JPH05287041A - Production of polyester containing urethane bond - Google Patents

Production of polyester containing urethane bond

Info

Publication number
JPH05287041A
JPH05287041A JP4089038A JP8903892A JPH05287041A JP H05287041 A JPH05287041 A JP H05287041A JP 4089038 A JP4089038 A JP 4089038A JP 8903892 A JP8903892 A JP 8903892A JP H05287041 A JPH05287041 A JP H05287041A
Authority
JP
Japan
Prior art keywords
molecular weight
polyester
weight
average molecular
saturated polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4089038A
Other languages
Japanese (ja)
Inventor
Tadayuki Hosogane
忠幸 細金
Noritama Harigai
憲璋 針谷
Eiichiro Takiyama
栄一郎 滝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP4089038A priority Critical patent/JPH05287041A/en
Publication of JPH05287041A publication Critical patent/JPH05287041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

PURPOSE:To obtain the title polyester having practical strengths, a high melting point, and film-forming properties by using a very small amount of a catalyst. CONSTITUTION:A saturated polyester terminated substantially with hydroxyl and having an average molecular weight of 5000 or above is produced by using 0.0001-2 pts.wt., per 100 pts.wt. polyester to be formed, deglycolation catalyst. 100 pts.wt. this polyester in a molten state is reacted with 0.1-5 pts.wt. at least trifunctional polyisocyanate to obtain the title polyester of a number-average molecular weight of 10000 or above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、実用上十分な高分子量
をもった、少量のウレタン結合を含む飽和のポリエステ
ルの製造方法に関するものであり、特に淡色が要求さ
れ、その上脱グリコール触媒の使用量が極めて少なく、
少量のウレタン結合を含むポリエステルの製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a saturated polyester having a practically sufficient high molecular weight and containing a small amount of a urethane bond. Very little usage,
The present invention relates to a method for producing a polyester containing a small amount of urethane bonds.

【0002】[0002]

【従来の技術】実用上十分な数平均分子量をもったポリ
エチレンテレフタレートを合成する際、脱グリコール反
応の触媒として、チタン、亜鉛、マンガン、鉄、鉛、ア
ンチモンなどの重金属の有機アルコキシ化合物、ならび
に有機酸の金属塩などを触媒に利用することはよく知ら
れている。これらの触媒が十分な量用いられるのであれ
ば、短時間に必要な数平均分子量まで高めることができ
るかも知れず、そうであれば問題はないが、例えば食品
関係に用いられる包装材料には、これら触媒量は極力少
ないことが望まれている。特に人体に有害な作用の認め
られている種類のものの使用は避けなければならないこ
とである。従って、毒性の認められない金属化合物を、
極力少量用いて実用性のある高分子量ポリエステルを合
成できるならば、食品関係の包装材料用として頗る望ま
しいことが期待される。
2. Description of the Related Art When synthesizing polyethylene terephthalate having a practically sufficient number average molecular weight, it is used as a catalyst for a deglycolization reaction as an organic alkoxy compound of a heavy metal such as titanium, zinc, manganese, iron, lead, antimony, and It is well known to utilize metal salts of acids as catalysts. If these catalysts are used in a sufficient amount, it may be possible to increase the required number average molecular weight in a short time, and if so, there is no problem, for example, packaging materials used for foods, It is desired that the amount of these catalysts is as small as possible. Especially, it is necessary to avoid the use of the kind that is recognized to have harmful effects on the human body. Therefore, a metal compound that is not toxic is
If it is possible to synthesize a practical high-molecular-weight polyester using a small amount as much as possible, it is expected to be extremely desirable for food-related packaging materials.

【0003】飽和ポリエステルの高分子量化のために
は、飽和ポリエステルをジイソシアナートで結合して高
分子量にすることも考えられる。例えば従来から、末端
基がヒドロキシル基である数平均分子量2,000〜
2,500程度の飽和ポリエステルを、ポリウレタン樹
脂の原料成分とし、ジイソシアナートと反応させて、ゴ
ム、フォーム、塗料、接着剤とすることは広く行われて
いる。
In order to increase the molecular weight of the saturated polyester, it is possible to combine the saturated polyester with a diisocyanate to increase the molecular weight. For example, conventionally, the number average molecular weight of the terminal group is a hydroxyl group 2,000 ~
It is widely practiced to use about 2,500 saturated polyester as a raw material component of a polyurethane resin and react it with diisocyanate to prepare a rubber, foam, paint or adhesive.

