JPH05286887A - Production of methyl isopropyl ketone - Google Patents
Production of methyl isopropyl ketoneInfo
- Publication number
- JPH05286887A JPH05286887A JP11224592A JP11224592A JPH05286887A JP H05286887 A JPH05286887 A JP H05286887A JP 11224592 A JP11224592 A JP 11224592A JP 11224592 A JP11224592 A JP 11224592A JP H05286887 A JPH05286887 A JP H05286887A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- isopropyl ketone
- methyl isopropyl
- water
- boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/51—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
- C07C45/54—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition of compounds containing doubly bound oxygen atoms, e.g. esters
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は2−メチルブタナールの
異性化によるメチルイソプロピルケトンの製造方法に関
する。本発明により製造されるメチルイソプロピルケト
ンは溶剤として、または染料、医薬の中間体として有用
である。FIELD OF THE INVENTION The present invention relates to a method for producing methyl isopropyl ketone by isomerizing 2-methylbutanal. The methyl isopropyl ketone produced by the present invention is useful as a solvent or an intermediate for dyes and pharmaceuticals.
【0002】[0002]
【従来の技術】アルデヒドの異性化によるケトンの製造
方法として、従来、気相中で錫、モリブデンおよび銅を
含有する混合酸化物の存在下に実施する方法(米国特許
第4,329,506号明細書参照)、気相中で酸化アルミニウ
ム担持の酸化セリウムの存在下に実施する方法(米国特
許第 3,466,334号明細書参照)が知られている。ピバル
アルデヒドの異性化を液相中または気相中でペンタシル
型の種々のメタルシリケートゼオライト触媒上で行うこ
とによりメチルイソプロピルケトンを製造する方法が知
られている(特開昭62-22731号公報参照)。また、2−
メチルブタナールを気相中でリン酸ホウ素の存在下に脱
水反応させてイソプレンを製造するに際して、メチルイ
ソプロピルケトンが生成することが報告されている[ケ
ムテック12月(CHEMTECH DECEMBER)、1986、746 〜 7
51頁参照]。2. Description of the Related Art Conventionally, a method for producing a ketone by isomerizing an aldehyde is carried out in the gas phase in the presence of a mixed oxide containing tin, molybdenum and copper (see US Pat. No. 4,329,506). A method is known (see US Pat. No. 3,466,334) which is carried out in the gas phase in the presence of cerium oxide supported on aluminum oxide. There is known a method for producing methyl isopropyl ketone by isomerizing pivalaldehyde in a liquid phase or in a gas phase on various pentasil-type metal silicate zeolite catalysts (JP-A-62-22731). reference). Also, 2-
It has been reported that methyl isopropyl ketone is produced in the production of isoprene by dehydrating methylbutanal in the vapor phase in the presence of boron phosphate [CHEMTECH DECEMBER, 1986, 746- 7
See page 51].
【0003】[0003]
【発明が解決しようとする課題】米国特許第 4,329,506
号明細書および米国特許第 3,466,334号明細書に記載さ
れている方法では、アルデヒドの転化率を上げた場合に
満足できる選択率で目的とするケトンを得ることはでき
ない。特開昭62-22731号公報に記載されている方法で使
用される触媒は、その調製が容易ではない。一般に気相
中での反応に使用される触媒はその劣化が避けられず、
再生処理が必要となる。Problems to be Solved by the Invention US Pat. No. 4,329,506
The processes described in U.S. Pat. No. 3,466,334 and U.S. Pat. No. 3,466,334 do not allow the desired ketone to be obtained with a satisfactory selectivity when the conversion of aldehyde is increased. The catalyst used in the method described in JP-A-62-22731 is not easy to prepare. Generally, the deterioration of the catalyst used for the reaction in the gas phase is unavoidable,
Regeneration processing is required.
【0004】本発明の目的は、使用する触媒の劣化が殆
どなく、かつ良好な転化率でしかも良好な選択率でメチ
ルイソプロピルケトンを製造することができる工業的に
有利な方法を提供することにある。The object of the present invention is to provide an industrially advantageous process which can produce methyl isopropyl ketone with almost no deterioration of the catalyst used, with good conversion and good selectivity. is there.
