JPH05288450A - Controller for freezing refrigerator - Google Patents

Controller for freezing refrigerator

Info

Publication number
JPH05288450A
JPH05288450A JP8356492A JP8356492A JPH05288450A JP H05288450 A JPH05288450 A JP H05288450A JP 8356492 A JP8356492 A JP 8356492A JP 8356492 A JP8356492 A JP 8356492A JP H05288450 A JPH05288450 A JP H05288450A
Authority
JP
Japan
Prior art keywords
temperature
outside air
compartment
refrigerating
freezer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8356492A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Takeuchi
和▲よし▼ 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP8356492A priority Critical patent/JPH05288450A/en
Publication of JPH05288450A publication Critical patent/JPH05288450A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To carefully regulate temperature in a freezing refrigerator which can freeze/refrigerate and store food. CONSTITUTION:The controller for a freezing refrigerator comprises calculating means 23 for calculating temperature rising degree of a freezing chamber to calculate a temperature rising degree in the refrigerator, and atmospheric temperature detecting means 31 to detect an atmospheric temperature. A fuzzy inference processor 34 fuzzy logically calculates based on the temperature rising degree, the atmospheric temperature, and a control rule output from a memory 33, obtains a lowering width of a set temperature, and set temperature calculating means regulates the set temperature based on it. A compressor, a motor- driven damper are controlled, and when all freezing chamber temperature sensors or all cold storage chamber temperature sensors become a predetermined temperature or higher, the speed of a fan is controlled to be switched to a high speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍冷蔵庫における冷
凍食品、冷蔵食品を鮮度よく長期間貯蔵するために、経
験則を基にした制御ルールと、それを構成するファジィ
変数のメンバシップ関数とによって最適な冷凍室、冷蔵
室の設定温度の下げ幅を推論して、その結果を出力する
ようにした冷凍冷蔵庫の制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control rule based on an empirical rule and a membership function of fuzzy variables constituting the rule, in order to store frozen foods and refrigerated foods in a freezer-refrigerator in a fresh and long-term manner. The present invention relates to a control device for a freezer-refrigerator which infers an optimum range of setting temperature reduction in the freezer compartment and the refrigerator compartment and outputs the result.

【0002】[0002]

【従来の技術】冷凍冷蔵庫の制御装置は、冷凍冷蔵庫
(以下冷蔵庫と省略する)の冷凍室,冷蔵室,野菜室の
各室を設定された温度で温調するように、ダンパ,ファ
ン,コンプレッサを制御するものである(例えば、実開
平2−47424号公報)。
2. Description of the Related Art A freezer-refrigerator control device includes a damper, a fan and a compressor so as to control the temperature of each of a freezer compartment, a refrigerator compartment and a vegetable compartment of a refrigerator-freezer (hereinafter referred to as a refrigerator) at a set temperature. (For example, Japanese Utility Model Laid-Open No. 2-47424).

【0003】以下、従来の冷凍冷蔵庫の制御装置につい
て図面を参照しながら、温調制御について説明する。
The temperature control of a conventional refrigerator-freezer control device will be described below with reference to the drawings.

【0004】図8は、従来の冷凍冷蔵庫の制御装置のブ
ロック図を示すものである。図8において、1は冷蔵庫
本体で、外箱2と内箱3と両者の空隙に形成されたウレ
タン発泡断熱材4とにより構成され、前面開口部に3つ
のドア5、6、7が配設されている。ドア5、6、7は
それぞれ冷蔵庫本体1の冷凍室8、冷蔵室9、野菜室1
0の開口部に対応して配設されている。
FIG. 8 is a block diagram of a conventional refrigerator-freezer control device. In FIG. 8, reference numeral 1 denotes a refrigerator body, which is composed of an outer box 2, an inner box 3 and a urethane foam heat insulating material 4 formed in a space between the outer box 2 and the inner box 3, and three doors 5, 6 and 7 are provided in a front opening. Has been done. Doors 5, 6 and 7 are respectively a freezer compartment 8, a refrigerator compartment 9 and a vegetable compartment 1 of the refrigerator body 1.
It is arranged corresponding to the opening of 0.

【0005】冷凍室8の底板11と冷蔵室9の天板12
に囲まれた区画壁内には蒸発器13とその背後にファン
14を有している。また、冷凍室8、冷蔵室9の背部に
は、蒸発器13からの冷却空気を各室に導入するための
通風路15、16が形成されている。17はコンプレッ
サであり、18は電動ダンパである。
A bottom plate 11 of the freezer compartment 8 and a top plate 12 of the refrigerating compartment 9
An evaporator 13 and a fan 14 are provided behind the evaporator 13 in the partition wall surrounded by. Further, ventilation paths 15 and 16 for introducing cooling air from the evaporator 13 into the respective compartments are formed at the backs of the freezing compartment 8 and the refrigerating compartment 9. Reference numeral 17 is a compressor, and 18 is an electric damper.

【0006】また、19は冷凍室温度センサである。2
0は冷凍室温度センサ19により冷凍室内の庫内温度を
検出する冷凍室庫内温度検出手段である。21は冷凍室
庫内温度検出手段20により検出された庫内温度が、冷
凍室の設定温度の範囲内であるかを判断する冷凍室庫内
温度判定手段である。22はコンプレッサ17を制御す
るコンプレッサ制御手段であり、23はファン14を制
御するファン制御手段である。
Reference numeral 19 is a freezer compartment temperature sensor. Two
Reference numeral 0 denotes a freezer compartment internal temperature detecting means for detecting the internal compartment temperature in the freezer compartment by the freezer compartment temperature sensor 19. Reference numeral 21 is a freezer compartment internal temperature determination means for determining whether the internal compartment temperature detected by the freezer compartment internal temperature detection means 20 is within the set temperature range of the freezer compartment. Reference numeral 22 is a compressor control means for controlling the compressor 17, and 23 is a fan control means for controlling the fan 14.

【0007】また、24は冷蔵室温度センサである。2
5は冷蔵室温度センサ24により冷蔵室内の庫内温度を
検出する冷蔵室庫内温度検出手段である。26は冷蔵室
庫内温度検出手段25により検出された庫内温度が、冷
蔵室の設定温度の範囲内であるかを判断する冷蔵室庫内
温度判定手段である。27は電動ダンパ18を制御する
電動ダンパ制御手段である。
Reference numeral 24 is a refrigerating room temperature sensor. Two
Reference numeral 5 denotes a refrigerating compartment internal temperature detecting means for detecting a refrigerating compartment internal temperature by the refrigerating compartment temperature sensor 24. Reference numeral 26 is a refrigerating compartment internal temperature determining means for determining whether the refrigerating compartment internal temperature detected by the refrigerating compartment internal temperature detecting means 25 is within a set temperature range of the refrigerating compartment. An electric damper control unit 27 controls the electric damper 18.

【0008】以上のように構成された冷凍冷蔵庫の制御
装置について、以下図9を用いてその動作を説明する。
The operation of the control device for the refrigerator / refrigerator constructed as described above will be described below with reference to FIG.

【0009】図9(a)は、従来の冷凍冷蔵庫の冷凍室
8の温調制御を説明するためのフローチャートである。
まず、冷凍室庫内温度検出手段20は冷凍室温度センサ
19により冷凍室内の庫内温度Tfcを検出する(Ste
p51)。すると冷凍室庫内温度判定手段21は、庫内
温度Tfcが冷凍室の設定温度(Tfcon:コンプレッサ、
ファンのON温度,Tfcoff:コンプレッサ、ファンのOFF
温度)の範囲内であるかを判断し(Step52)、こ
の判断を基に、コンプレッサ制御手段22はコンプレッ
サ17を制御し、ファン制御手段23はファン14を制
御する。(Step53)。以上より、冷凍室8に適温
の冷風を送り込み、冷凍室8の温調を行なう。
FIG. 9 (a) is a flow chart for explaining the temperature control of the freezer compartment 8 of the conventional refrigerator / freezer.
First, the freezer compartment internal temperature detection means 20 detects the internal compartment temperature Tfc in the freezer compartment by the freezer compartment temperature sensor 19 (Step).
p51). Then, the freezer compartment internal temperature determination means 21 determines that the internal compartment temperature Tfc is the set temperature of the freezer compartment (Tfcon: compressor,
Fan ON temperature, Tfcoff: Compressor, fan OFF
It is determined whether the temperature is within the temperature range (Step 52). Based on this determination, the compressor control unit 22 controls the compressor 17, and the fan control unit 23 controls the fan 14. (Step 53). As described above, the cold air having an appropriate temperature is sent to the freezing room 8 to control the temperature of the freezing room 8.

【0010】図9(b)は、従来の冷凍冷蔵庫の冷蔵室
9の温調制御を説明するためのフローチャートである。
まず、冷蔵室庫内温度検出手段25は冷蔵室温度センサ
24により冷蔵室内の庫内温度Tpcを検出する(Ste
p61)。すると冷蔵室庫内温度判定手段26は、庫内
温度Tpcが冷蔵室の設定温度(Tpcon:電動ダンパの開
温度,Tpcoff:電動ダンパの閉温度)の範囲内である
かを判断し(Step62)、この判断を基に、電動ダ
ンパ制御手段27は電動ダンパ18を制御する。(St
ep63)。以上より、冷蔵室9に適温の冷風を送り込
み、冷蔵室9の温調を行なう。
FIG. 9B is a flow chart for explaining the temperature control of the refrigerating compartment 9 of the conventional freezer / refrigerator.
First, the refrigerating compartment internal temperature detection means 25 detects the internal refrigerating temperature Tpc in the refrigerating compartment by the refrigerating compartment temperature sensor 24 (Step).
p61). Then, the refrigerator compartment internal temperature determination means 26 determines whether the refrigerator temperature Tpc is within the range of the preset temperature of the refrigerator compartment (Tpcon: opening temperature of electric damper, Tpcoff: closing temperature of electric damper) (Step 62). The electric damper control means 27 controls the electric damper 18 based on this determination. (St
ep63). From the above, the cold air of appropriate temperature is sent to the refrigerating compartment 9 to control the temperature of the refrigerating compartment 9.

【0011】[0011]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、冷凍室においては、コンプレッサ及びフ
ァンを制御する基になる冷凍室の設定温度(Tfcon,T
fcoff)が、庫内温度Tfcによらず一定であり、また、
冷蔵室においては、電動ダンパを制御する基になる設定
温度(Tpcon,Tpcoff)が、庫内温度Tpcによらず一
定であったため、キメ細かな温調を行なうことができ
ず、例えば夏場など、食品を詰め込んだり、急な来客な
どで早く冷やしたいときに、冷凍室、冷蔵室とも、最適
な温調を行なうことができないと共に、ファンの回転数
がドア開閉により庫内温度が上昇しても一定回転であっ
たため、庫内温度上昇を抑えることができないという問
題点を有していた。
However, in the above-mentioned configuration, in the freezer compartment, the set temperature (Tfcon, Tf) of the freezer compartment, which is the basis for controlling the compressor and the fan, is set.
fcoff) is constant regardless of the internal temperature Tfc, and
In the refrigerating room, the set temperature (Tpcon, Tpcoff) that is the basis for controlling the electric damper is constant regardless of the temperature Tpc in the refrigerator, and thus it is not possible to perform fine temperature control, for example, in summer. When you want to pack food or cool it quickly due to a sudden visitor etc., it is not possible to optimally control the temperature in both the freezing room and the refrigerating room, and even if the rotation speed of the fan opens and closes the temperature inside the refrigerator. Since the rotation was constant, there was a problem that it was not possible to suppress the temperature rise in the refrigerator.