【0004】しかし、既存のポリウレタンに用いられる
飽和ポリエステルは、数平均分子量2,000〜2,5
00の、いわばプレポリマーであり、この低分子量の飽
和ポリエステル100重量部に対して、実用的な物性を
得るためには、ジイソシアナートの分子量にもよるが、
ジイソシアナートの使用量は10重量部以上、15〜2
0重量部にも及ぶ必要がある。しかしながら、例えば1
0重量部以上のジイソシアナートを熔融飽和ポリエステ
ル(種類にもよるがほぼ150℃以上)に添加すると、
低分子量の飽和ポリエステルであると、高分子量の飽和
ポリエステルであるとに拘わらず、必ずゲル化して、取
扱い可能な樹脂は得られない。実際には、10重量部以
上のジイソシアナートの添加は、溶剤に溶解した溶液状
態で行われるか、フォームあるいはRIM成形にみられ
るように、一度で最終硬化樹脂を得るかである。
However, the saturated polyester used in the existing polyurethane has a number average molecular weight of 2,000 to 2.5.
It is a so-called prepolymer of No. 00, and for obtaining 100% by weight of this low molecular weight saturated polyester, in order to obtain practical physical properties, it depends on the molecular weight of diisocyanate.
The amount of diisocyanate used is 10 parts by weight or more and 15 to 2
It is necessary to reach 0 parts by weight. However, for example, 1
When 0 part by weight or more of diisocyanate is added to melt-saturated polyester (depending on the type, it is approximately 150 ° C or higher),
If the saturated polyester has a low molecular weight, it will always gel, regardless of whether it is a saturated polyester having a high molecular weight, and a handleable resin cannot be obtained. In practice, the addition of 10 parts by weight or more of diisocyanate is carried out in solution in a solvent, or as in foam or RIM molding, to obtain the final cured resin in one go.

【0005】またゴムの場合ヒドロキシル基をイソシア
ナート基に転換し(ジイソシアナートを加えて)、さら
にグリコールで数平均分子量を増大することも行われて
いるが、イソシアナートの量は前記のように10重量部
以上という多さである。このような場合、飽和ポリエス
テルの合成に重金属系の触媒を用いると、これがイソシ
アナート基の反応性を著しく促進して、保存性不良、望
ましからざる架橋(分岐)をもたらすことから、一般に
ポリウレタン原料樹脂としての低分子量の飽和ポリエス
テルは、無触媒で合成されている。従って、数平均分子
量は高くても2,500位が限界である。
In the case of rubber, it has also been conducted to convert a hydroxyl group into an isocyanate group (adding diisocyanate) and further increase the number average molecular weight with glycol, but the amount of the isocyanate is as described above. The amount is 10 parts by weight or more. In such a case, when a heavy metal-based catalyst is used for the synthesis of the saturated polyester, it significantly accelerates the reactivity of the isocyanate group, resulting in poor storage stability and undesired crosslinking (branching). A low molecular weight saturated polyester as a raw material resin is synthesized without a catalyst. Therefore, even if the number average molecular weight is high, the limit is 2,500.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記のよう
な従来の課題を解決し、脱グリコール触媒および3官能
以上の多価イソシアナートを用い、実用上十分な強度を
有し且つ融点も高く、さらに使用する脱グリコール触媒
量を非常に少量とすることのできるウレタン結合を含む
ポリエステルの製造方法を提供することを目的とするも
のである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned conventional problems and uses a deglycolization catalyst and a polyfunctional isocyanate having three or more functional groups, and has practically sufficient strength and a melting point. It is an object of the present invention to provide a method for producing a polyester containing a urethane bond, which is high and which can use a very small amount of deglycolization catalyst.

【0007】[0007]

【課題を解決するための手段】末端基が実質的にヒドロ
キシル基である数平均分子量が5,000以上の飽和ポ
リエステルに3官能以上の多価イソシアナートを加え、
反応を行えば常識的にはゲル化して取扱い可能なポリエ
ステルは得られないと考えられるが、本発明者らは管理
された条件下で合成された特定の飽和ポリエステルに、
3官能以上の多価イソシアナートを加え、熔融状態で反
応させることにより、ゲル化することなしに飽和ポリエ
ステルの数平均分子量を希望の水準まで高められること
を見出して、本発明を完成することができた。
[Means for Solving the Problems] To a saturated polyester having a hydroxyl group as a terminal group and a number average molecular weight of 5,000 or more, a trifunctional or higher polyvalent isocyanate is added,
It is considered that if the reaction is carried out, it is common knowledge that a gelable and handleable polyester cannot be obtained, but the present inventors have found that a specific saturated polyester synthesized under controlled conditions,
The present invention has been completed by finding that the number average molecular weight of saturated polyester can be increased to a desired level without gelation by adding a polyfunctional isocyanate having a functionality of 3 or more and reacting it in a molten state. did it.

【0008】すなわち、本発明者らは脱グリコール反応
の触媒を用いて、数平均分子量5,000以上、望まし
くは10,000以上の飽和ポリエステルを合成し、さ
らに熔融状態の該飽和ポリエステル100重量部に0.
1〜5重量部の3官能以上の多価イソシアナートを添
加、反応させることによって、飽和ポリエステルの
(1)分子量分布(重量平均分子量/数平均分子量)が
広がり、加工性が改良されること、(2)数平均分子量
を1.5〜5倍に高め、これにより触媒の活性の乏しさ
と、それに基づく飽和ポリエステルの分子量を希望の水
準まで高めることの困難な点の解消、(3)揮発性の低
い3官能以上の多価イソシアナートを用いることによ
り、イソシアナートの取扱い上もっとも注意しなければ
ならない毒性も皆無に近くなることを見出し、本発明を
完成することができた。
That is, the present inventors have synthesized a saturated polyester having a number average molecular weight of 5,000 or more, preferably 10,000 or more, using a catalyst for a deglycolization reaction, and further 100 parts by weight of the saturated polyester in a molten state. 0.
By adding and reacting 1 to 5 parts by weight of a polyfunctional isocyanate having a functionality of 3 or more, the saturated polyester (1) has a broader molecular weight distribution (weight average molecular weight / number average molecular weight) and improved processability. (2) The number average molecular weight is increased to 1.5 to 5 times, thereby eliminating the poor activity of the catalyst and the difficulty of increasing the molecular weight of the saturated polyester to a desired level based on it, (3) Volatility It was found that the use of a polyfunctional isocyanate having a low trifunctionality or higher makes it possible to complete the present invention by finding that the toxicity, which must be paid the most attention in handling the isocyanate, becomes almost zero.