【0005】[0005]
【課題を解決するための手段】本発明によれば、上記の
目的は、2−メチルブタナールをホウ素のオキシ酸およ
び水の存在下、液相中で220℃以上の温度に加熱して
メチルイソプロピルケトンを製造するに際して、該ホウ
素のオキシ酸と水の割合を後者75重量部に対して前者
をオルトホウ酸換算で25重量部以上とすることを特徴
とするメチルイソプロピルケトンの製造方法を提供する
ことによって達成される。According to the present invention, the above object is achieved by heating 2-methylbutanal in the liquid phase at a temperature of 220 ° C. or higher in the presence of oxyacid of boron and water. A method for producing methyl isopropyl ketone, characterized in that, when producing isopropyl ketone, the ratio of the oxyacid of boron to water is 75 parts by weight of the latter and the former is 25 parts by weight or more in terms of orthoboric acid. Is achieved by
【0006】ホウ素のオキシ酸としては、例えば、オル
トホウ酸、メタホウ酸、四ホウ酸、その他の縮合ホウ酸
が使用されるが、入手が容易なオルトホウ酸を使用する
のが工業的に好ましい。また反応条件下でこれらのオキ
シ酸に変化する含酸素ホウ素化合物を反応系に加えて行
う方法も本発明の実施態様に含まれる。かかる含酸素ホ
ウ素化合物としては、例えば、三酸化二ホウ素、炭素数
1〜5の脂肪族アルコールのホウ酸エステルなどが挙げ
られる。ホウ素のオキシ酸または反応条件下で該オキシ
酸を与える含酸素ホウ素化合物は水と混合して用いられ
る。ホウ素のオキシ酸と水の割合は後者75重量部に対
して前者をオルトホウ酸換算で25重量部以上とする。
反応条件下におけるホウ素のオキシ酸の量が水75重量
部に対して25重量部に達しない場合には、実用的な反
応速度は得られない。ホウ素のオキシ酸が反応条件下で
溶解度以上の量で存在する場合には、当然のことながら
未溶解分は反応系において微粒状の結晶として分散する
が、かかる状態は本発明を実施する際に障害とはならな
い。そのため、反応条件下における水に対するホウ素の
オキシ酸の上限量を定める必要はないが、ホウ素のオキ
シ酸と水の割合は後者20重量部に対して前者をオルト
ホウ酸換算で80重量部までとするのが好ましく、後者
65〜30重量部に対して前者をオルトホウ酸換算で3
5〜70重量部の範囲とするのがより好ましい。ホウ素
のオキシ酸はリン酸、硫酸などに比較して極めて弱い酸
であり、本発明を実施するに際して耐蝕性の高価な材質
の装置は必要ではない。As the oxyacid of boron, for example, orthoboric acid, metaboric acid, tetraboric acid and other condensed boric acids are used, but it is industrially preferable to use orthoboric acid which is easily available. Further, a method of adding an oxygen-containing boron compound which changes into an oxyacid under the reaction conditions to the reaction system is also included in the embodiments of the present invention. Examples of the oxygen-containing boron compound include diboron trioxide and boric acid ester of aliphatic alcohol having 1 to 5 carbon atoms. An oxyacid of boron or an oxygen-containing boron compound that gives the oxyacid under reaction conditions is used as a mixture with water. The ratio of boron oxyacid to water is 75 parts by weight of the latter and 25 parts by weight or more of the former in terms of orthoboric acid.
If the amount of oxyacid of boron under the reaction conditions does not reach 25 parts by weight with respect to 75 parts by weight of water, a practical reaction rate cannot be obtained. When the oxyacid of boron is present in an amount of solubility or more under the reaction conditions, the undissolved component is naturally dispersed in the reaction system as fine-grained crystals. Not a hindrance. Therefore, it is not necessary to set the upper limit of the boron oxyacid to water under the reaction conditions, but the ratio of the boron oxyacid to water is 80 parts by weight in terms of the former 20 parts by weight in terms of orthoboric acid. It is preferable that the former is 3 to 30 parts by weight in terms of orthoboric acid in comparison with 65 to 30 parts by weight.
More preferably, it is in the range of 5-70 parts by weight. The oxyacid of boron is an extremely weak acid as compared with phosphoric acid, sulfuric acid and the like, and an apparatus made of a corrosion resistant and expensive material is not necessary for carrying out the present invention.