【0012】本発明は上記の問題点を解決するもので、
冷凍室、冷蔵室それぞれの庫内の温度上昇度と外気温度
に応じて、冷凍室、冷蔵室それぞれの設定温度の下げ幅
を演算し、それぞれ設定温度を調整すると共に、全ての
庫内温度センサが温度上昇した時ファンを高回転に切り
換えることにより、キメ細かな温調を行なうことができ
る冷凍冷蔵庫の制御装置を提供することを目的とする。
The present invention solves the above problems,
Depending on the temperature rise inside the freezer compartment and the refrigerator compartment and the outside air temperature, the reduction range of the set temperature of the freezer compartment and the refrigerator compartment is calculated, and the set temperature is adjusted respectively, and all the inside temperature sensors An object of the present invention is to provide a control device for a refrigerator / freezer capable of performing fine temperature control by switching the fan to high rotation when the temperature rises.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に本発明の冷凍冷蔵庫の制御装置は、冷凍室において
は、複数個の冷凍室温度センサと、冷凍室庫内温度検出
手段と、冷凍室庫内温度が前回のコンプレッサが運転開
始する時の各冷凍室温度センサの温度を記憶し、この温
度に対し各冷凍室温度センサが一定温度を越えたかどう
かを判定する冷凍室庫内温度判定手段と、外気温度セン
サと、外気温度検出手段と、前記冷凍室庫内温度検出手
段の出力により前回のコンプレッサが運転開始する時の
各冷凍室温度センサの温度からの庫内の温度上昇度を演
算する冷凍室温度上昇度演算手段と、冷凍室の設定温度
の下げ幅を求めるための経験則に基づく制御ルールを記
憶する第1のメモリと、庫内の温度上昇度と、外気温度
と、前記メモリから取り出された制御ルールに基づい
て、ファジィ論理演算を行ない冷凍室の設定温度の下げ
幅を演算する第1のファジィ推論プロセッサと、設定温
度の下げ幅から冷凍室の設定温度を演算する冷凍室設定
温度演算手段と、前記冷凍室設定温度演算手段により演
算された設定温度から、コンプレッサを制御するコンプ
レッサ制御手段と、全ての冷凍室温度センサが一定温度
以上になった時、ファンの回転数を高回転に切り換える
ファン制御手段とを備える。
In order to solve the above-mentioned problems, a control device for a refrigerator / freezer according to the present invention, in a freezer compartment, has a plurality of freezer compartment temperature sensors, a freezer compartment temperature detection means, and a freezer compartment. Stores the temperature of each freezer compartment temperature sensor when the previous compressor started operating, and determines whether each freezer compartment temperature sensor exceeds a certain temperature for this temperature. Means, an outside air temperature sensor, an outside air temperature detecting means, and an output of the freezer compartment internal temperature detecting means to indicate the degree of temperature rise inside the refrigerator from the temperature of each freezer compartment temperature sensor when the previous compressor starts operating. A freezing room temperature increase degree calculating means for calculating; a first memory for storing a control rule based on an empirical rule for obtaining a reduction range of the set temperature of the freezing room; a temperature increase degree in the refrigerator; and an outside air temperature, From the memory A first fuzzy inference processor that performs a fuzzy logic operation based on the control rule that is output to calculate the reduction range of the set temperature of the freezing room, and a freezing chamber that calculates the set temperature of the freezing room from the reduction range of the set temperature. Based on the set temperature calculation means and the set temperature calculated by the freezer compartment temperature calculation means, the compressor control means for controlling the compressor and all the freezer compartment temperature sensors, when the temperature exceeds a certain temperature, the rotation speed of the fan is determined. And fan control means for switching to high rotation.

【0014】また、冷蔵室においては、複数個の冷蔵室
温度センサと、冷蔵室庫内温度検出手段と、冷蔵室庫内
温度が前回の電動ダンパーが開く時の各冷蔵室温度セン
サの温度を記憶し、この温度に対し各冷蔵室温度センサ
が一定温度を越えたかどうかを判定する冷蔵室庫内温度
判定手段と、前記冷蔵室庫内温度検出手段の出力により
前回の電動ダンパーが開く時の各冷蔵室温度センサの温
度からの庫内の温度上昇度を演算する冷蔵室温度上昇度
演算手段と、冷蔵室の設定温度の下げ幅を求めるための
経験則に基づく制御ルールを記憶する第2のメモリと、
庫内の温度上昇度と、前記外気温度検出手段により検出
された外気温度と、前記メモリから取り出された制御ル
ールに基づいて、ファジィ論理演算を行ない冷蔵室の設
定温度の下げ幅を演算する第2のファジィ推論プロセッ
サと、設定温度の下げ幅から冷蔵室の設定温度を演算す
る冷蔵室設定温度演算手段と、前記冷蔵室設定温度演算
手段により演算された設定温度から、電動ダンパを制御
する電動ダンパ制御手段と全ての冷蔵室温度センサが一
定温度以上になった時、ファンの回転数を高回転に切り
換えるファン制御手段とを備える。
In the refrigerating compartment, a plurality of refrigerating compartment temperature sensors, a refrigerating compartment internal temperature detecting means, and a temperature of each refrigerating compartment temperature sensor when the electric damper of the refrigerating compartment internal compartment is opened last time. The temperature of the refrigerating compartment stored in the refrigerating compartment is determined based on the stored temperature and the output of the refrigerating compartment temperature detecting means determines whether or not the temperature of each refrigerating compartment temperature sensor exceeds a certain temperature. A refrigerating room temperature increase degree calculating means for calculating the degree of temperature rise inside the refrigerator from the temperature of each refrigerating room temperature sensor, and a second memorizing control rule based on an empirical rule for obtaining a reduction range of the set temperature of the refrigerating room. Memory of
A fuzzy logic operation is performed on the basis of the degree of temperature rise in the refrigerator, the outside air temperature detected by the outside air temperature detecting means, and the control rule retrieved from the memory to calculate the amount of decrease in the set temperature of the refrigerating compartment. No. 2 fuzzy inference processor, refrigerating room setting temperature calculating means for calculating the setting temperature of the refrigerating room from the range of decrease of the setting temperature, and electric motor for controlling the electric damper from the setting temperature calculated by the refrigerating room setting temperature calculating means. A damper control means and a fan control means for switching the rotation speed of the fan to a high rotation speed when all the refrigerating compartment temperature sensors have reached a certain temperature or higher.

【0015】また、冷凍室と冷蔵室の制御にあたり、冷
凍室の制御を優先させる優先手段とを備えた構成であ
る。
Further, in controlling the freezing compartment and the refrigerating compartment, a priority means for giving priority to the control of the freezing compartment is provided.

【0016】[0016]

【作用】本発明は上記構成により、冷凍室、冷蔵室それ
ぞれの温度上昇度演算手段により演算された庫内の温度
上昇度と、外気温度検出手段により検出された外気温度
と、メモリから取り出された制御ルールに基づいて、フ
ァジィ推論プロセッサによってファジィ論理演算を行な
い、冷凍室、冷蔵室それぞれの設定温度の下げ幅が求め
られる。また、各室の全ての温度センサが一定温度以上
になった時、ファンの回転数を高回転に切り換えること
により、ドア開閉により冷却器の着霜により目詰まりを
生じた時も庫内に冷気を循環させ、庫内の温度上昇を抑
えることができる。したがって、上記により求めた下げ
幅によりそれぞれの設定温度を調整し、この設定温度を
基に、コンプレッサを制御し、ファンを制御し、電動ダ
ンパを制御するため、最適な冷凍室、冷蔵室の温調制御
を行なうことができる。
According to the present invention, according to the above-mentioned structure, the temperature rise of the inside of the refrigerator calculated by the temperature rise calculating means of each of the freezing compartment and the refrigerating compartment, the outside air temperature detected by the outside air temperature detecting means, and the temperature are taken out from the memory. Based on the control rule, the fuzzy inference processor performs fuzzy logic operation to obtain the reduction range of the set temperature in each of the freezer compartment and the refrigerator compartment. In addition, when all the temperature sensors in each room are above a certain temperature, the fan speed is switched to high speed, so that the inside of the refrigerator is cooled even when the door is opened and closed to cause clogging due to frost on the cooler. Can be circulated to suppress the temperature rise in the refrigerator. Therefore, each set temperature is adjusted according to the amount of reduction obtained above, and based on this set temperature, the compressor, fan, and electric damper are controlled. Key control can be performed.

【0017】[0017]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。また、図において、従来例と共通の
ものは同一の番号を賦し、その説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. Further, in the figure, the same parts as those in the conventional example are designated by the same reference numerals, and the description thereof will be omitted.

【0018】図1は本発明の第1の実施例における冷凍
冷蔵庫の冷凍室の制御装置の構成を示すブロック図、図
2(a)は本発明の第1の実施例における冷凍室の庫内
の温度上昇度に対するファジィ変数のメンバシップ関数
を示すグラフ、図2(b)は本発明の第1の実施例にお
ける外気温度に対するファジィ変数のメンバシップ関数
を示すグラフ、図3は本発明の第1の実施例における動
作を説明するためのフローチャート、図4は本発明の第
1の実施例におけるファジィ推論の手順を説明するため
のフローチャートである。
FIG. 1 is a block diagram showing the configuration of a control unit for a freezing compartment of a freezer-refrigerator according to the first embodiment of the present invention, and FIG. 2A is a inside of the freezing compartment according to the first embodiment of the present invention. 2B is a graph showing the membership function of the fuzzy variable with respect to the temperature rise degree, FIG. 2B is a graph showing the membership function of the fuzzy variable with respect to the outside air temperature in the first embodiment of the present invention, and FIG. 3 is the graph of the present invention. FIG. 4 is a flow chart for explaining the operation in the first embodiment, and FIG. 4 is a flow chart for explaining the fuzzy inference procedure in the first embodiment of the present invention.

【0019】図1において、30は冷凍室の制御装置で
あり、冷凍室庫内温度検出手段20及び51、冷凍室庫
内温度判定手段21、コンプレッサ制御手段22、ファ
ン制御手段23、外気温度検出手段31、冷凍室温度上
昇度演算手段32、第1のメモリ33、第1のファジィ
推論プロセッサ34、冷凍室設定温度演算手段35より
なる。
In FIG. 1, reference numeral 30 is a control device for the freezer compartment, which includes temperature detectors 20 and 51 in the freezer compartment, temperature determiner 21 in the freezer compartment, compressor controller 22, fan controller 23, and outside air temperature detector. It comprises means 31, freezing room temperature rise degree calculating means 32, first memory 33, first fuzzy inference processor 34, and freezing room set temperature calculating means 35.