【0009】本発明は、(a)末端基が実質的にヒドロ
キシル基である飽和ポリエステルの合成過程で、生成す
るポリエステル100重量部に対して0.0001〜2
重量部の脱グリコール触媒を用いて、末端基が実質的に
ヒドロキシル基である数平均分子量5,000以上の飽
和ポリエステルを合成し、(b)熔融状態の該飽和ポリ
エステル100重量部に0.1〜5重量部の3官能以上
の多価イソシアナートを添加、反応させることよりな
る、数平均分子量10,000以上のウレタン結合を含
むポリエステルの製造方法を提供するものである。
In the present invention, (a) 0.0001 to 2 per 100 parts by weight of the polyester produced in the process of synthesizing a saturated polyester having a terminal hydroxyl group.
Using 10 parts by weight of a deglycolization catalyst, a saturated polyester having a number average molecular weight of 5,000 or more whose terminal group is substantially a hydroxyl group is synthesized, and (b) 0.1 part is added to 100 parts by weight of the saturated polyester in a molten state. The present invention provides a method for producing a polyester containing a urethane bond having a number average molecular weight of 10,000 or more, which comprises adding and reacting 5 to 5 parts by weight of a trifunctional or higher polyvalent isocyanate.

【0010】以下、本発明をさらに詳細に説明する。 (飽和ポリエステル)本発明においては、3官能以上の
多価イソシアナートと反応させる飽和ポリエステルは、
末端基が実質的にヒドロキシル基である、数平均分子量
5,000以上、好ましくは10,000以上の飽和ポ
リエステルでなければならない。これが低分子量の飽和
ポリエステル、例えば数平均分子量が2,500程度で
あると、本発明で利用する0.1〜5重量部の3官能以
上の多価イソシアナートを用いても、良好な物性を有す
る最終の高分子量ポリエステルを得ることができないば
かりか、3官能以上の多価イソシアナートの熔融添加に
あっては、前出した0.1〜5重量部でも、量によって
は反応中にゲル化を生ずることが認められるなどの不都
合がある。したがって、末端ヒドロキシル価がほぼ30
以下位でなければ、安全な反応が行えない。本発明の数
平均分子量5,000以上の飽和ポリエステルは、必然
的にこのレベルまたは以下のヒドロキシル価であり、少
量の3官能以上の多価イソシアナートの使用で、熔融状
態といった苛酷な条件下でも、安全に高分子量ポリエス
テルを合成することができる。したがって、本発明でい
う飽和ポリエステルは、少なくとも数平均分子量5,0
00当たり1個のウレタン結合を含むことになる。
The present invention will be described in more detail below. (Saturated Polyester) In the present invention, the saturated polyester to be reacted with a trifunctional or higher polyvalent isocyanate is
It must be a saturated polyester having a number average molecular weight of 5,000 or more, preferably 10,000 or more, the end groups of which are substantially hydroxyl groups. When this is a low molecular weight saturated polyester, for example, a number average molecular weight of about 2,500, good physical properties can be obtained even when 0.1 to 5 parts by weight of a trifunctional or higher polyvalent isocyanate is used. In addition to not being able to obtain the final high-molecular-weight polyester, the addition of 0.1 to 5 parts by weight of the above-mentioned polyfunctional isocyanate in the melt addition of trifunctional or higher functional polyisocyanate may cause gelation during the reaction. It is recognized that the occurrence of Therefore, the terminal hydroxyl number is about 30.
If it is not higher than the rank, a safe reaction cannot be performed. The saturated polyester of the present invention having a number average molecular weight of 5,000 or more inevitably has a hydroxyl value of this level or lower, and by using a small amount of a trifunctional or higher polyvalent isocyanate, even under severe conditions such as a molten state. It is possible to safely synthesize high molecular weight polyester. Therefore, the saturated polyester referred to in the present invention has at least a number average molecular weight of 5,0.
It will contain one urethane bond per 00.

【0011】本発明により得られる数平均分子量10,
000以上、望ましくは20,000以上のウレタン結
合を含むポリエステルは、融点が60℃以上で結晶性が
あれば、強靭なフィルムとすることができ、包装材料と
して利用することが可能である。飽和ポリエステルを合
成するために用いられるグリコール類としては、例えば
エチレングリコール、ブタンジオール1,4、ヘキサン
ジオール1,6、デカメチレングリコール、ネオペンチ
ルグリコール、1,4−シクロヘキサンジメタノール、
The number average molecular weight obtained by the present invention is 10,
A polyester containing urethane bonds of 000 or more, preferably 20,000 or more can be made into a tough film if it has a melting point of 60 ° C. or more and is crystalline, and can be used as a packaging material. Examples of glycols used for synthesizing the saturated polyester include ethylene glycol, butanediol 1,4, hexanediol 1,6, decamethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol,

【化1】 [Chemical 1]