【0007】反応は220℃以上の温度で液相で行われ
る。反応温度が220℃に達しない場合には、実用的な
反応速度が得られないばかりでなく、目的とするメチル
イソプロピルケトンの収率が大幅に低下する。反応は3
50℃までの温度で実施するのが経済的である。反応を
円滑にかつ効率的に行うためには、反応温度は250〜
300℃の範囲であることが実際的であり好ましい。反
応は通常加圧下で実施されるが、反応条件下で該液相が
沸騰する程度の圧力が好ましい。反応圧力は一般には反
応条件下での反応混合物の自圧程度で充分である。窒素
などの不活性ガスによる加圧下での反応も差支えない
が、それによって特別な利益は得られない。通常、反応
は溶媒の不存在下で行われるが、反応に不活性な溶媒の
存在下で行うこともできる。かかる溶媒としては、例え
ば、ヘキサン、オクタン、ベンゼン、トルエン、キシレ
ンなどの炭化水素、ジイソプロピルエーテル、ジオキサ
ン、テトラヒドロフランなどのエーテル等が使用され
る。The reaction takes place in the liquid phase at temperatures above 220.degree. If the reaction temperature does not reach 220 ° C., not only a practical reaction rate cannot be obtained, but also the yield of the target methyl isopropyl ketone is significantly reduced. Reaction is 3
It is economical to carry out at temperatures up to 50 ° C. In order to carry out the reaction smoothly and efficiently, the reaction temperature is 250 to
A range of 300 ° C. is practical and preferable. The reaction is usually carried out under pressure, but a pressure at which the liquid phase boils under the reaction conditions is preferable. The reaction pressure is generally about the self-pressure of the reaction mixture under the reaction conditions. The reaction under pressure with an inert gas such as nitrogen can be carried out, but it does not bring any special benefit. Usually, the reaction is carried out in the absence of a solvent, but it can also be carried out in the presence of a solvent inert to the reaction. As such a solvent, for example, hydrocarbons such as hexane, octane, benzene, toluene and xylene, ethers such as diisopropyl ether, dioxane and tetrahydrofuran are used.
【0008】反応時間は特に制限されないが、通常15
分間〜6時間の範囲であり、30分間〜4時間の範囲が
好ましい。反応はバッチ式、連続式のいずれでも実施で
きる。反応系が異相系であるため、効果的な攪拌等を行
うことによって、2−メチルブタナールと触媒水溶液と
の接触を高めることが良好な結果を与える。The reaction time is not particularly limited, but is usually 15
The range is from minutes to 6 hours, preferably from 30 minutes to 4 hours. The reaction can be carried out batchwise or continuously. Since the reaction system is a heterophasic system, it is possible to obtain good results by enhancing the contact between 2-methylbutanal and the catalyst aqueous solution by performing effective stirring or the like.
【0009】反応系における2−メチルブタナールの濃
度は5〜50重量%の範囲であることが好ましい。2−
メチルブタナールの濃度が50重量%を越える場合に
は、高沸点副生物の生成量が増加する傾向にある。2−
メチルブタナールの濃度としては、10〜30重量%の
範囲であることがより好ましい。The concentration of 2-methylbutanal in the reaction system is preferably in the range of 5 to 50% by weight. 2-
If the concentration of methylbutanal exceeds 50% by weight, the amount of high-boiling by-products tends to increase. 2-
The concentration of methylbutanal is more preferably in the range of 10 to 30% by weight.
【0010】本発明の好ましい実施態様の一つを次に説
明する。反応器中でホウ酸水溶液を加熱し、そこに2−
メチルブタナールを供給し、所定時間滞留後、生成する
メチルイソプロピルケトンを留出させながら反応を行
う。この際、2−メチルブタナールはホウ酸水溶液に対
する濃度が上記の範囲内となるような速度で供給され
る。メチルイソプロピルケトンを留出させる際には、通
常水も同時に留出するので、この留出量に見合う量の水
を反応系に補給し、反応器内のホウ酸水溶液の濃度をほ
ぼ一定に保つことが好ましい。かかる補給水としては、
留出物を凝縮液化した際に得られる水相を有機相から分
離して循環使用することもできる。One of the preferred embodiments of the present invention will now be described. The boric acid aqueous solution is heated in the reactor, and 2-
Methylbutanal is supplied and, after a predetermined time of residence, the reaction is carried out while distilling the produced methyl isopropyl ketone. At this time, 2-methylbutanal is supplied at such a rate that the concentration in the aqueous boric acid solution is within the above range. When distilling methyl isopropyl ketone, water is also usually distilled at the same time, so the amount of water corresponding to this distilling amount is supplied to the reaction system to keep the concentration of the boric acid aqueous solution in the reactor almost constant. Preferably. As such makeup water,
The aqueous phase obtained when the distillate is condensed and liquefied can be separated from the organic phase and recycled.