【0020】外気温度検出手段31は、外気温度センサ
28により冷蔵庫外の外気温度を検出する。冷凍室温度
上昇度演算手段32は、冷凍室庫内温度検出手段20の
出力により庫内の温度上昇度を演算する。
The outside air temperature detecting means 31 detects the outside air temperature outside the refrigerator by the outside air temperature sensor 28. The freezing compartment temperature increase degree calculating means 32 calculates the temperature rise degree in the freezer compartment from the output of the freezing compartment temperature detecting means 20.

【0021】第1のメモリ33は、冷凍室の設定温度の
下げ幅を求めるための経験則に基づく制御ルールを記憶
する。第1のファジィ推論プロセッサ34は、冷凍室温
度上昇度演算手段32により演算された温度上昇度と、
外気温度検出手段31により検出された外気温度と、メ
モリ33から取り出された制御ルールに基づいてファジ
ィ論理演算を行ない、冷凍室の設定温度の下げ幅を演算
する。また、冷凍室設定温度演算手段35は、第1のフ
ァジィ推論プロセッサ34により演算された設定温度の
下げ幅から、冷凍室の設定温度を演算する。
The first memory 33 stores a control rule based on an empirical rule for obtaining the reduction range of the set temperature of the freezer. The first fuzzy inference processor 34 uses the temperature increase degree calculated by the freezer compartment temperature increase degree calculating means 32,
A fuzzy logic operation is performed on the basis of the outside air temperature detected by the outside air temperature detecting means 31 and the control rule fetched from the memory 33 to calculate the amount of decrease in the set temperature of the freezer compartment. Further, the freezer compartment set temperature calculation means 35 calculates the set temperature of the freezer compartment from the range of decrease in the set temperature calculated by the first fuzzy inference processor 34.

【0022】以上のように構成された冷凍冷蔵庫の冷凍
室の制御装置について、以下図1から図4を用いてその
動作を説明する。
The operation of the control device for the freezer compartment of the freezer-refrigerator configured as described above will be described below with reference to FIGS. 1 to 4.

【0023】まず、冷凍室庫内温度検出手段20及び5
1は冷凍室温度センサ19及び50により冷凍室内の庫
内温度Tfcを検出し、各冷凍室温度センサ19及び50
の温度Tfc1、Tfc2について毎回コンプレッサ17の運
転開始する時の温度Tfcon1及びTfcon2を記憶する(S
tep1)。前記冷凍室庫内温度検出手段20及び51
は冷凍室温度センサ19及び50により冷凍室内の庫内
温度Tfcを検出する(Step2)。前記コンプレッサ
17の運転開始時の各冷凍室温度センサ19及び50の
温度Tfcon1及びTfcon2に対して、冷凍室センサ19及
び50の温度Tfc1及びTfc2が越えたかどうか判定を行
い(Step3)、毎回のコンプレッサ17の運転開始
する時の温度Tfcon1及びTfcon2を越えていなければ、
この設定温度Tfcon1を基に、コンプレッサ制御手段2
2はコンプレッサ17を制御し、ファン制御手段23は
ファン14を制御する(Step4)。
First, the freezer compartment internal temperature detecting means 20 and 5
1 detects the temperature Tfc in the freezer compartment by the freezer compartment temperature sensors 19 and 50.
The temperatures Tfcon1 and Tfcon2 at the time of starting the operation of the compressor 17 for each temperature Tfc1 and Tfc2 are stored (S
step1). The freezer compartment temperature detection means 20 and 51
Detects the temperature Tfc in the freezer compartment by the freezer compartment temperature sensors 19 and 50 (Step 2). It is determined whether or not the temperatures Tfc1 and Tfc2 of the freezer compartment sensors 19 and 50 have exceeded the temperatures Tfcon1 and Tfcon2 of the respective freezer compartment temperature sensors 19 and 50 at the start of operation of the compressor 17 (Step 3), and the compressors for each time are determined. If the temperatures Tfcon1 and Tfcon2 at the time of starting operation of 17 are not exceeded,
Based on this set temperature Tfcon1, the compressor control means 2
2 controls the compressor 17, and the fan control means 23 controls the fan 14 (Step 4).

【0024】そして、庫内温度Tfcの値が、前記コンプ
レッサ17の運転開始時の各冷凍室温度センサ19及び
50の温度Tfcon1及びTfcon2 を越えたとき、冷凍室
温度上昇度演算手段32は、以下に示すように冷凍室の
温度上昇度Tfcup1及びTfcup2を演算する(Step
5)。
When the value of the internal temperature Tfc exceeds the temperatures Tfcon1 and Tfcon2 of the freezing room temperature sensors 19 and 50 at the time of starting the operation of the compressor 17, the freezing room temperature rise calculating means 32 As shown in, the temperature rises Tfcup1 and Tfcup2 of the freezer are calculated (Step
5).

【0025】Tfcup=Tfc−Tfcon また、外気温度検出手段31は外気温度センサ28によ
り冷蔵庫外の外気温度Toutを検出する(Step
6)。
Tfcup = Tfc-Tfcon Further, the outside air temperature detecting means 31 detects the outside air temperature Tout outside the refrigerator by the outside air temperature sensor 28 (Step).
6).

【0026】つぎに、演算された温度上昇度Tfcup1と
Tfcup2の大きい方および外気温度Toutは、第1のファ
ジィ推論プロセッサ34に入力される(Step7)。
ファジィ推論プロセッサ34では、予め第1のメモリ3
3に記憶されている制御ルールを取り出して、ファジィ
推論によって冷凍室の設定温度の下げ幅△Tfcoffを求
める(Step8)。これより、冷凍室設定温度演算手
段35は、ファジィ推論プロセッサ34により求められ
た設定温度の下げ幅△Tfcoffから冷凍室の設定温度Tf
coff(コンプレッサ、ファンのOFF温度)を演算する
(Step9)。そして、この設定温度Tfcoffを基
に、コンプレッサ制御手段22はコンプレッサ17を制
御し、ファン制御手段23はファン14を制御する。
Next, the larger one of the calculated temperature increases Tfcup1 and Tfcup2 and the outside air temperature Tout are input to the first fuzzy inference processor 34 (Step 7).
The fuzzy inference processor 34 uses the first memory 3 in advance.
The control rule stored in No. 3 is taken out, and the decrease width ΔTfcoff of the set temperature of the freezer is obtained by fuzzy reasoning (Step 8). From this, the freezer compartment set temperature calculation means 35 determines the set temperature Tf of the freezer compartment from the reduction width ΔTfcoff of the set temperature obtained by the fuzzy inference processor 34.
Calculate coff (compressor / fan OFF temperature) (Step 9). Then, based on the set temperature Tfcoff, the compressor control means 22 controls the compressor 17, and the fan control means 23 controls the fan 14.

【0027】ここで、冷凍室の最適な温調を行なうため
の設定温度の下げ幅を求めるファジィ推論は、下記のよ
うな制御ルールを基にして実行される。
Here, the fuzzy inference for obtaining the reduction range of the set temperature for optimally controlling the temperature of the freezer is executed based on the following control rule.

【0028】本実施例で採用した制御ルールは次のよう
な9つの言語ルールである。例えば 言語ルール 11:もし温度上昇度が小さく、外気温度
が低ければ、設定温度の下げ幅を小さくせよ。
The control rules adopted in this embodiment are the following nine language rules. For example, language rule 11: If the temperature rise is small and the outside air temperature is low, decrease the set temperature by a small amount.

【0029】言語ルール 12:もし温度上昇度が小さ
く、外気温度が中位なら、設定温度の下げ幅を小さくせ
よ。
Language rule 12: If the temperature rise is small and the outside air temperature is medium, decrease the set temperature by a small amount.

【0030】言語ルール 13:もし温度上昇度が小さ
く、外気温度が高ければ、設定温度の下げ幅を非常に小
さくせよ。 ・ ・ ・ 言語ルール 17:もし温度上昇度が大きく、外気温度
が低ければ、設定温度の下げ幅を非常に大きくせよ。
Language rule 13: If the degree of temperature rise is small and the outside air temperature is high, decrease the set temperature by a very small amount.・ ・ ・ Language rule 17: If the temperature rise is large and the outside air temperature is low, increase the set temperature greatly.

【0031】言語ルール 18:もし温度上昇度が大き
く、外気温度が中位なら、設定温度の下げ幅を大きくせ
よ。
Language rule 18: If the temperature rise is large and the outside air temperature is medium, increase the set temperature decrease range.

【0032】言語ルール 19:もし温度上昇度が大き
く、外気温度が高ければ、設定温度の下げ幅を大きくせ
よ。 等である。
Language rule 19: If the temperature rise is large and the outside air temperature is high, increase the set temperature decrease range. Etc.

【0033】これは、食品の冷凍室への投入量が多くな
れば温度上昇度が大きくなるので、温度上昇度が大きい
程、庫内温度が高いため設定温度を大きく下げる必要が
あり、また、外気温度が低い程、食品の温度より庫内温
度センサの温度の低下が速く、食品が冷える前に設定温
度に達っしてしまうため、設定温度をさらに大きく下げ
る必要がある、といった経験から得られた言語ルールで
ある。よって、上記言語ルールは、発明者が数多くの実
験データから求めた、最適な冷凍室の温調を行なうこと
ができる設定温度の下げ幅に対する制御ルールであり、
これを温度上昇度Tおよび外気温度ATの関係で示すと
(表1)のようになる。
This is because the temperature rise increases as the amount of food fed into the freezer increases. Therefore, the higher the temperature rise, the higher the temperature inside the chamber, so the set temperature must be greatly lowered. The lower the outside air temperature, the faster the temperature of the internal temperature sensor will drop compared to the temperature of the food, and the set temperature will be reached before the food cools.Therefore, it is necessary to further lower the set temperature. The language rules are Therefore, the language rule is a control rule for the range of decrease in the set temperature that allows the optimum temperature control of the freezer compartment, which the inventor obtained from a large number of experimental data,
The relationship between the temperature rise degree T and the outside air temperature AT is shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】(表1)は制御ルールの関係を示す表であ
り、横方向に温度上昇度Tを3段階(BT=大,MT=
中,ST=小)に分け、縦方向に外気温度ATを3段階
(HAT=高,MAT=中,LAT=低)に分けて配置
し、上記区分された温度上昇度Tと外気温度ATとのお
のおの交わった位置には、その温度上昇度T,外気温度
ATに対応する最適な冷凍室の設定温度の下げ幅△Tを
配置している。
(Table 1) is a table showing the relationship of the control rules, in which the temperature increase degree T is three steps in the lateral direction (BT = large, MT =
The outside air temperature AT is divided into three stages (HAT = high, MAT = medium, LAT = low) in the vertical direction, and the temperature rise degree T and the outside air temperature AT are divided. At each intersecting position, there is arranged an optimal reduction range ΔT of the set temperature of the freezer compartment corresponding to the temperature increase degree T and the outside air temperature AT.

【0036】また、上記言語ルールは図1のメモリ33
の内に記憶する場合には次のような制御ルール則で記憶
されている。本実施例で採用した制御ルールは9個であ
る。
Further, the language rule is based on the memory 33 of FIG.
When it is stored in, the control rule is as follows. The control rules adopted in this embodiment are nine.