【化2】 などがあげられる。エチレンオキシドも利用することが
できる。これらグリコール類と反応して飽和ポリエステ
ルを形成する多塩基酸(またはその酸無水物)には、コ
ハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカ
ン二酸、無水コハク酸、無水アジピン酸、フタル酸、イ
ソフタル酸、テレフタル酸などが一般に市販されてお
り、本発明に利用することができる。なお、少量であれ
ば3官能以上の多価カルボン酸、多価アルコール、多価
オキシカルボン酸を共縮合成分とすることができる。多
価カルボン酸としてはトリメリット酸、ピロメリット酸
など、多価アルコールとしてはトリメチロールプロパ
ン、ペンタエリスリトールなど、多価オキシカルボン酸
としてはりんご酸、くえん酸、酒石酸などがそれぞれあ
げられる。特に、ブタンジオール1,4とコハク酸(融
点110〜115℃)、ならびにエチレングリコールと
コハク酸(融点約97〜102℃)の組合せが、ポリエ
チレンと類似の融点を示し、本発明にとっては、最も望
ましい組合せといえる。当然のことながら、目的を損な
わない範囲で、グリコール類、多塩基酸(またはその酸
無水物)相互の併用は可能である。本発明の飽和ポリエ
ステルは、末端基が実質的にヒドロキシル基であるが、
そのためには、合成反応に使用するグリコール類および
多塩基酸(またはその酸無水物)の割合は、グリコール
類を幾分過剰に使用する必要がある。飽和ポリエステル
を合成する方法は特別なものではなく、一般にエステル
化に続く脱グリコール反応により高分子量化される。
[Chemical 2] Etc. Ethylene oxide can also be utilized. Polybasic acids (or their anhydrides) that react with these glycols to form saturated polyesters include succinic acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, succinic anhydride, adipic anhydride, phthalic acid. Acids, isophthalic acid, terephthalic acid and the like are generally commercially available and can be used in the present invention. If the amount is small, a polyfunctional carboxylic acid having a functionality of 3 or more, a polyhydric alcohol, and a polyoxycarboxylic acid can be used as the cocondensation component. Examples of the polyvalent carboxylic acid include trimellitic acid and pyromellitic acid, examples of the polyvalent alcohol include trimethylolpropane and pentaerythritol, and examples of the polyvalent oxycarboxylic acid include malic acid, citric acid and tartaric acid. In particular, the combination of butanediol 1,4 and succinic acid (melting point 110-115 ° C.), and ethylene glycol and succinic acid (melting point about 97-102 ° C.) show a melting point similar to that of polyethylene, and are most suitable for the present invention. It is a desirable combination. As a matter of course, glycols and polybasic acids (or acid anhydrides thereof) can be used in combination with each other as long as the purpose is not impaired. Although the saturated polyester of the present invention has a terminal group substantially a hydroxyl group,
To this end, the glycols and polybasic acid (or their acid anhydrides) used in the synthesis reaction need to be used in a somewhat excess amount. The method for synthesizing the saturated polyester is not special, and it is generally made high molecular weight by a deglycolization reaction following esterification.

【0012】(触媒)本発明の飽和ポリエステルの合成
に使用される脱グリコール触媒は、特に制限されるもの
ではなく、例えばアセトアセトイル型キレート化合物、
金属アルコキシドまたは有機酸の金属塩があげられる。
アセトアセトイル型キレート化合物、金属アルコキシド
または有機酸の金属塩を形成する金属としては、鉄、マ
ンガン、コバルト、ジルコニウム、バナジウム、イット
リウム、ランタン、セリウム、リチウム、カルシウム、
チタン、亜鉛などがあげられる。他の金属、例えばアル
ミニウム、ストロンチウム、バリウムも使用できないこ
とはないが、触媒作用が弱かったり、毒性といった点か
ら特に望ましいといえない。前記の金属中、鉄、コバル
ト、バナジウム、ジルコニウムはアセトアセトイル型キ
レート化合物の方が、作用、色相などの点で優れてお
り、特にバナジウムはバナジル型のアセチルアセトネー
トでなければ実用性がない。イットリウム、ランタン、
セリウム、リチウム、カルシウムなどは有機酸の金属塩
の形で市販されており、特にキレート化合物を利用しな
ければならないことは認められていない。これらの脱グ
リコール触媒の使用割合は、生成ポリエステル100重
量部に対して0.0001〜2重量部、望ましくは0.
0005〜1重量部、更に望ましくは0.001〜0.
1重量部である。これらの脱グリコール触媒はエステル
化の最初から加えてもよく、また脱グリコール反応の直
前に加えてもよい。脱グリコール触媒の使用割合が0.
0001重量部未満では、触媒の作用が弱くなり、目的
とする数平均分子量を有する飽和ポリエステルを得るこ
とが困難である。一方、脱グリコール触媒の使用割合が
2重量部より多い場合は、その作用は大きく変ることが
なく、触媒残渣のみが増加して好ましくない。
(Catalyst) The deglycolization catalyst used in the synthesis of the saturated polyester of the present invention is not particularly limited, and examples thereof include acetoacetoyl type chelate compounds,
Examples thereof include metal alkoxides and metal salts of organic acids.
Examples of the metal forming the acetoacetoyl type chelate compound, metal alkoxide or metal salt of an organic acid include iron, manganese, cobalt, zirconium, vanadium, yttrium, lanthanum, cerium, lithium and calcium,
Examples include titanium and zinc. Other metals such as aluminum, strontium, and barium can be used, but they are not particularly desirable in terms of weak catalytic action and toxicity. Among the above-mentioned metals, iron, cobalt, vanadium and zirconium are superior to acetoacetoyl type chelate compounds in terms of action, hue and the like, and vanadium is not practical unless it is vanadyl type acetylacetonate. .. Yttrium, lantern,
Cerium, lithium, calcium and the like are commercially available in the form of metal salts of organic acids, and it is not recognized that a chelate compound must be used. The proportion of these deglycolization catalysts used is 0.0001 to 2 parts by weight, preferably 0.
0005 to 1 part by weight, more preferably 0.001 to 0.
1 part by weight. These deglycolization catalysts may be added from the beginning of the esterification or immediately before the deglycolization reaction. The use ratio of deglycolization catalyst is 0.
If it is less than 0001 parts by weight, the action of the catalyst becomes weak and it is difficult to obtain a saturated polyester having a desired number average molecular weight. On the other hand, when the use ratio of the deglycolization catalyst is more than 2 parts by weight, the action does not change greatly and only the catalyst residue increases, which is not preferable.