【0011】反応を長時間に亘って実施した場合には、
反応中に僅かに生成する高沸点副生物(特にタール性物
質)が反応系内に蓄積するが、このものはホウ素のオキ
シ酸水溶液よりもはるかに比重が小さいため、反応混合
液の一部をデカンターに導くことによって該ホウ素のオ
キシ酸水溶液から容易に分離除去することが可能であ
る。高沸点副生物を除去したのちのホウ素のオキシ酸水
溶液は、これをさらに必要に応じてヘキサンなどの炭化
水素で洗浄したのち、反応系に循環し再使用することが
できる。When the reaction is carried out for a long time,
High boiling point by-products (particularly tar-like substances) slightly generated during the reaction accumulate in the reaction system, but since this product has a much smaller specific gravity than the aqueous oxyacid solution of boron, a part of the reaction mixture is By introducing it into a decanter, it is possible to easily separate and remove the boron from the aqueous oxyacid solution. The aqueous solution of boron oxyacid after removing the high-boiling by-products can be reused by circulating it in the reaction system after further washing it with a hydrocarbon such as hexane, if necessary.
【0012】原料として用いる2−メチルブタナール
は、2−ブテンのヒドロホルミル化により容易に得るこ
とができる。ヒドロホルミル化反応に際して副生するn
−ペンタナールなどが混入した2−メチルブタナールを
本発明における原料として使用することは差支えない。2-Methylbutanal used as a raw material can be easily obtained by hydroformylation of 2-butene. N which is a by-product in the hydroformylation reaction
It is safe to use 2-methylbutanal mixed with pentanal and the like as a raw material in the present invention.
【0013】[0013]
【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらによって何等限定されるものでは
ない。EXAMPLES The present invention will now be described in detail with reference to Examples, but the present invention is not limited to these.
【0014】実施例1 原料導入管、温度計および冷却器と連結された留出液受
器を装着した電磁攪拌式の容積100mlのハステロイ
製オートクレーブに、オルトホウ酸30gおよび水20
gを仕込み、攪拌下に加熱溶解して275℃の温度に保
った。この状態に保たれた反応系に2−メチルブタナー
ル11.4ml(全反応液の16重量%に相当)を耐圧
定量送液ポンプを用いて原料導入管より導入し、反応を
開始した。1時間後に冷却器から受器への導入バルブを
開けて生成物の留出を始めると同時に、耐圧定量送液ポ
ンプを用いて原料導入管より水を導入し、反応系中の液
量に増減がないように調節した。30分後に留出および
水の追加を中止し、反応を停止した。受器に捕集された
留出液は有機相と水相に分離しており、ガスクロマトグ
ラフィーおよび高速液体クロマトグラフィーで分析した
ところ、2−メチルブタナールの転化率は88.1%で
あり、メチルイソプロピルケトンの選択率は72.2%
であった。EXAMPLE 1 30 g of orthoboric acid and 20 parts of water were placed in a magnetic stirring type 100 ml Hastelloy autoclave equipped with a distillate receiver connected to a raw material introducing pipe, a thermometer and a cooler.
g was charged, and the mixture was heated and dissolved under stirring to maintain the temperature at 275 ° C. To the reaction system kept in this state, 11.4 ml of 2-methylbutanal (corresponding to 16% by weight of the total reaction solution) was introduced from a raw material introduction tube using a pressure-resistant constant-volume feed pump to start the reaction. After 1 hour, the introduction valve from the cooler to the receiver was opened to start distilling the product, and at the same time, water was introduced from the raw material introduction pipe using the pressure resistant constant-volume feed pump to increase or decrease the amount of liquid in the reaction system. Adjusted so that there is no After 30 minutes, distillation and addition of water were stopped, and the reaction was stopped. The distillate collected in the receiver was separated into an organic phase and an aqueous phase, and when analyzed by gas chromatography and high performance liquid chromatography, the conversion rate of 2-methylbutanal was 88.1%. , Methyl isopropyl ketone selectivity is 72.2%
Met.