【0037】 制御ルール 11:IF T is ST and AT is LAT THEN △T is S 制御ルール 12:IF T is ST and AT is MAT THEN △T is S 制御ルール 13:IF T is ST and AT is HAT THEN △T is VS ・ ・ ・ 制御ルール 17:IF T is BT and AT is LAT THEN △T is VB 制御ルール 18:IF T is BT and AT is MAT THEN △T is B 制御ルール 19:IF T is BT and AT is HAT THEN △T is B 前記制御ルール11,12、・・・、19は、温度上昇
度T,外気温度AT,冷凍室の設定温度の下げ幅△Tを
(表1)のように段階的に決めているので、キメ細かな
制御を行なう場合には、温度上昇度T,外気温度ATの
各段階の中間における実測の温度上昇度Tfcup、外気温
度Toutでは、前記制御ルールの前件部(IF部)をど
の程度満たしているかの度合いを算出して、その度合い
に応じた設定温度の下げ幅△Tfcoffを推定する必要が
ある。そのため、本実施例では前記度合いを温度上昇度
T,外気温度ATに対するファジィ変数のメンバシップ
関数を利用して算出する。
Control Rule 11: IF T is ST and AT is LAT THEN ΔT is S Control Rule 12: IF T is ST and AT is MAT THEN ΔT is S Control Rule 13: IF T IS ST and AT is HAT THEN ΔT is VS ··· Control rule 17: IF T is BT and AT is LAT THEN ΔT is VB control rule 18: IF T is BT and AT is MAT THEN ΔT isB control rule 19: IF T is BT and AT is HAT THEN ΔT is B The control rules 11, 12, ..., 19 have the temperature increase degree T, the outside air temperature AT, and the decrease range ΔT of the set temperature of the freezer compartment as shown in (Table 1). The temperature rise is not For the actually measured temperature rise Tfcup and the outside air temperature Tout in the middle of each stage of T and the outside air temperature AT, the degree to which the antecedent part (IF part) of the control rule is satisfied is calculated, and the degree is calculated. It is necessary to estimate the reduction range ΔTfcoff of the set temperature according to the above. Therefore, in this embodiment, the degree is calculated by using the membership function of the fuzzy variable for the temperature increase degree T and the outside air temperature AT.

【0038】図2(a)は、冷凍室の庫内の温度上昇度
Tに対するファジィ変数ST,MT,BTのメンバシッ
プ関数μST(Tfcup),μMT(Tfcup),μBT
(Tfcup)を示したものであり、図2(b)は、外気温
度ATに対するファジィ変数LAT,MAT,HATの
メンバシップ関数μLAT(Tout),μMAT(Tou
t),μHAT(Tout)を示したものである。
FIG. 2A shows membership functions μST (Tfcup), μMT (Tfcup), μBT of the fuzzy variables ST, MT, BT with respect to the temperature rise T in the freezer compartment.
2B shows membership functions μLAT (Tout), μMAT (Tou) of the fuzzy variables LAT, MAT, HAT with respect to the outside air temperature AT.
t) and μHAT (Tout).

【0039】ファジィ推論プロセッサ34で実行するフ
ァジィ推論は前記制御ルール1,ルール2,・・・,ル
ール9と図2(a),(b)のメンバシップ関数とを用
いてファジィ論理演算を行なって冷凍室の設定温度の下
げ幅の演算を行なう。
The fuzzy inference executed by the fuzzy inference processor 34 uses the control rules 1, rule 2, ..., Rule 9 and the membership functions of FIGS. 2A and 2B to perform fuzzy logic operation. Calculate the range of decrease in the set temperature of the freezer.

【0040】以下、図4のフローチャートをもとに、図
3のStep7であるファジィ推論の手順を説明する。
The procedure of fuzzy inference which is Step 7 of FIG. 3 will be described below with reference to the flowchart of FIG.

【0041】Step10では、ファジィ推論プロセッ
サ34によって温度上昇度Tfcupと外気温度Toutに対
するファジィ変数のメンバシップ関数を用いて、温度上
昇度Tfcupと外気温度Toutにおけるメンバシップ値
(図中ではM値と表示)の算出を行なう。
In Step 10, the fuzzy inference processor 34 uses the membership function of the fuzzy variable for the temperature rise degree Tfcup and the outside air temperature Tout, and the membership value at the temperature rise degree Tfcup and the outside air temperature Tout (displayed as M value in the figure). ) Is calculated.

【0042】Step11では、得られた温度上昇度T
fcupと外気温度Toutに対するファジィ変数のメンバシ
ップ値が、前記9個の各ルールの前件部をどの程度満た
しているかの度合いを下記のように合成法で算出する。
In Step 11, the obtained temperature rise degree T
The degree to which the membership values of the fuzzy variables with respect to fcup and the outside air temperature Tout satisfy the antecedent part of each of the nine rules is calculated by the synthesis method as follows.

【0043】図中では、温度上昇度に対するファジィ変
数をA、外気温度に対するファジィ変数をBで示してい
る。
In the figure, the fuzzy variable for the temperature rise is indicated by A, and the fuzzy variable for the outside air temperature is indicated by B.

【0044】 制御ルール 11:h11 =μST(Tfcup)∩μLAT(Tout) =μST(Tfcup)×μLAT(Tout) −−−(1) 制御ルール 12:h12 =μST(Tfcup)∩μMAT(Tout) =μST(Tfcup)×μMAT(Tout) −−−(2) 制御ルール 13:h13 =μST(Tfcup)∩μHAT(Tout) =μST(Tfcup)×μHAT(Tout) −−−(2) ・ ・ ・ 制御ルール 17:h17 =μBT(Tfcup)∩μLAT(Tout) =μBT(Tfcup)×μLAT(Tout) −−−(7) 制御ルール 18:h18 =μBT(Tfcup)∩μMAT(Tout) =μBT(Tfcup)×μMAT(Tout) −−−(8) 制御ルール 19:h19 =μBT(Tfcup)∩μHAT(Tout) =μBT(Tfcup)×μHAT(Tout) −−−(9) (1)式は、前記Tfcupが温度上昇度Tに対する領域S
Tに入り、かつ、前記Toutが外気温度ATに対する領
域LATに入るという命題は、TfcupがSTに入る割
合、ToutがLATに入る割合の積の値で成立するこ
と、すなわち制御ルール11の前件部は、h11の割合
で成立することを表わしている。同様に(2)式,・・
・,(9)式である制御ルール12,・・・,19の場
合、前件部はそれぞれh2,・・・,h9の割合で成立
することを表わしている。
Control Rule 11: h11 = μST (Tfcup) ∩μLAT (Tout) = μST (Tfcup) × μLAT (Tout)-(1) Control Rule 12: h12 = μST (Tfcup) ∩μMAT (Tout) = μST (Tfcup) × μMAT (Tout) −−− (2) Control Rule 13: h13 = μST (Tfcup) ∩μHAT (Tout) = μST (Tfcup) × μHAT (Tout) --- (2) ... Rule 17: h17 = μBT (Tfcup) ∩μLAT (Tout) = μBT (Tfcup) × μLAT (Tout)-(7) Control Rule 18: h18 = μBT (Tfcup) ∩μMAT (Tout) = μBT (Tfcup) × μMAT (Tout) −−− (8) Control Rule 19: h19 = μBT (Tfcup) ∩μHAT (Tout) = μBT (Tfcup) × μHAT (Tout) −−− (9) Equation (1) is the above Tfcup. Is warm Area S with respect to the degree of increase T
The proposition that T enters and Tout enters the area LAT for the outside air temperature AT is satisfied by the product of the ratio of Tfcup entering ST and the ratio of Tout entering LAT, that is, the antecedent of the control rule 11. The part represents that the ratio is h11. Similarly, equation (2), ...
······················ (9), the antecedent part is established at the rate of h2, ..., H9, respectively.

【0045】Step12では、制御ルールの実行部の
メンバシップ関数によって、温度上昇度Tfcupと外気温
度Toutにおける冷凍室の設定温度の下げ幅△Tfcoffを
下記のようにして求める。設定温度の下げ幅△Tfcoff
は、一点化法のひとつである高さ法を用いて、各制御ル
ールの前件部の成立する割合h11,h12,・・・,
h19の加重平均の値として、(数1)に示すように算
出する。
At Step 12, the degree of decrease ΔTfcoff of the set temperature of the freezer compartment at the temperature increase degree Tfcup and the outside air temperature Tout is obtained by the membership function of the execution part of the control rule as follows. Decrease in set temperature △ Tfcoff
Uses the height method, which is one of the one-point conversion methods, and the proportions h11, h12, ...
The value of the weighted average of h19 is calculated as shown in (Equation 1).

【0046】[0046]

【数1】 [Equation 1]

【0047】これにより、設定温度の下げ幅△Tfcoff
が求まる。従って、この実施例では、制御パラメータと
して冷凍室内の温度上昇度および外気温度を使用してい
るため、キメ細かい制御が可能である。また、制御ルー
ルが人間の経験則から成り立っているため、最適な設定
温度で冷凍室の温調制御ができる。また、全ての冷凍室
温度センサ19、50が一定温度以上になった時、即ち
ドア開閉により冷却器13に多量の着霜が起こり、冷却
器13が目詰まり状態になった時、ファン14を高回転
にすることにより冷却器13から庫内に送る風量を増加
させ、庫内温度上昇を抑えることができる。ここで全て
の冷凍室温度センサ19、50が一定温度以上になった
時としたのは、全ての冷凍室温度センサ19、50が上
昇しない時は冷却器13は着霜による目詰まりを起こし
ておらず、こういう時にファン14を高回転にしても冷
却器13の蒸発温度が上昇して冷却効果が向上しないた
めである。
As a result, the range of decrease in the set temperature ΔTfcoff
Is required. Therefore, in this embodiment, since the degree of temperature rise in the freezer compartment and the outside air temperature are used as the control parameters, fine control is possible. Further, since the control rule is based on human experience, the temperature control of the freezer can be controlled at the optimum set temperature. Further, when all the freezing room temperature sensors 19 and 50 have reached a certain temperature or higher, that is, when a large amount of frost is generated on the cooler 13 due to the opening and closing of the doors and the cooler 13 is clogged, the fan 14 is turned on. The high rotation speed can increase the amount of air sent from the cooler 13 to the inside of the refrigerator, and can suppress the temperature rise inside the refrigerator. Here, the case where all the freezer compartment temperature sensors 19, 50 have reached a certain temperature or higher is because when all the freezer compartment temperature sensors 19, 50 do not rise, the cooler 13 causes clogging due to frost formation. This is because even if the fan 14 is rotated at a high speed in such a case, the evaporation temperature of the cooler 13 rises and the cooling effect is not improved.

【0048】次に他の実施例について、図面を参照しな
がら説明する。また、図において、従来例、第1の実施
例と共通した構成のものは、同一番号を付し、その詳細
な説明を省略する。
Next, another embodiment will be described with reference to the drawings. Further, in the drawing, the same components as those of the conventional example and the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

【0049】図5は本発明の他の実施例における冷凍冷
蔵庫の冷蔵室の制御装置の構成を示すブロック図、図6
は本発明の他の実施例における冷蔵室の庫内の温度上昇
度に対するファジィ変数のメンバシップ関数を示すグラ
フ、図7は本発明の他の実施例における動作を説明する
ためのフローチャートである。
FIG. 5 is a block diagram showing the construction of a control unit for a refrigerating room of a refrigerator / freezer according to another embodiment of the present invention.
Is a graph showing a membership function of a fuzzy variable with respect to the temperature rise inside the refrigerator in another embodiment of the present invention, and FIG. 7 is a flow chart for explaining the operation in another embodiment of the present invention.