【0013】(3官能以上の多価イソシアナート)さら
に、本発明の構成要素である生成した数平均分子量5,
000以上、望ましくは10,000以上の末端基が実
質的にヒドロキシル基である飽和ポリエステルに、さら
に分子量を高めるために加えられる3官能以上の多価イ
ソシアナートには特に制限はないが、例えば市販の次の
種類があげられる。トリレンジイソシアナートの3量
体、ヘキサメチレンジイソシアナートの3量体あるいは
ジイソシアナートと多価の活性水素を有する化合物との
付加体(例えばトリレンジイソシアナート3モルとトリ
メチロールプロパン1モル、あるいはヘキサメチレンジ
イソシアナート3モルとトリメチロールプロパン1モル
との付加体)あるいは下式で示されるビューレットタイ
プのトリイソシアナート
(Trifunctional or higher polyvalent isocyanate) Further, the number average molecular weight 5, which is a constituent of the present invention, is 5,
There is no particular limitation on the trifunctional or higher polyvalent isocyanate added to the saturated polyester having 000 or more, and preferably 10,000 or more, end groups being substantially hydroxyl groups to further increase the molecular weight. The following types are listed. Tolylene diisocyanate trimer, hexamethylene diisocyanate trimer or an adduct of diisocyanate with a compound having polyvalent active hydrogen (for example, 3 mol of tolylene diisocyanate and 1 mol of trimethylolpropane, Or an adduct of 3 mol of hexamethylene diisocyanate and 1 mol of trimethylolpropane) or a burette type triisocyanate represented by the following formula

【化3】 などがあげられる。特に、ヘキサメチレンジイソシアナ
ートの3量体およびヘキサメチレンジイソシアナート3
モルとトリメチロールプロパン1モルとの付加体が、生
成樹脂の色相、ポリエステル添加時の反応性などの点か
ら好ましい。これら3官能以上の多価イソシアナートの
添加量は、分子量にもよるが、飽和ポリエステル100
重量部に対して0.1〜5重量部、望ましくは0.5〜
3重量部である。3官能以上の多価イソシアナートの添
加量が0.1重量部未満では、本発明の効果が得られ
ず、また5重量部より多い場合は、ゲル化の危険が生じ
る。
[Chemical 3] Etc. In particular, hexamethylene diisocyanate trimer and hexamethylene diisocyanate 3
An adduct of 1 mol of trimethylolpropane and 1 mol of trimethylolpropane is preferable from the viewpoint of the hue of the produced resin and the reactivity when the polyester is added. The amount of addition of these trifunctional or higher polyvalent isocyanates depends on the molecular weight, but saturated polyester 100
0.1-5 parts by weight, preferably 0.5-
3 parts by weight. If the amount of the trifunctional or higher polyvalent isocyanate added is less than 0.1 parts by weight, the effect of the present invention cannot be obtained, and if it is more than 5 parts by weight, there is a risk of gelation.

【0014】3官能以上の多価イソシアナートの添加
は、飽和ポリエステルが均一な熔融状態で溶剤を含ま
ず、容易に撹拌可能な条件下で行われることが望まし
い。別に、固形状の飽和ポリエステルに添加し、エクス
トルーダーを通して熔融、混合することも不可能ではな
いが、一般には飽和ポリエステル製造装置内か、あるい
は熔融状態の飽和ポリエステル(例えばニーダー内で
の)に添加することが実用的である。
The addition of the trifunctional or higher polyvalent isocyanate is preferably carried out under a condition in which the saturated polyester is in a homogeneous molten state and does not contain a solvent and can be easily stirred. Separately, it is not impossible to add it to solid saturated polyester and melt and mix it through an extruder, but generally it is added to the saturated polyester manufacturing equipment or to the saturated polyester in a molten state (for example, in a kneader). It is practical to do so.

【0015】本発明による少量のウレタン結合を含むポ
リエステルはフィルム、シートなどに成形可能で、主と
して包装関係に利用されるが、使用に際して滑剤、着色
剤、他ポリマー、離型剤、フィラー、補強材などを必要
に応じ使用できることは勿論である。
The polyester containing a small amount of urethane bond according to the present invention can be formed into a film, a sheet and the like and is mainly used for packaging. When used, a lubricant, a colorant, another polymer, a release agent, a filler and a reinforcing material are used. It goes without saying that the above can be used as necessary.

