ。
1. A semiconductor laser gyro for detecting an angular velocity of a moving object, comprising: a semiconductor gain waveguide having a ring-shaped resonator structure; and carrier injection means for injecting carriers into the semiconductor gain waveguide. And a light output means for outputting a part of light propagating in the clockwise direction and the counterclockwise direction in the semiconductor gain waveguide, respectively, and the clockwise rotation emitted from the light output means. A semiconductor laser gyro characterized in that a photodetector that outputs an electric signal corresponding to the received light intensity is provided at a position where lights propagating in the counterclockwise direction and in the counterclockwise direction overlap.
【請求項2】 前記リング形状の半導体利得導波路、キ
ャリア注入手段、光出力手段、及び光検出器が同一の半
導体基板上に形成されてなることを特徴とする請求項1
記載の半導体レーザジャイロ。
2. The ring-shaped semiconductor gain waveguide, carrier injection means, light output means, and photodetector are formed on the same semiconductor substrate.
The described semiconductor laser gyro.
【請求項3】 前記光出力手段が、前記半導体利得導波
路に形成された部分的透過鏡からなることを特徴とする
請求項1又は2記載の半導体レーザジャイロ。
3. The semiconductor laser gyro according to claim 1, wherein the light output means comprises a partially transmissive mirror formed in the semiconductor gain waveguide.
【請求項4】 前記光出力手段が、方向性結合器からな
ることを特徴とする請求項1又は2記載の半導体レーザ
ジャイロ。
4. The semiconductor laser gyro according to claim 1, wherein the light output means comprises a directional coupler.
JP08408892A 1992-04-06 1992-04-06 Semiconductor laser gyro Expired - Lifetime JP3221576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08408892A JP3221576B2 (en) 1992-04-06 1992-04-06 Semiconductor laser gyro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08408892A JP3221576B2 (en) 1992-04-06 1992-04-06 Semiconductor laser gyro

Publications (2)

Publication Number Publication Date
JPH05288556A true JPH05288556A (en) 1993-11-02
JP3221576B2 JP3221576B2 (en) 2001-10-22

Family

ID=13820753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08408892A Expired - Lifetime JP3221576B2 (en) 1992-04-06 1992-04-06 Semiconductor laser gyro

Country Status (1)