【0050】図5において、40は冷蔵室の制御装置で
あり、冷蔵室庫内温度検出手段25、冷蔵室庫内温度判
定手段26、電動ダンパ制御手段27、ファン制御手段
23、外気温度検出手段31、冷蔵室温度上昇度演算手
段42、第2のメモリ43、第2のファジィ推論プロセ
ッサ44、冷蔵室設定温度演算手段45よりなる。
In FIG. 5, reference numeral 40 denotes a refrigerating compartment control device, which is a refrigerating compartment interior temperature detecting means 25, a refrigerating compartment interior temperature determining means 26, an electric damper control means 27, a fan control means 23, and an outside air temperature detecting means. 31, a refrigerating room temperature rise calculating means 42, a second memory 43, a second fuzzy inference processor 44, and a refrigerating room set temperature calculating means 45.

【0051】冷蔵室温度上昇度演算手段42は、冷蔵室
庫内温度検出手段25の出力により庫内の温度上昇度を
演算する。
The refrigerating compartment temperature increase degree calculating means 42 calculates the temperature rise degree inside the refrigerating room from the output of the refrigerating compartment inside temperature detecting means 25.

【0052】第2のメモリ43は、冷蔵室の設定温度の
下げ幅を求めるための経験則に基づく制御ルールを記憶
する。第2のファジィ推論プロセッサ44は、冷蔵室温
度上昇度演算手段42により演算された温度上昇度と、
外気温度検出手段31により検出された外気温度と、メ
モリ43から取り出された制御ルールに基づいてファジ
ィ論理演算を行ない、冷蔵室の設定温度の下げ幅を演算
する。また、冷蔵室設定温度演算手段45は、第2のフ
ァジィ推論プロセッサ44により演算された設定温度の
下げ幅から、冷蔵室の設定温度を演算する。
The second memory 43 stores a control rule based on an empirical rule for obtaining the reduction range of the set temperature of the refrigerating room. The second fuzzy inference processor 44 uses the temperature increase degree calculated by the refrigerating room temperature increase degree calculating means 42,
A fuzzy logic operation is performed on the basis of the outside air temperature detected by the outside air temperature detecting means 31 and the control rule fetched from the memory 43 to calculate the reduction range of the set temperature of the refrigerating room. Further, the refrigerating room set temperature calculation means 45 calculates the set temperature of the refrigerating room from the reduction range of the set temperature calculated by the second fuzzy inference processor 44.

【0053】以上のように構成された冷凍冷蔵庫の冷蔵
室の制御装置について、以下図5から図7および図2、
図4を用いてその動作を説明する。
Regarding the control device for the refrigerating room of the freezer-refrigerator configured as described above, the following will be described with reference to FIGS.
The operation will be described with reference to FIG.

【0054】まず、冷蔵室庫内温度検出手段25及び5
3は冷蔵室温度センサ24及び52により冷蔵室内の庫
内温度Tpcを検出し、各冷蔵室温度センサ24及び52
の温度Tpc1及びTpc2について毎回電動ダンパー18が
開く時の温度Tpcon1及びTpcon2を記憶する(Step
20)。前記冷蔵室庫内温度検出手段25及び53は冷
蔵室温度センサ24及び52により冷蔵室内の庫内温度
Tpcを検出する(Step21)。前記電動ダンパー1
8の開く時の各冷蔵室温度センサ24及び52の温度T
pcon1及びTpcon2に対して、冷蔵室センサ24及び52
の温度Tpc1及びTpc2が越えたかどうか判定を行い(S
tep22)、毎回の電動ダンパーが開く時の温度Tpc
on1及びTpcon2を越えていなければ、この設定温度Tpc
on1を基に、電動ダンパー制御手段27は電動ダンパー
18を制御する(Step23)。 そして、庫内温度
Tpcの値が、前記電動ダンパー18が開く時の各冷蔵室
温度センサ24及び52の温度Tpcon1及びTpcon2を越
えたとき、冷蔵室温度上昇度演算手段42は、以下に示
すように冷蔵室の温度上昇度Tpcup1及びTpcup2を演算
する(Step24)。
First, the temperature detecting means 25 and 5 in the refrigerator compartment
Numeral 3 detects the temperature Tpc inside the refrigerating compartment by means of the refrigerating compartment temperature sensors 24 and 52, and the refrigerating compartment temperature sensors 24 and 52 respectively.
The temperatures Tpcon1 and Tpcon2 when the electric damper 18 is opened are stored for each temperature Tpc1 and Tpc2 (Step).
20). The refrigerating compartment temperature detecting means 25 and 53 detect the refrigerating compartment temperature Tpc by the refrigerating compartment temperature sensors 24 and 52 (Step 21). The electric damper 1
Temperature T of each cold room temperature sensor 24 and 52 when opening 8
Refrigerator sensors 24 and 52 for pcon1 and Tpcon2
It is determined whether the temperatures Tpc1 and Tpc2 of the
(Tep22), temperature Tpc when the electric damper is opened every time
Unless it exceeds on1 and Tpcon2, this set temperature Tpc
The electric damper control means 27 controls the electric damper 18 based on on1 (Step 23). When the value of the in-compartment temperature Tpc exceeds the temperatures Tpcon1 and Tpcon2 of the refrigerating compartment temperature sensors 24 and 52 when the electric damper 18 is opened, the refrigerating compartment temperature increase degree calculating means 42 operates as follows. Then, the temperature rise degrees Tpcup1 and Tpcup2 of the refrigerating compartment are calculated (Step 24).

【0055】Tpcup=Tpc−Tpcon また、外気温度検出手段31は外気温度センサ28によ
り冷蔵庫外の外気温度Toutを検出する(Step2
5)。
Tpcup = Tpc-Tpcon Further, the outside air temperature detecting means 31 detects the outside air temperature Tout outside the refrigerator by the outside air temperature sensor 28 (Step 2).
5).

【0056】つぎに、演算された温度上昇度Tpcup1と
Tpcup2の大きい方および外気温度Toutは、第2のファ
ジィ推論プロセッサ44に入力される(Step2
6)。ファジィ推論プロセッサ44では、予め第2のメ
モリ43に記憶されている制御ルールを取り出して、フ
ァジィ推論によって冷蔵室の設定温度の下げ幅△Tpcof
fを求める(Step27)。これより、冷蔵室設定温
度演算手段45は、ファジィ推論プロセッサ44により
求められた設定温度の下げ幅△Tpcoffから冷蔵室の設
定温度Tpcoff(電動ダンパの閉温度)を演算する(S
tep28)。そして、この設定温度Tpcoffを基に、
電動ダンパ制御手段27は電動ダンパ18を制御する。
Next, the larger one of the calculated temperature increases Tpcup1 and Tpcup2 and the outside air temperature Tout are input to the second fuzzy inference processor 44 (Step 2).
6). In the fuzzy inference processor 44, the control rule stored in advance in the second memory 43 is taken out, and the reduction range ΔTpcof of the set temperature of the refrigerating room is obtained by fuzzy inference.
Find f (Step 27). From this, the refrigerating room set temperature calculation means 45 calculates the set temperature Tpcoff (close temperature of the electric damper) of the refrigerating room from the reduction width ΔTpcoff of the set temperature obtained by the fuzzy inference processor 44 (S).
(Step 28). Then, based on this set temperature Tpcoff,
The electric damper control means 27 controls the electric damper 18.

【0057】ここで、冷蔵室の最適な温調を行なうため
の設定温度の下げ幅を求めるファジィ推論は、下記のよ
うな制御ルールを基にして実行される。
Here, the fuzzy inference for obtaining the reduction range of the set temperature for optimally controlling the temperature of the refrigerating room is executed based on the following control rule.

【0058】本実施例で採用した制御ルールは次のよう
な9つの言語ルールである。例えば 言語ルール 21:もし温度上昇度が小さく、外気温度
が低ければ、設定温度の下げ幅を非常に小さくせよ。
The control rules adopted in this embodiment are the following nine language rules. For example, language rule 21: If the temperature rise is small and the outside air temperature is low, decrease the set temperature by a very small amount.

【0059】言語ルール 22:もし温度上昇度が小さ
く、外気温度が中位なら、設定温度の下げ幅を小さくせ
よ。
Language rule 22: If the temperature rise is small and the outside air temperature is medium, decrease the set temperature by a small amount.

【0060】言語ルール 23:もし温度上昇度が小さ
く、外気温度が高ければ、設定温度の下げ幅を小さくせ
よ。 ・ ・ ・ 言語ルール 27:もし温度上昇度が大きく、外気温度
が低ければ、設定温度の下げ幅を大きくせよ。
Language rule 23: If the temperature rise is small and the outside air temperature is high, decrease the set temperature by a small amount.・ ・ ・ Language rule 27: If the temperature rise is large and the outside air temperature is low, increase the set temperature.

【0061】言語ルール 28:もし温度上昇度が大き
く、外気温度が中位なら、設定温度の下げ幅を大きくせ
よ。
Language Rule 28: If the temperature rise is large and the outside air temperature is medium, increase the set temperature decrease range.

【0062】言語ルール 29:もし温度上昇度が大き
く、外気温度が高ければ、設定温度の下げ幅を非常に大
きくせよ。等である。
Language rule 29: If the temperature rise is large and the outside air temperature is high, increase the set temperature by a large amount. Etc.

【0063】これは、食品の冷蔵室への投入量が多くな
れば温度上昇度が大きくなるので、温度上昇度が大きい
程、庫内温度が高いため設定温度を大きく下げる必要が
あり、また、外気温度が低い程、冷蔵室の食品の凍結の
危険性が高まるため、設定温度の下げ幅を小さくする必
要がある、といった経験から得られたルールである。
This is because the temperature rise increases as the amount of food fed into the refrigerating chamber increases. Therefore, the higher the temperature rise, the higher the temperature inside the refrigerator. Therefore, it is necessary to greatly lower the set temperature. It is a rule obtained from experience that the lower the outside air temperature, the higher the risk of freezing of food in the refrigerating room, and therefore it is necessary to reduce the set temperature decrease amount.

【0064】よって、上記言語ルールは、発明者が数多
くの実験データから求めた、最適な冷蔵室の温調を行な
うことができる設定温度の下げ幅に対する制御ルールで
あり、これを温度上昇度Tおよび外気温度ATの関係で
示すと(表2)のようになる。
Therefore, the above-mentioned language rule is a control rule for the degree of decrease of the set temperature that allows the optimum temperature control of the refrigerating room, which is obtained by the inventor from a large number of experimental data. The relationship between the outside air temperature AT and the outside air temperature AT is as shown in Table 2.