【0016】[0016]

【実施例】次に本発明の理解を助けるために、以下に実
施例を示す。
EXAMPLES In order to facilitate understanding of the present invention, examples will be shown below.

【0017】なお、分子量測定は、GPCに依った。条
件は次の通り。 使用機種 Shodex GPC SYSTEM−11(昭和電工
社製) 溶離液 5mM CF3COONa/HFIP(ヘキサフロロイソプ
ロパノール) カラム サンプルカラム HFIP−800P HFIP−80M×2本 リファレンスカラム HPIP−800R×2本 カラム温度 40℃ 流量 1.0ml/min 検出器 Shodex RI スタンダード PMMA(Shodex STANDARD M−7
5)
The molecular weight was measured by GPC. The conditions are as follows. Model used Shodex GPC SYSTEM-11 (manufactured by Showa Denko KK) Eluent 5 mM CF 3 COONa / HFIP (hexafluoroisopropanol) column Sample column HFIP-800P HFIP-80M × 2 columns Reference column HPIP-800R × 2 columns Temperature 40 ° C. Flow rate 1.0 ml / min Detector Shodex RI standard PMMA (Shodex STANDARD M-7
5)

【0018】実施例1 撹拌機、分溜コンデンサー、温度計、ガス導入管を備え
た1lのセパラブルフラスコに、エチレングリコール2
48.7g、コハク酸407.1gを仕込み、窒素気流中
160〜195℃でエステル化して酸価を8.9とした
後、テトライソプロピルチタネート0.027gを加
え、最終的には0.1Torrまで減圧し、210〜220
℃で7時間脱グリコール反応を行い、数平均分子量1
8,000;重量平均分子量41,300;分子量分布
(重量平均分子量/数平均分子量)2.28の飽和ポリエ
ステル(A)を得た。室温まで冷却すると、白色ワックス
状となり、融点は97〜102℃、酸価は殆んど0であ
った。
Example 1 Ethylene glycol 2 was placed in a 1 liter separable flask equipped with a stirrer, a fractionating condenser, a thermometer, and a gas inlet tube.
After charging 48.7 g and 407.1 g of succinic acid and esterifying in a nitrogen stream at 160 to 195 ° C. to an acid value of 8.9, 0.027 g of tetraisopropyl titanate was added, and finally up to 0.1 Torr. Decompress, 210-220
Deglycol reaction at 7 ℃ for 7 hours, number average molecular weight 1
8,000; weight average molecular weight 41,300; molecular weight distribution
(Weight average molecular weight / number average molecular weight) 2.28 of saturated polyester (A) was obtained. When it was cooled to room temperature, it became a white wax and had a melting point of 97 to 102 ° C. and an acid value of almost 0.

【0019】得られた飽和ポリエステル(A)400gを
190〜200℃に加熱し、熔融させ、これを撹拌しな
がらヘキサメチレンジイソシアナートの3量体4.8gを
加えた。粘度は急速に増大したが、ゲル化は生じなかっ
た。均一になるように20分間撹拌した後、冷却した。
得られたウレタン結合を含むポリエステル(B)は、数平
均分子量27,800;重量平均分子量142,700;
分子量分布5.13であり、白色ワックス状、融点は1
00〜105℃であった。
400 g of the obtained saturated polyester (A) was heated to 190 to 200 ° C. to melt it, and 4.8 g of hexamethylene diisocyanate trimer was added thereto while stirring. The viscosity increased rapidly but no gelation occurred. The mixture was stirred for 20 minutes so as to be uniform and then cooled.
The resulting polyester (B) containing a urethane bond has a number average molecular weight of 27,800; a weight average molecular weight of 142,700;
Molecular weight distribution is 5.13, white waxy, melting point 1
It was 00-105 degreeC.

【0020】実施例2 撹拌機、分溜コンデンサー、温度計、ガス導入管を備え
た1lのセパラブルフラスコに、エチレングリコール2
48.7g、コハク酸407.1gを仕込み、窒素気流中1
60〜195℃でエステル化して酸価を9.2とした
後、テトライソプロピルチタネート0.027gを加
え、最終的には0.1Torrまで減圧し、210〜220
℃で7時間脱グリコール反応を行い、数平均分子量1
9,600;重量平均分子量42,500;分子量分布
2.17の飽和ポリエステル(C)を得た。室温まで冷却
すると、白色ワックス状となり、融点は97〜102℃
であった。
Example 2 A 1 l separable flask equipped with a stirrer, a fractionating condenser, a thermometer and a gas inlet tube was charged with ethylene glycol 2
Charge 48.7g and succinic acid 407.1g, and in a nitrogen stream 1
After esterification at 60 to 195 ° C. to make the acid value 9.2, 0.027 g of tetraisopropyl titanate was added, and finally the pressure was reduced to 0.1 Torr and 210 to 220.
Deglycol reaction at 7 ℃ for 7 hours, number average molecular weight 1
A saturated polyester (C) having a weight average molecular weight of 42,500 and a molecular weight distribution of 2.17 was obtained. When cooled to room temperature, it becomes a white wax and has a melting point of 97-102 ° C.
Met.