Country Link
JP (1) JP3221576B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0995971A2 (en) * 1998-10-19 2000-04-26 Canon Kabushiki Kaisha Gyro and method of operating the same
EP0995969A2 (en) * 1998-10-19 2000-04-26 Canon Kabushiki Kaisha Semiconductor device, semiconductor laser and gyro
EP0995970A2 (en) * 1998-10-19 2000-04-26 Canon Kabushiki Kaisha Gyro and method of operating the same
EP1028308A2 (en) * 1999-02-10 2000-08-16 Canon Kabushiki Kaisha Gyro
US6297883B1 (en) 1998-10-19 2001-10-02 Canon Kabushiki Kaisha Ring laser gas gyro with beat signal detection from current, voltage, or impedance of the ring laser
US6304329B1 (en) 1998-10-19 2001-10-16 Canon Kabushiki Kaisha Gyro and semiconductor device having a plurality of laser diodes
US6448552B1 (en) 1999-03-16 2002-09-10 Canon Kabushiki Kaisha Gyro
US6559949B1 (en) 1999-01-22 2003-05-06 Canon Kabushiki Kaisha Gyro apparatus and gyroscope with multiple interfering laser beams affecting an electrical signal flowing therethrough
US6603113B2 (en) 2000-07-11 2003-08-05 Canon Kabushiki Kaisha Gyro comprising a ring laser in which beams of different oscillation frequencies coexist and propagate in mutually opposite circulation directions, driving method of gyro, and signal detecting method
US6631002B1 (en) 1999-11-11 2003-10-07 Canon Kabushiki Kaisha Control of laser beams in a ring laser gyro
US6639680B1 (en) 1999-11-11 2003-10-28 Canon Kabushiki Kaisha Ring laser gyro and driving method therefor with improved driving current
US6654126B1 (en) 1999-12-01 2003-11-25 Canon Kabushiki Kaisha Optical gyro with specific clock/calculation circuit
US6658039B2 (en) 2000-07-12 2003-12-02 Canon Kabushiki Kaisha Ring laser and method for driving a ring laser
US6665330B1 (en) 1999-09-14 2003-12-16 Canon Kabushiki Kaisha Semiconductor device having a semiconductor ring laser with a circularly formed ridge optical waveguide
US6741354B2 (en) 1999-01-18 2004-05-25 Canon Kabushiki Kaisha Laser device having an optical waveguide for discerning movement of an optical gyroscope and an optical gyroscope utilizing same
WO2009054467A1 (en) * 2007-10-25 2009-04-30 Advanced Telecommunications Research Institute International Semiconductor laser gyro
JP2009103646A (en) * 2007-10-25 2009-05-14 Advanced Telecommunication Research Institute International Semiconductor laser gyro
JP2009103647A (en) * 2007-10-25 2009-05-14 Advanced Telecommunication Research Institute International Semiconductor laser gyro
JP2009124046A (en) * 2007-11-16 2009-06-04 Advanced Telecommunication Research Institute International Semiconductor laser element and semiconductor laser gyro
WO2014042049A1 (en) * 2012-09-14 2014-03-20 株式会社ブイ・テクノロジー Semiconductor ring laser apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8153558B2 (en) 2004-02-13 2012-04-10 Bayer Cropscience Lp Method of improving grass quality
CA2472806A1 (en) 2004-05-18 2005-11-18 Petro-Canada Compositions and methods for treating turf insect pests and diseases such as fungal infestations
US9357768B2 (en) 2006-10-05 2016-06-07 Suncor Energy Inc. Herbicidal composition with increased herbicidal efficacy
NZ602160A (en) 2008-06-26 2013-12-20 Suncor Energy Inc Improved turfgrass fungicide formulation with pigment
AU2011301171C1 (en) 2010-09-09 2015-09-10 Suncor Energy Inc. Synergistic paraffinic oil and boscalid fungicides