【0065】[0065]

【表2】 [Table 2]

【0066】(表2)は制御ルールの関係を示す表であ
り、詳細は第1の実施例で述べた通りである。温度上昇
度Tと外気温度ATとのおのおの交わった位置には、そ
の温度上昇度T,外気温度ATに対応する最適な冷蔵室
の設定温度の下げ幅△Tを配置している。
(Table 2) is a table showing the relation of the control rules, and the details are as described in the first embodiment. At a position where the temperature increase degree T and the outside air temperature AT intersect with each other, an optimal reduction range ΔT of the set temperature of the refrigerating room corresponding to the temperature increase degree T and the outside air temperature AT is arranged.

【0067】また、上記言語ルールは図1のメモリ43
の内に記憶する場合には次のような制御ルール則で記憶
されている。本実施例で採用した制御ルールは9個であ
る。
Further, the language rule is stored in the memory 43 of FIG.
When it is stored in, the control rule is as follows. The control rules adopted in this embodiment are nine.

【0068】 制御ルール 21:IF T is ST and AT is LAT THEN △T is VS 制御ルール 22:IF T is ST and AT is MAT THEN △T is S 制御ルール 23:IF T is ST and AT is HAT THEN △T is S ・ ・ ・ 制御ルール 27:IF T is BT and AT is LAT THEN △T is B 制御ルール 28:IF T is BT and AT is MAT THEN △T is B 制御ルール 29:IF T is BT and AT is HAT THEN △T is VB 前記制御ルール21,22、・・・、29は、温度上昇
度T,外気温度AT,冷蔵室の設定温度の下げ幅△Tを
(表2)のように段階的に決めているので、キメ細かな
制御を行なう場合には、温度上昇度T,外気温度ATの
各段階の中間における実測の温度上昇度Tpcup、外気温
度Toutでは、前記制御ルールの前件部(IF部)をど
の程度満たしているかの度合いを算出して、その度合い
に応じた設定温度の下げ幅△Tpcoffを推定する。その
ため、本実施例では第1の実施例で述べたと同様に、前
記度合いを温度上昇度T,外気温度ATに対するファジ
ィ変数のメンバシップ関数を利用して算出する。
Control Rule 21: IF T is ST and AT is LAT THEN ΔT is VS Control Rule 22: IF T IS ST and AT is MAT THEN ΔT is S Control Rule 23: IF T IS ST and AT is HAT THEN ΔT is S ··· Control rule 27: IF T is BT and AT is LAT THEN ΔT is B control rule 28: IF T is BT and AT is MAT THEN ΔT is B control rule 29: IF T is BT and AT is HAT THEN ΔT is VB The control rules 21, 22, ..., 29 have the temperature increase degree T, the outside air temperature AT, and the decrease amount ΔT of the set temperature of the refrigerating room as shown in (Table 2). The temperature rise is not For the actually measured temperature rise degree Tpcup and the outside air temperature Tout in the middle of each stage of T and the outside air temperature AT, the degree to which the antecedent part (IF part) of the control rule is satisfied is calculated, and the degree is calculated. Estimate the amount of decrease ΔTpcoff of the set temperature according to the estimation. Therefore, in the present embodiment, the degree is calculated by using the membership function of the fuzzy variable with respect to the temperature rise degree T and the outside air temperature AT, as in the first embodiment.

【0069】図6は、冷蔵室の庫内の温度上昇度Tに対
するファジィ変数ST,MT,BTのメンバシップ関数
μST(Tpcup),μMT(Tpcup),μBT(Tpcu
p)を示したものであり、外気温度ATに対するファジ
ィ変数のメンバシップ関数は図2(b)で示した通りで
ある。
FIG. 6 shows membership functions μST (Tpcup), μMT (Tpcup), μBT (Tpcu) of fuzzy variables ST, MT, and BT with respect to the temperature rise degree T in the refrigerator.
p), and the membership function of the fuzzy variable with respect to the outside air temperature AT is as shown in FIG. 2 (b).

【0070】ファジィ推論プロセッサ44で実行するフ
ァジィ推論は前記制御ルール21,・・・、29と図
6,図2(b)のメンバシップ関数とを用いてファジィ
論理演算を行なって冷蔵室の設定温度の下げ幅の演算を
行なう。
In the fuzzy inference executed by the fuzzy inference processor 44, a fuzzy logic operation is performed by using the control rules 21, ..., 29 and the membership function of FIGS. 6 and 2B to set the refrigerating room. Calculate the temperature reduction range.

【0071】その手順は、第1の実施例で述べたと同様
であり、図4のフローチャートをもとに、図7のSte
p27であるファジィ推論の手順を説明する。
The procedure is similar to that described in the first embodiment, and based on the flowchart of FIG. 4, Step of FIG.
The procedure of fuzzy inference that is p27 will be described.

【0072】Step10では、ファジィ推論プロセッ
サ44によって温度上昇度Tpcupと外気温度Toutに対
するファジィ変数のメンバシップ関数を用いて、温度上
昇度Tpcupと外気温度Toutにおけるメンバシップ値
(図中ではM値と表示)の算出を行なう。
In Step 10, the fuzzy inference processor 44 uses the membership function of the fuzzy variable for the temperature rise degree Tpcup and the outside air temperature Tout, and the membership value at the temperature rise degree Tpcup and the outside air temperature Tout (displayed as M value in the figure). ) Is calculated.

【0073】Step11では、得られた温度上昇度T
pcupと外気温度Toutに対するファジィ変数のメンバシ
ップ値が、前記9個の各ルールの前件部をどの程度満た
しているかの度合いを下記のように合成法で算出する。
In Step 11, the obtained temperature rise degree T
The degree to which the membership values of the fuzzy variables for pcup and the outside air temperature Tout satisfy the antecedent part of each of the nine rules is calculated by the synthesis method as follows.

【0074】図中では、温度上昇度に対するファジィ変
数をA、外気温度に対するファジィ変数をBで示してい
る。
In the figure, the fuzzy variable with respect to the degree of temperature rise is indicated with A, and the fuzzy variable with respect to the outside air temperature is indicated by B.

【0075】 制御ルール 21:h21 =μST(Tpcup)∩μLAT(Tout) =μST(Tpcup)×μLAT(Tout) −−−(1) 制御ルール 22:h22 =μST(Tpcup)∩μMAT(Tout) =μST(Tpcup)×μMAT(Tout) −−−(2) 制御ルール 23:h23 =μST(Tpcup)∩μHAT(Tout) =μST(Tpcup)×μHAT(Tout) −−−(2) ・ ・ ・ 制御ルール 27:h27 =μBT(Tpcup)∩μLAT(Tout) =μBT(Tpcup)×μLAT(Tout) −−−(7) 制御ルール 28:h28 =μBT(Tpcup)∩μMAT(Tout) =μBT(Tpcup)×μMAT(Tout) −−−(8) 制御ルール 29:h29 =μBT(Tpcup)∩μHAT(Tout) =μBT(Tpcup)×μHAT(Tout) −−−(9) (1)式は、前記Tpcupが温度上昇度Tに対する領域S
Tに入り、かつ、前記Toutが外気温度ATに対する領
域LATに入るという命題は、TpcupがSTに入る割
合、ToutがLATに入る割合の積の値で成立するこ
と、すなわち制御ルール21の前件部は、h21の割合
で成立することを表わしている。同様に(2)式,・・
・,(9)式である制御ルール22,・・・,29の場
合、前件部はそれぞれh22,・・・,h29の割合で
成立することを表わしている。
Control Rule 21: h21 = μST (Tpcup) ∩μLAT (Tout) = μST (Tpcup) × μLAT (Tout)-(1) Control Rule 22: h22 = μST (Tpcup) ∩μMAT (Tout) = μST (Tpcup) × μMAT (Tout) −−− (2) Control Rule 23: h23 = μST (Tpcup) ∩μHAT (Tout) = μST (Tpcup) × μHAT (Tout) −−− (2) Rule 27: h27 = μBT (Tpcup) ∩μLAT (Tout) = μBT (Tpcup) × μLAT (Tout)-(7) Control Rule 28: h28 = μBT (Tpcup) ∩μMAT (Tout) = μBT (Tpcup) × μMAT (Tout) --- (8) Control Rule 29: h29 = μBT (Tpcup) ∩μHAT (Tout) = μBT (Tpcup) × μHAT (Tout) --- (9) Equation (1) is the above Tpcup. Is warm Area S with respect to the degree of increase T
The proposition that T enters and Tout enters the area LAT for the outside air temperature AT is satisfied by the product of the ratio of Tpcup to ST and the ratio of Tout to LAT, that is, the antecedent of the control rule 21. The part indicates that the ratio is satisfied at the rate of h21. Similarly, equation (2), ...
In the case of the control rules 22, ..., 29, which are equations (9), it is indicated that the antecedent part is satisfied at the ratio of h22 ,.

【0076】Step12では、制御ルールの実行部の
メンバシップ関数によって、温度上昇度Tpcupと外気温
度Toutにおける冷蔵室の設定温度の下げ幅△Tpcoffを
下記のようにして求める。設定温度の下げ幅△Tpcoff
は、高さ法を用いて、各制御ルールの前件部の成立する
割合h21,h22,・・・,h29の加重平均の値と
して、(数2)に示すように算出する。また、全ての冷
蔵室温度センサ24、52が一定温度以上になった時、
即ちドア開閉により冷却器13に多量に着霜が起こり、
冷却器13が目詰まり状態になった時ファン14を高回
転にすることにより、冷却器13から庫内に送る風量を
増加させ、庫内温度上昇を抑えることができる。ここ
で、全ての冷蔵室温度センサ24、52が一定温度以上
になった時としたのは、全ての冷蔵室温度センサが上昇
しない時は冷却器13は着霜による目詰まりを起こして
おらず、こういう時にファン14を高回転にしても冷却
器13の蒸発温度が上昇して冷却効果が向上市内ためで
ある。
At Step 12, the degree of decrease ΔTpcoff of the set temperature of the refrigerating room at the temperature increase degree Tpcup and the outside air temperature Tout is obtained by the membership function of the execution part of the control rule as follows. Decrease in set temperature △ Tpcoff
Is calculated using the height method as a value of the weighted average of the proportions h21, h22, ..., H29 in which the antecedent part of each control rule holds, as shown in (Equation 2). Also, when all the refrigerating room temperature sensors 24, 52 have reached a certain temperature or higher,
That is, a large amount of frost is formed on the cooler 13 by opening and closing the door,
When the cooler 13 becomes clogged, the fan 14 is rotated at a high speed to increase the amount of air sent from the cooler 13 to the inside of the refrigerator and suppress the rise in the inside temperature. Here, all the refrigerating compartment temperature sensors 24 and 52 are set to have a certain temperature or more. When all the refrigerating compartment temperature sensors do not rise, the cooler 13 is not clogged due to frost formation. This is because even if the fan 14 is rotated at a high speed at this time, the evaporation temperature of the cooler 13 rises and the cooling effect is improved in the city.