【0021】得られた飽和ポリエステル(C)400gを
190〜200℃に加熱し、熔融させ、これを撹拌しな
がらヘキサメチレンジイソシアナートの3量体9.6g
を加えた。粘度は急速に増大したが、ゲル化は生じなか
った。均一になるように20分間撹拌した後、冷却し
た。得られたウレタン結合を含むポリエステル(D)は、
数平均分子量30,000;重量平均分子量200,60
0;分子量分布6.69であり、僅かに黄色を帯びた白
色ワックス状となり、融点は105〜110℃であっ
た。
400 g of the obtained saturated polyester (C) is heated to 190 to 200 ° C. to melt it, and 9.6 g of hexamethylene diisocyanate trimer while stirring this.
Was added. The viscosity increased rapidly but no gelation occurred. The mixture was stirred for 20 minutes so as to be uniform and then cooled. The obtained polyester (D) containing a urethane bond is
Number average molecular weight 30,000; weight average molecular weight 200,60
0: The molecular weight distribution was 6.69, and it became a slightly yellowish white wax, and the melting point was 105 to 110 ° C.

【0022】ポリエステル(C)およびポリエステル
(D)から、それぞれプレス成形機を用いて厚さ約10
0μmのフィルムを作製した。次に作製した厚さが約1
00μmのフィルムを試験用の延伸装置を用い、40℃
で3倍の延伸を行い厚さが約30μmの1軸延伸フィル
ムを作製しようとしたところ、ポリエステル(C)は破
断され、1軸延伸フィルムは形成されなかったが、ポリ
エステル(D)は透明な1軸延伸フィルムが形成され
た。この透明フィルムの引張り強さは11.9kg/mm2
15.1kg/mm2の値を示し、頗る強靭であった。
From polyester (C) and polyester (D), a thickness of about 10 was obtained using a press molding machine.
A 0 μm film was made. Next, the thickness is about 1
A film of 00 μm was drawn at 40 ° C. using a stretching device for testing.
When a uniaxially stretched film having a thickness of about 30 μm was produced by stretching 3 times, the polyester (C) was broken and the uniaxially stretched film was not formed, but the polyester (D) was transparent. A uniaxially stretched film was formed. The tensile strength of this transparent film is 11.9kg / mm 2 ~
It showed a value of 15.1 kg / mm 2 and was extremely strong.

【0023】実施例3 撹拌機、分溜コンデンサー、温度計、ガス導入管を備え
た1lのセパラブルフラスコに、エチレングリコール2
48.7g、コハク酸407.1gを仕込み、窒素気流中1
60〜195℃でエステル化して酸価を8.3とした
後、テトライソプロピルチタネート0.027gを加
え、最終的には0.1Torrまで減圧し、210〜220
℃で7時間脱グリコール反応を行ったところ、数平均分
子量19,300;重量平均分子量41,900;分子
量分布2.17の飽和ポリエステル(E)が得られた。
室温まで冷却すると、白色ワックス状となり融点は97
〜102℃であった。
Example 3 Ethylene glycol 2 was placed in a 1 liter separable flask equipped with a stirrer, a fractionating condenser, a thermometer, and a gas inlet tube.
Charge 48.7g and succinic acid 407.1g, and in a nitrogen stream 1
After esterification at 60 to 195 ° C. to adjust the acid value to 8.3, 0.027 g of tetraisopropyl titanate was added, and finally the pressure was reduced to 0.1 Torr and 210 to 220.
When the glycol removal reaction was carried out at 7 ° C. for 7 hours, a saturated polyester (E) having a number average molecular weight of 19,300; a weight average molecular weight of 41,900; a molecular weight distribution of 2.17 was obtained.
When cooled to room temperature, it becomes a white wax and has a melting point of 97.
It was -102 degreeC.

【0024】得られた飽和ポリエステル(E)400gを
190〜200℃に加熱し、熔融させ、これを撹拌しな
がらヘキサメチレンジイソシアナート3モルとトリメチ
ロールプロパン1モルとの付加体10gを加えた。粘度
は急速に増大したが、ゲル化は生じなかった。均一にな
るように20分間撹拌した後、冷却した。得られたウレ
タン結合を含むポリエステル(F)は数平均分子量2
9,500;重量平均分子量195,000;分子量分
布6.61であり、僅かに黄色を帯びた白色ワックス状
となり融点は100〜105℃であった。
400 g of the obtained saturated polyester (E) was heated to 190 to 200 ° C. to be melted, and 10 g of an adduct of 3 mol of hexamethylene diisocyanate and 1 mol of trimethylolpropane was added thereto with stirring. .. The viscosity increased rapidly but no gelation occurred. The mixture was stirred for 20 minutes so as to be uniform and then cooled. The resulting polyester (F) containing a urethane bond has a number average molecular weight of 2
9,500; weight average molecular weight 195,000; molecular weight distribution was 6.61, and it was a slightly yellowish white wax and had a melting point of 100 to 105 ° C.