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6493089B2 (en) 1998-10-19 2002-12-10 Canon Kabushiki Kaisha Gyro and method of operating the same with a modulated frequency signal
EP0995970A2 (en) * 1998-10-19 2000-04-26 Canon Kabushiki Kaisha Gyro and method of operating the same
EP0995971A2 (en) * 1998-10-19 2000-04-26 Canon Kabushiki Kaisha Gyro and method of operating the same
EP0995969A2 (en) * 1998-10-19 2000-04-26 Canon Kabushiki Kaisha Semiconductor device, semiconductor laser and gyro
EP0995970A3 (en) * 1998-10-19 2000-10-18 Canon Kabushiki Kaisha Gyro and method of operating the same
EP0995969A3 (en) * 1998-10-19 2000-10-18 Canon Kabushiki Kaisha Semiconductor device, semiconductor laser and gyro
EP0995971A3 (en) * 1998-10-19 2000-10-18 Canon Kabushiki Kaisha Gyro and method of operating the same
US6275296B1 (en) 1998-10-19 2001-08-14 Canon Kabushiki Kaisha Semiconductor laser gyro with modulated driving power source
US6297883B1 (en) 1998-10-19 2001-10-02 Canon Kabushiki Kaisha Ring laser gas gyro with beat signal detection from current, voltage, or impedance of the ring laser
US6304329B1 (en) 1998-10-19 2001-10-16 Canon Kabushiki Kaisha Gyro and semiconductor device having a plurality of laser diodes
US6445454B1 (en) 1998-10-19 2002-09-03 Canon Kabushiki Kaisha Gyro having modulated frequency driven laser
US6741354B2 (en) 1999-01-18 2004-05-25 Canon Kabushiki Kaisha Laser device having an optical waveguide for discerning movement of an optical gyroscope and an optical gyroscope utilizing same
US6559949B1 (en) 1999-01-22 2003-05-06 Canon Kabushiki Kaisha Gyro apparatus and gyroscope with multiple interfering laser beams affecting an electrical signal flowing therethrough
US6351311B1 (en) 1999-02-10 2002-02-26 Canon Kabushiki Kaisha Ring laser gyro with an injected third beam
EP1028308A3 (en) * 1999-02-10 2001-10-17 Canon Kabushiki Kaisha Gyro
EP1028308A2 (en) * 1999-02-10 2000-08-16 Canon Kabushiki Kaisha Gyro
US6448552B1 (en) 1999-03-16 2002-09-10 Canon Kabushiki Kaisha Gyro
US6665330B1 (en) 1999-09-14 2003-12-16 Canon Kabushiki Kaisha Semiconductor device having a semiconductor ring laser with a circularly formed ridge optical waveguide
US6639680B1 (en) 1999-11-11 2003-10-28 Canon Kabushiki Kaisha Ring laser gyro and driving method therefor with improved driving current
US6631002B1 (en) 1999-11-11 2003-10-07 Canon Kabushiki Kaisha Control of laser beams in a ring laser gyro
US6654126B1 (en) 1999-12-01 2003-11-25 Canon Kabushiki Kaisha Optical gyro with specific clock/calculation circuit
US6603113B2 (en) 2000-07-11 2003-08-05 Canon Kabushiki Kaisha Gyro comprising a ring laser in which beams of different oscillation frequencies coexist and propagate in mutually opposite circulation directions, driving method of gyro, and signal detecting method
US6658039B2 (en) 2000-07-12 2003-12-02 Canon Kabushiki Kaisha Ring laser and method for driving a ring laser
WO2009054467A1 (en) * 2007-10-25 2009-04-30 Advanced Telecommunications Research Institute International Semiconductor laser gyro
JP2009103646A (en) * 2007-10-25 2009-05-14 Advanced Telecommunication Research Institute International Semiconductor laser gyro
JP2009103647A (en) * 2007-10-25 2009-05-14 Advanced Telecommunication Research Institute International Semiconductor laser gyro
JP2009124046A (en) * 2007-11-16 2009-06-04 Advanced Telecommunication Research Institute International Semiconductor laser element and semiconductor laser gyro
WO2014042049A1 (en) * 2012-09-14 2014-03-20 株式会社ブイ・テクノロジー Semiconductor ring laser apparatus
JP2014059170A (en) * 2012-09-14 2014-04-03 V Technology Co Ltd Semiconductor ring laser apparatus
CN104782004A (en) * 2012-09-14 2015-07-15 株式会社V技术 Semiconductor ring laser apparatus

Also Published As

Publication number Publication date
JP3221576B2 (en) 2001-10-22

Similar Documents

Publication Publication Date Title
JPH05288556A (en) Semiconductor laser gyroscope
US4273445A (en) Interferometer gyroscope formed on a single plane optical waveguide
US4938594A (en) Asymmetric
JPS61277014A (en) Ring interferometer device
US9574880B2 (en) MEMS based ring laser gyroscope with reduced lock-in
IL154154A (en) Integrated optic gyroscope and method of fabrication
WO1999060337A9 (en) Integrated optics rotation sensor
JPH05215556A (en) Sensor
JPS63279115A (en) Measuring device with laser and annular resonator
US4433915A (en) Dual-polarization interferometer with a single-mode waveguide
US4677641A (en) Simplified readout optics for a ring laser apparatus
JPS61260689A (en) Reader for laser angular velocity sensor
JP2001124564A (en) Optical gyro and method using the same for detecting rotation direction
JPH0482067B2 (en)
JPH04154178A (en) Ring laser gyro device
JPS61184417A (en) Laser gyroscope
US5059029A (en) Radiation-hardened rlg readout
JPS6135486B2 (en)
US6914929B1 (en) Radiation-hardened RLG readout
JP2001124565A (en) Optical gyro and method using the same for detecting rotation direction
JPS61180108A (en) Detecting method of rotating speed
JPS63250514A (en) Optical gyroscope
JPH04154179A (en) Ring laser gyro device
CA1275722C (en) Simplified readout optics for a ring laser apparatus
US5898497A (en) Multimode optical fiber gyro with a double phase conjugate mirror

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070817

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090817

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110817

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120817

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11