【0077】[0077]

【数2】 [Equation 2]

【0078】これにより、設定温度の下げ幅△Tpcoff
が求まる。従って、この実施例では、制御パラメータと
して冷蔵室内の温度上昇度および外気温度を使用してい
るため、キメ細かい制御が可能である。また、制御ルー
ルが人間の経験則から成り立っているため、最適な設定
温度で冷蔵室の温調制御ができる。
As a result, the set temperature decrease range ΔTpcoff
Is required. Therefore, in this embodiment, since the degree of temperature rise in the refrigerating compartment and the outside air temperature are used as the control parameters, fine control is possible. Further, since the control rule is based on human experience, temperature control of the refrigerating room can be performed at the optimum set temperature.

【0079】[0079]

【発明の効果】以上のように本発明は、食品を冷凍/冷
蔵し貯蔵することができる冷凍冷蔵庫において、冷凍室
においては、複数個の冷凍室温度センサと、冷凍室庫内
温度検出手段と、冷凍室庫内温度が前回のコンプレッサ
が運転開始する時の各冷凍室温度センサの温度を記憶
し、この温度に対して各センサが一定温度を越えたかど
うかを判定する冷凍室庫内温度判定手段と、外気温度セ
ンサと、外気温度検出手段と、前記冷凍室庫内温度検出
手段の出力により前回のコンプレッサが運転開始する時
の各冷凍室温度センサの温度からの庫内の温度上昇度を
演算する冷凍室温度上昇度演算手段と、冷凍室の設定温
度の下げ幅を求めるための経験則に基づく制御ルールを
記憶する第1のメモリと、庫内の温度上昇度と、外気温
度と、前記メモリから取り出された制御ルールに基づい
て、ファジィ論理演算を行ない冷凍室の設定温度の下げ
幅を演算する第1のファジィ推論プロセッサと、設定温
度の下げ幅から冷凍室の設定温度を演算する冷凍室設定
温度演算手段と、前記冷凍室設定温度演算手段により演
算された設定温度から、コンプレッサを制御するコンプ
レッサ制御手段と、全ての冷凍室温度センサが一定温度
以上になった時、ファンの回転数を高回転に切り換える
ファン制御手段とを備える。
As described above, according to the present invention, in a freezer / refrigerator capable of freezing / refrigerating and storing food, in the freezing room, a plurality of freezing room temperature sensors and freezing room internal temperature detecting means are provided. , The temperature of each freezer compartment temperature when the previous compressor started operating is stored, and it is judged whether or not each sensor exceeds a certain temperature against this temperature. Means, an outside air temperature sensor, an outside air temperature detecting means, and an output of the freezer compartment internal temperature detecting means to indicate the degree of temperature rise inside the refrigerator from the temperature of each freezer compartment temperature sensor when the previous compressor starts operating. A freezing room temperature increase degree calculating means for calculating; a first memory for storing a control rule based on an empirical rule for obtaining a reduction range of the set temperature of the freezing room; a temperature increase degree in the refrigerator; and an outside air temperature, Is it the memory A first fuzzy inference processor that performs a fuzzy logic operation based on the extracted control rule to calculate the reduction range of the set temperature of the freezing chamber, and a freezing chamber setting that calculates the set temperature of the freezing chamber from the reduction range of the set temperature When the temperature calculating means and the set temperature calculated by the freezing room set temperature calculating means, the compressor controlling means for controlling the compressor and all the freezing room temperature sensors reach a certain temperature or higher, the fan rotation speed is increased. And fan control means for switching to rotation.

【0080】また、冷蔵室においては、複数個の冷蔵室
温度センサと、冷蔵室庫内温度検出手段と、冷蔵室庫内
温度が前回の電動ダンパーが開く時の各冷蔵室温度セン
サの温度を記憶し、この温度に対し各センサが一定温度
を越えたかどうかを判定する冷蔵室庫内温度判定手段
と、前記冷蔵室庫内温度検出手段の出力により前回の電
動ダンパーが開く時の各冷凍室温度センサの温度からの
庫内の温度上昇度を演算する冷蔵室温度上昇度演算手段
と、冷蔵室の設定温度の下げ幅を求めるための経験則に
基づく制御ルールを記憶する第2のメモリと、庫内の温
度上昇度と、前記外気温度検出手段により検出された外
気温度と、前記メモリから取り出された制御ルールに基
づいて、ファジィ論理演算を行ない冷蔵室の設定温度の
下げ幅を演算する第2のファジィ推論プロセッサと、設
定温度の下げ幅から冷蔵室の設定温度を演算する冷蔵室
設定温度演算手段と、前記冷蔵室設定温度演算手段によ
り演算された設定温度から、電動ダンパを制御する電動
ダンパ制御手段と、全ての冷蔵室温度センサが一定温度
以上になった時、ファンの回転数を高回転に切り換える
ファン制御手段とを備える。
Further, in the refrigerating compartment, a plurality of refrigerating compartment temperature sensors, refrigerating compartment internal temperature detecting means, and refrigerating compartment internal temperature sensors are used to measure the temperature of each refrigerating compartment temperature sensor when the previous electric damper was opened. Stored in the refrigerating room temperature determining means for deciding whether or not each sensor exceeds a certain temperature with respect to this temperature, and each freezing room when the previous electric damper is opened by the output of the refrigerating room temperature detecting means. A refrigerating room temperature increase degree calculating means for calculating a temperature rise degree in the refrigerator from the temperature of the temperature sensor; and a second memory for storing a control rule based on an empirical rule for obtaining a reduction range of the set temperature of the refrigerating room. A degree of decrease in the set temperature of the refrigerating room is calculated by performing a fuzzy logic operation based on the degree of temperature rise in the refrigerator, the outside air temperature detected by the outside air temperature detecting means, and the control rule retrieved from the memory. First Fuzzy inference processor, a refrigerating room set temperature calculating means for calculating the set temperature of the refrigerating room from the reduction range of the set temperature, and an electric damper for controlling the electric damper from the set temperature calculated by the refrigerating room set temperature calculating means. A control means and a fan control means for switching the rotation speed of the fan to a high rotation speed when all the refrigerating compartment temperature sensors reach a certain temperature or higher.

【0081】また、冷凍室と冷蔵室の制御にあたり、冷
凍室の制御を優先させる優先手段とを備えた構成であ
る。この構成により、冷凍室、冷蔵室それぞれの温度上
昇度演算手段により演算された庫内の温度上昇度と、外
気温度検出手段により検出された外気温度と、メモリか
ら取り出された制御ルールに基づいて、ファジィ推論プ
ロセッサによってファジィ論理演算を行ない、冷凍室、
冷蔵室それぞれの設定温度の下げ幅が求められる。ま
た、冷凍室、冷蔵室の温度をきめ細かく検知するため
に、複数個の温度センサを各室に設けた場合、安定時の
各温度センサの温度にバラツキが生じた時も、冷凍室に
あっては毎回のコンプレッサ運転開始時の各センサの温
度、冷蔵室にあっては毎回の電動ダンパーが開く時の温
度を記憶し、この温度を基準にして温度上昇度を演算す
るために、各センサ間のバラツキを吸収し適切な温度上
昇値をファジィ推論プロセッサに入力することができ
る。したがって、上記により求めた下げ幅によりそれぞ
れの設定温度を調整し、この設定温度を基に、コンプレ
ッサを制御し、ファンを制御し、電動ダンパを制御する
と共に、全ての冷凍室温度センサまたは、全ての冷蔵室
温度センサが一定温度以上になった時、即ちドア開閉に
より冷却器に多量の着霜が起こり、冷却器が目詰まり状
態になった時、ファンを高回転にすることにより冷却器
から庫内に送る風量を増加させ、庫内温度上昇を抑える
ことにより、冷凍室、冷蔵室における冷凍/冷蔵食品を
鮮度よく長期間貯蔵できる経験則に基づいた最適な冷凍
室、冷蔵室の温調制御を行なうことができる。
Further, in controlling the freezing compartment and the refrigerating compartment, a priority means for giving priority to the control of the freezing compartment is provided. With this configuration, based on the temperature rise degree in the refrigerator calculated by the temperature rise degree calculating means of each of the freezer compartment and the refrigerating compartment, the outside air temperature detected by the outside air temperature detecting means, and the control rule retrieved from the memory. , Fuzzy logic operation by fuzzy inference processor, freezer,
It is necessary to reduce the set temperature of each refrigerator compartment. In addition, if multiple temperature sensors are provided in each room to detect the temperature of the freezing room and the refrigerating room in detail, even if the temperature of each temperature sensor at the time of stability varies Memorizes the temperature of each sensor at the start of each compressor operation, and the temperature when the electric damper opens each time in the refrigerating room, and in order to calculate the temperature rise degree based on this temperature, It is possible to absorb the variation of the above and input an appropriate temperature rise value to the fuzzy inference processor. Therefore, each set temperature is adjusted according to the lowering width obtained above, and based on this set temperature, the compressor is controlled, the fan is controlled, the electric damper is controlled, and all the freezer compartment temperature sensors or all When the temperature sensor in the refrigerator compartment exceeds a certain temperature, that is, when a large amount of frost is generated on the cooler due to the opening and closing of the door and the cooler becomes clogged, the fan is rotated at high speed By controlling the temperature rise in the freezer / refrigerator by increasing the amount of air sent to the refrigerator, the optimal temperature control of the freezer / refrigerator can be stored in the freezer / refrigerator based on empirical rules. Control can be performed.

【0082】例えば、夏場に食品をたくさん詰め込んだ
ときなどに、既に庫内に貯蔵されている既存食品の温度
上昇を最小限にし、上昇した温度を短時間で元の冷凍温
度に復帰させることができる。
For example, when a large amount of food is packed in the summer, the temperature rise of the existing food already stored in the refrigerator can be minimized and the raised temperature can be returned to the original freezing temperature in a short time. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す冷凍冷蔵庫の冷凍室の
制御装置のブロック図
FIG. 1 is a block diagram of a control device for a freezer compartment of a refrigerator / freezer showing an embodiment of the present invention.

【図2】(a)は冷凍室の庫内の温度上昇度に対するフ
ァジィ変数のメンバシップ関数を示すグラフ (b)は外気温度に対するファジィ変数のメンバシップ
関数を示すグラフ
FIG. 2 (a) is a graph showing a membership function of a fuzzy variable with respect to a temperature rise in the freezer compartment. FIG. 2 (b) is a graph showing a membership function of a fuzzy variable with respect to an outside air temperature.

【図3】図1における動作を説明するためのフローチャ
ート
FIG. 3 is a flowchart for explaining the operation in FIG.

【図4】図1におけるファジィ推論の手順を説明するた
めのフローチャート
FIG. 4 is a flowchart for explaining a fuzzy inference procedure in FIG.

【図5】本発明の他の実施例を示す冷凍冷蔵庫の冷蔵室
の制御装置のブロック図
FIG. 5 is a block diagram of a control device for a refrigerating room of a refrigerator-freezer according to another embodiment of the present invention.

【図6】図5における冷蔵室の庫内の温度上昇度に対す
るファジィ変数のメンバシップ関数を示すグラフ
FIG. 6 is a graph showing a membership function of fuzzy variables with respect to a temperature rise inside the refrigerator in FIG.

【図7】図5における動作を説明するためのフローチャ
ート
7 is a flowchart for explaining the operation in FIG.

【図8】従来の冷凍冷蔵庫の制御装置のブロック図FIG. 8 is a block diagram of a conventional controller for a refrigerator-freezer.