【0025】ポリエステル(E)およびポリエステル
(F)をそれぞれプレス成形機を用いてプレス成形し、
厚さが100μmのフィルムを作製した。次に作製した
厚さが約100μmのフィルムをそれぞれ試験用の延伸
装置を用い、40℃で3倍の延伸を行い、厚さが約30
μmの1軸延伸フィルムを作製しようとしたところ、ポ
リエステル(E)は破断され、1軸延伸フィルムは形成
されなかったが、ポリエステル(F)は透明な1軸延伸
フィルムが形成された。この透明フィルムの引張り強さ
は11.3kg/mm2〜14.8kg/mm2の値を示し、頗る強靭
であった。
Polyester (E) and polyester (F) were press-molded using a press molding machine,
A film having a thickness of 100 μm was produced. Next, each of the produced films having a thickness of about 100 μm was stretched 3 times at 40 ° C. using a stretching device for a test, and the thickness was about 30.
When an attempt was made to produce a uniaxially stretched film of μm, the polyester (E) was broken and a uniaxially stretched film was not formed, but the polyester (F) was formed as a transparent uniaxially stretched film. The tensile strength of the transparent film has a value of 11.3kg / mm 2 ~14.8kg / mm 2 , it was extremely strong.

【0026】[0026]

【発明の効果】本発明によって、実用上十分な強度を有
し、且つ融点も高く、さらに使用する触媒量を非常に少
量とし、フィルム形成能を有するウレタン結合を含むポ
リエステルの製造方法が提供される。
EFFECTS OF THE INVENTION The present invention provides a method for producing a polyester having a urethane bond having a film-forming ability, which has a practically sufficient strength, a high melting point, and a very small amount of a catalyst. It

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (a)末端基が実質的にヒドロキシル基
である飽和ポリエステルの合成過程で、生成するポリエ
ステル100重量部に対して0.0001〜2重量部の
脱グリコール触媒を用いて、末端基が実質的にヒドロキ
シル基である数平均分子量5,000以上の飽和ポリエ
ステルを合成し、 (b)熔融状態の該飽和ポリエステル100重量部に
0.1〜5重量部の3官能以上の多価イソシアナートを
添加、反応させることよりなる、数平均分子量10,0
00以上のウレタン結合を含むポリエステルの製造方
法。
1. In the process of synthesis of (a) a saturated polyester in which the end group is substantially a hydroxyl group, 0.0001 to 2 parts by weight of a deglycolization catalyst is used with respect to 100 parts by weight of the polyester produced, and the end is prepared. A saturated polyester having a number average molecular weight of 5,000 or more in which the group is substantially a hydroxyl group is synthesized, and (b) 100 parts by weight of the saturated polyester in a molten state, and 0.1 to 5 parts by weight of a polyfunctional polyfunctional compound having a functionality of 3 or more. A number average molecular weight of 10,0 is obtained by adding and reacting an isocyanate.
A method for producing a polyester containing 00 or more urethane bonds.
JP4089038A 1992-04-09 1992-04-09 Production of polyester containing urethane bond Pending JPH05287041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4089038A JPH05287041A (en) 1992-04-09 1992-04-09 Production of polyester containing urethane bond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4089038A JPH05287041A (en) 1992-04-09 1992-04-09 Production of polyester containing urethane bond

Publications (1)

Publication Number Publication Date
JPH05287041A true JPH05287041A (en) 1993-11-02

Family

ID=13959727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4089038A Pending JPH05287041A (en) 1992-04-09 1992-04-09 Production of polyester containing urethane bond

Country Status (1)

Country Link
JP (1) JPH05287041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016052054A1 (en) * 2014-09-30 2017-04-27 富士フイルム株式会社 Gel particles, photosensitive composition, ink composition, method for producing aqueous dispersion of gel particles, and image forming method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016052054A1 (en) * 2014-09-30 2017-04-27 富士フイルム株式会社 Gel particles, photosensitive composition, ink composition, method for producing aqueous dispersion of gel particles, and image forming method
US10358568B2 (en) 2014-09-30 2019-07-23 Fujifilm Corporation Gel particles, photosensitive composition, ink composition, method of producing water dispersion of gel particles, and image forming method

Similar Documents

Publication Publication Date Title
WO2023071646A1 (en) Semi-aromatic polyester, and preparation method therefor and use thereof
JPH05287068A (en) Production of saturated polyester resin
JPH05287041A (en) Production of polyester containing urethane bond
JP2860185B2 (en) Method for producing polyester containing urethane bond
JP3363589B2 (en) Biodegradable aliphatic polyester composition
JPH05287045A (en) Production of polyester resin containing urethane bond
JPH05287042A (en) Production of polyester containing urethane bond
JP3434622B2 (en) Method for producing biodegradable aliphatic polyester
JP2860183B2 (en) Method for producing polyester containing urethane bond
JPH05178956A (en) Production of high-molecular aliphatic polyester
JPS6119660B2 (en)
JPH05295071A (en) Production of aliphatic polyester having high molecular weight
JPH09309939A (en) Polyurethane resin composition and its production
JPH05178955A (en) Production of high-molecular aliphatic polyester
JP2860182B2 (en) Method for producing polyester containing urethane bond
JP3079711B2 (en) Film formed using polyester containing urethane bond
JP3064057B2 (en) Method for producing polyester containing urethane bond
JP3125387B2 (en) Method for producing polyester containing urethane bond
JPH0328225A (en) Polyamide polyester polyol and polyurethane prepared therefrom
JPH05170861A (en) Manufacture of polyester containing urethane linkage
JP3046658B2 (en) Method for producing polyester containing urethane bond
JPH05179017A (en) Film molded by using high-molecular weight aliphatic polyester
JPH05239173A (en) Production of aliphatic polyester of high molecular weight
JP2860184B2 (en) Method for producing polyester containing urethane bond
JPH05295098A (en) Production of high-molecular weight aliphatic polyester