【0015】続いて上記のオートクレーブに再び2−メ
チルブタナール11.4mlを仕込み、全く同様にして
反応および生成物留出操作を行った。捕集した留出液を
分析したところ、2−メチルブタナールの転化率は8
3.5%であり、メチルイソプロピルケトンの選択率は
74.5%であった。この一連の操作を6回繰り返し
た。結果を表1に示す。なお表中、2−MBLは2−メ
チルブタナールを意味し、MIPKはメチルイソプロピ
ルケトンを意味する。Subsequently, 11.4 ml of 2-methylbutanal was charged again into the above autoclave, and the reaction and the product distillation operation were carried out in exactly the same manner. When the collected distillate was analyzed, the conversion rate of 2-methylbutanal was 8
It was 3.5% and the selectivity of methyl isopropyl ketone was 74.5%. This series of operations was repeated 6 times. The results are shown in Table 1. In the table, 2-MBL means 2-methylbutanal and MIPK means methyl isopropyl ketone.
【0016】[0016]
【表1】 [Table 1]
【0017】反応終了後、オートクレーブ内部のホウ酸
が析出している水溶液をヘキサンで洗浄し、その有機相
を留去したところ、高沸生成物は全仕込み2−メチルブ
タナール量の3重量%以下であった。After the completion of the reaction, the aqueous solution in which boric acid was deposited inside the autoclave was washed with hexane and the organic phase was distilled off. As a result, the high boiling product was 3% by weight based on the total amount of 2-methylbutanal charged. It was below.
【0018】実施例2 実施例1で用いたと同じオートクレーブに、オルトホウ
酸20gおよび水30gを仕込み、攪拌下に加熱溶解し
て275℃の温度に保った。この状態に保たれた反応系
に2−メチルブタナール11.4ml(全反応液の16
重量%に相当)を耐圧定量送液ポンプを用いて原料導入
管より導入し、反応を開始した。1時間後に冷却器から
受器への導入バルブを開けて生成物の留出を始めると同
時に、耐圧定量送液ポンプを用いて原料導入管より水を
導入し、反応系中の液量に増減がないように調節した。
30分後に留出および水の追加を中止し、反応を停止し
た。受器に捕集された留出液は有機相と水相に分離して
おり、ガスクロマトグラフィーおよび高速液体クロマト
グラフィーで分析したところ、2−メチルブタナールの
転化率は60.1%であり、メチルイソプロピルケトン
の選択率は81.4%であった。Example 2 The same autoclave as used in Example 1 was charged with 20 g of orthoboric acid and 30 g of water, heated and dissolved under stirring and kept at a temperature of 275 ° C. 11.4 ml of 2-methylbutanal (16% of the total reaction solution) was added to the reaction system kept in this state.
(Corresponding to wt%) was introduced from the raw material introduction pipe using a pressure resistant constant quantity liquid feed pump to start the reaction. After 1 hour, the introduction valve from the cooler to the receiver was opened to start distilling the product, and at the same time, water was introduced from the raw material introduction pipe using the pressure resistant constant-volume feed pump to increase or decrease the amount of liquid in the reaction system. Adjusted so that there is no
After 30 minutes, distillation and addition of water were stopped, and the reaction was stopped. The distillate collected in the receiver was separated into an organic phase and an aqueous phase. When analyzed by gas chromatography and high performance liquid chromatography, the conversion rate of 2-methylbutanal was 60.1%. The selectivity of methyl isopropyl ketone was 81.4%.
【0019】実施例3〜6および比較例1〜2 実施例2において、オルトホウ酸の濃度、2−メチルブ
タナールの仕込み量、反応温度および反応時間を変化さ
せた以外は同様にして反応を行った。結果を表2に示
す。なお表中、2−MBLは2−メチルブタナールを意
味し、MIPKはメチルイソプロピルケトンを意味す
る。Examples 3 to 6 and Comparative Examples 1 to 2 The reaction was carried out in the same manner as in Example 2 except that the concentration of orthoboric acid, the charged amount of 2-methylbutanal, the reaction temperature and the reaction time were changed. It was The results are shown in Table 2. In the table, 2-MBL means 2-methylbutanal and MIPK means methyl isopropyl ketone.
【0020】[0020]
【表2】 [Table 2]
【0021】実施例7 実施例2において、オルトホウ酸20gおよび水30g
を仕込む代りに、三酸化二ホウ素16.9gおよび水3
3.1gを仕込んだ以外は同様にして反応を行った。2
−メチルブタナールの転化率は75.3%であり、メチ
ルイソプロピルケトンの選択率は74.7%であった。Example 7 In Example 2, 20 g of orthoboric acid and 30 g of water
Instead of charging, 16.9 g of diboron trioxide and 3 parts of water
The reaction was performed in the same manner except that 3.1 g was charged. Two
-The conversion of methylbutanal was 75.3% and the selectivity of methylisopropylketone was 74.7%.