【図9】従来例における動作を説明するためのフローチ
ャート
FIG. 9 is a flowchart for explaining the operation in the conventional example.

【符号の説明】[Explanation of symbols]

8 冷凍室 9 冷蔵室 19 冷凍室温度センサ 20 冷凍室庫内温度検出手段 21 冷凍室庫内温度判定手段 22 コンプレッサ制御手段 23 ファン制御手段 24 冷蔵室温度センサ 25 冷蔵室庫内温度検出手段 26 冷蔵室庫内温度判定手段 27 電動ダンパ制御手段 28 外気温度センサ 30 冷凍室の制御装置 31 外気温度検出手段 32 冷凍室温度上昇度演算手段 33 第1のメモリ 34 第1のファジィ推論プロセッサ 35 冷凍室設定温度演算手段 40 冷蔵室の制御装置 42 冷蔵室温度上昇度演算手段 43 第2のメモリ 44 第2のファジィ推論プロセッサ 45 冷蔵室設定温度演算手段 50 冷凍室温度センサ 51 冷凍室庫内温度検出手段 52 冷蔵室温度センサ 53 冷蔵室庫内温度検出手段 8 Freezing Room 9 Refrigerating Room 19 Freezing Room Temperature Sensor 20 Freezing Room Internal Temperature Detection Means 21 Freezing Room Internal Temperature Judging Means 22 Compressor Controlling Means 23 Fan Controlling Means 24 Refrigerating Room Temperature Sensors 25 Cold Refrigerating Room Temperature Detecting Means 26 Refrigeration Room temperature determination means 27 Electric damper control means 28 Outside air temperature sensor 30 Freezing room control device 31 Outside air temperature detection means 32 Freezing room temperature rise calculation means 33 First memory 34 First fuzzy inference processor 35 Freezing room setting Temperature calculating means 40 Refrigerating room control device 42 Refrigerating room temperature rise calculating means 43 Second memory 44 Second fuzzy inference processor 45 Refrigerating room set temperature calculating means 50 Freezing room temperature sensor 51 Freezing room temperature detecting means 52 Refrigerating room temperature sensor 53 Temperature measuring means in the refrigerating room

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷凍室内に設けられた複数個の冷凍室温
度センサと、前記冷凍室温度センサにより冷凍室内の温
度を検出する冷凍室庫内温度検出手段と、前記冷凍室庫
内温度検出手段により検出された温度が、前回のコンプ
レッサが運転開始する時の各冷凍室温度センサの温度を
記憶し、この温度に対し、各冷凍室温度センサが一定温
度を越えたかどうかを判定する冷凍室庫内温度判定手段
と、冷凍冷蔵庫外に設けられた外気温度センサと、前記
外気温度センサにより冷凍冷蔵庫外の外気温度を検出す
る外気温度検出手段と、前記冷凍室庫内温度検出手段の
出力により前回のコンプレッサが運転開始するときの各
冷凍室温度センサの温度からの庫内の温度上昇度を演算
する冷凍室温度上昇度演算手段と、冷凍室の設定温度の
下げ幅を求めるための経験則に基づく制御ルールを記憶
する第1のメモリと、前記冷凍室温度上昇度演算手段に
より演算された温度上昇度と、前記外気温度検出手段に
より検出された外気温度と、前記メモリから取り出され
た制御ルールに基づいて、ファジィ論理演算を行ない冷
凍室の設定温度の下げ幅を演算する第1のファジィ推論
プロセッサと、前記ファジィ推論プロセッサにより演算
された設定温度の下げ幅から、冷凍室の設定温度を演算
する冷凍室設定温度演算手段と、前記冷凍室設定温度演
算手段により演算された設定温度から、コンプレッサを
制御するコンプレッサ制御手段と、全ての冷凍室温度セ
ンサが一定温度以上になった時、ファンの回転数を高回
転に切り換えるファン制御手段とを備えることを特徴と
する冷凍冷蔵庫の制御装置。
1. A plurality of freezer compartment temperature sensors provided in the freezer compartment, a freezer compartment internal temperature detection means for detecting the temperature in the freezer compartment by the freezer compartment temperature sensors, and the freezer compartment internal temperature detection means. The temperature detected by memorize the temperature of each freezer compartment temperature sensor when the previous compressor started operation, and determine whether each freezer compartment temperature sensor has exceeded a certain temperature against this temperature. The inside temperature determination means, the outside air temperature sensor provided outside the freezer-refrigerator, the outside air temperature detection means for detecting the outside air temperature outside the freezer-refrigerator by the outside air temperature sensor, and the output of the freezer compartment temperature detection means To calculate the degree of temperature rise in the freezer compartment from the temperature of each freezer compartment temperature sensor when the compressor starts operating, and to determine the amount of decrease in the set temperature of the freezer compartment A first memory for storing a control rule based on the empirical rule, a temperature increase degree calculated by the freezer compartment temperature increase degree calculation means, an outside air temperature detected by the outside air temperature detection means, and a memory extracted from the memory. Based on the control rule, the first fuzzy inference processor that performs a fuzzy logic operation to calculate the reduction range of the set temperature of the freezing room, and the reduction range of the set temperature calculated by the fuzzy inference processor The freezing room set temperature calculating means for calculating the set temperature, the compressor control means for controlling the compressor from the set temperature calculated by the freezing room set temperature calculating means, and all the freezing room temperature sensors have exceeded a certain temperature. A control device for a refrigerator-freezer, comprising: a fan control means for switching the rotation speed of the fan to a high rotation speed.
【請求項2】 冷蔵室内に設けられた複数個の冷蔵室温
度センサと、前記冷蔵室温度センサにより冷蔵室内の温
度を検出する冷蔵室庫内温度検出手段と、前記冷蔵室庫
内温度検出手段により検出された温度が、前回の電動ダ
ンパーが開く時の各冷蔵室温度センサの温度を記憶し、
この温度に対し各冷蔵室温度センサが一定温度を越えた
かどうかを判定する冷蔵室庫内温度判定手段と、冷凍冷
蔵庫外に設けられた外気温度センサと、前記外気温度セ
ンサにより冷凍冷蔵庫外の外気温度を検出する外気温度
検出手段と、前記冷蔵室庫内温度検出手段の出力により
前回の電動ダンパーが開く時の各冷蔵室温度センサの温
度からの庫内の温度上昇度を演算する冷蔵室温度上昇度
演算手段と、冷蔵室の設定温度の下げ幅を求めるための
経験則に基づく制御ルールを記憶する第2のメモリと、
前記冷蔵室温度上昇度演算手段により演算された温度上
昇度と、前記外気温度検出手段により検出された外気温
度と、前記メモリから取り出された制御ルールに基づい
て、ファジィ論理演算を行ない冷蔵室の設定温度の下げ
幅を演算する第2のファジィ推論プロセッサと、前記フ
ァジィ推論プロセッサにより演算された設定温度の下げ
幅から、冷蔵室の設定温度を演算する冷蔵室設定温度演
算手段と、前記冷蔵室設定温度演算手段により演算され
た設定温度から、電動ダンパを制御する電動ダンパ制御
手段と、全ての冷蔵室温度センサが一定温度以上になっ
た時、ファンの回転数を高回転に切り換えるファン制御
手段を備えることを特徴とする冷凍冷蔵庫の制御装置。
2. A plurality of refrigerating compartment temperature sensors provided in the refrigerating compartment, a refrigerating compartment internal temperature detecting means for detecting a temperature in the refrigerating compartment by the refrigerating compartment temperature sensor, and the refrigerating compartment internal temperature detecting means. The temperature detected by memorizes the temperature of each cold room temperature sensor when the previous electric damper opened,
Refrigerating room temperature sensor for determining whether or not each refrigerating room temperature sensor exceeds a certain temperature for this temperature, an outside air temperature sensor provided outside the freezer-refrigerator, and an outside air outside the freezer-refrigerator by the outside air temperature sensor. An outside air temperature detecting means for detecting the temperature and a refrigerating compartment temperature for calculating the degree of temperature increase in the refrigerator from the temperature of each refrigerating compartment temperature sensor when the electric damper is opened last time by the output of the refrigerating compartment inside temperature detecting means. An ascending degree calculating means, and a second memory for storing a control rule based on an empirical rule for obtaining a reduction range of the set temperature of the refrigerating room,
Based on the temperature increase degree calculated by the refrigerating room temperature increase degree calculating means, the outside air temperature detected by the outside air temperature detecting means, and the control rule fetched from the memory, a fuzzy logic operation is performed for the refrigerating room temperature. A second fuzzy inference processor for calculating the set temperature decrease range, a refrigerating room set temperature calculating means for calculating the set temperature of the refrigerating room from the set temperature decrease range calculated by the fuzzy inference processor, and the refrigerating room From the set temperature calculated by the set temperature calculation means, the electric damper control means for controlling the electric damper and the fan control means for switching the rotation speed of the fan to a high rotation speed when all the refrigerating compartment temperature sensors reach a certain temperature or higher. A control device for a refrigerator / freezer, comprising:
JP8356492A 1992-04-06 1992-04-06 Controller for freezing refrigerator Pending JPH05288450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8356492A JPH05288450A (en) 1992-04-06 1992-04-06 Controller for freezing refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8356492A JPH05288450A (en) 1992-04-06 1992-04-06 Controller for freezing refrigerator

Publications (1)

Publication Number Publication Date
JPH05288450A true JPH05288450A (en) 1993-11-02

Family

ID=13806016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8356492A Pending JPH05288450A (en) 1992-04-06 1992-04-06 Controller for freezing refrigerator

Country Status (1)

Country Link
JP (1) JPH05288450A (en)

Similar Documents

Publication Publication Date Title
JPH0682141A (en) Controller of refrigerator-freezer
JPH06137738A (en) Control device for freezer and refrigerator
JP3135287B2 (en) Refrigerator refrigerator control device
JP2998852B2 (en) Refrigerator refrigerator control device
JP3098780B2 (en) Refrigerator refrigerator control device
JPH08261624A (en) Control device for freezing refrigerator
JPH07229668A (en) Controller for deep freezing refrigerator
JPH05288450A (en) Controller for freezing refrigerator
JP3164869B2 (en) Refrigerator refrigerator control device
JP3193923B2 (en) Refrigerator refrigerator control device
JPH06300415A (en) Controller of freezer-refrigerator
JPH06300416A (en) Controller of freezer-refrigerator
JP2998848B2 (en) Refrigerator refrigerator control device
JPH06294568A (en) Controller for freezer/refrigerator
JPH05288449A (en) Controller for freezing refrigerator
JP2998851B2 (en) Refrigerator refrigerator control device
JP3135302B2 (en) Refrigerator refrigerator control device
JP2998847B2 (en) Refrigerator control device
JP3197589B2 (en) Refrigerator refrigerator temperature control device
JPH0518649A (en) Controlling device for refrigerated-cold storage cabinet
JPH05203313A (en) Controller of freezing refrigerator
JP3110479B2 (en) Refrigerator refrigerator control device
JPH07332832A (en) Controller for freezing refrigerator
JPH063018A (en) Control device for rezzer refrigerator
JPH0560441A (en) Control device for freezer refrigerator