【0022】[0022]
【発明の効果】本発明によれば、使用する触媒の劣化が
殆どなく、かつ良好な選択率でメチルイソプロピルケト
ンを製造することができる工業的に有利な方法が提供さ
れる。Industrial Applicability According to the present invention, there is provided an industrially advantageous method capable of producing methyl isopropyl ketone with almost no deterioration of the catalyst used and with good selectivity.
Claims (1)
酸および水の存在下、液相中で220℃以上の温度に加
熱してメチルイソプロピルケトンを製造するに際して、
該ホウ素のオキシ酸と水の割合を後者75重量部に対し
て前者をオルトホウ酸換算で25重量部以上とすること
を特徴とするメチルイソプロピルケトンの製造方法。1. To produce methyl isopropyl ketone by heating 2-methylbutanal in the liquid phase in the presence of oxyacid of boron and water to a temperature of 220 ° C. or higher,
A method for producing methyl isopropyl ketone, characterized in that the ratio of the oxyacid of boron to water is 75 parts by weight of the latter and the former is 25 parts by weight or more in terms of orthoboric acid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11224592A JPH05286887A (en) | 1992-04-03 | 1992-04-03 | Production of methyl isopropyl ketone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11224592A JPH05286887A (en) | 1992-04-03 | 1992-04-03 | Production of methyl isopropyl ketone |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05286887A true JPH05286887A (en) | 1993-11-02 |
Family
ID=14581879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11224592A Pending JPH05286887A (en) | 1992-04-03 | 1992-04-03 | Production of methyl isopropyl ketone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05286887A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1332752C (en) * | 2004-08-09 | 2007-08-22 | 中国科学院大连化学物理研究所 | Catalyst for synthesizing methyl isopropyl ketone and diethylketone, process for preparing the same and application thereof |
JP6916364B1 (en) * | 2020-11-16 | 2021-08-11 | 株式会社日本触媒 | Method for producing metaboric acid and method for producing secondary alcohol using the metaboric acid |
-
1992
- 1992-04-03 JP JP11224592A patent/JPH05286887A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1332752C (en) * | 2004-08-09 | 2007-08-22 | 中国科学院大连化学物理研究所 | Catalyst for synthesizing methyl isopropyl ketone and diethylketone, process for preparing the same and application thereof |
JP6916364B1 (en) * | 2020-11-16 | 2021-08-11 | 株式会社日本触媒 | Method for producing metaboric acid and method for producing secondary alcohol using the metaboric acid |
JP2022079246A (en) * | 2020-11-16 | 2022-05-26 | 株式会社日本触媒 | Method for producing metaboric acid, and method for producing secondary alcohol using the metaboric acid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2565087A (en) | Process for oxidation of cycloaliphatic compounds | |
JPH0259567A (en) | Production of caprolactone | |
JPH05286887A (en) | Production of methyl isopropyl ketone | |
US20040267045A1 (en) | Processes for producing (meth)acrylic acid compound | |
US4288643A (en) | Process for preparing 2,3-dimethyl-butene-2 | |
US2881198A (en) | Preparation of alkyl orthosilicates by reacting silicon dioxide with an alcohol | |
JPH08134011A (en) | Purification of methacrylic acid | |
EP0446446B1 (en) | Process for preparing alpha, beta-unsaturated carboxylic acid ester | |
US2932665A (en) | Preparation of nu, nu-diethyltoluamides | |
US3238264A (en) | Isomerization process and catalyst therefor | |
JPS6059886B2 (en) | Isoprene manufacturing method | |
JP3963150B2 (en) | Decomposition method of by-products during the production of (meth) acrylic acids | |
US4855516A (en) | Method of manufacturing 2-propyn-1-ol | |
US3016376A (en) | Process of separating epsiloncaprolactam | |
US3860614A (en) | Thermolysis of styrene oxide | |
US5688973A (en) | Process for the production of 2-vinyl-1,3-dioxolane | |
US10252971B2 (en) | Method for producing halogenated acrylic acid derivative | |
US3716576A (en) | Oxidative dehydrogenation process for preparing unsaturated organic compounds | |
US2776190A (en) | Manufacture of hydrazine | |
EP0502387B1 (en) | Process for producing 3,3',4,4'-tetramethyldiphenylmethane | |
WO2012063809A1 (en) | Method for producing 1,3-dimethyladamantane | |
JP2975702B2 (en) | Method for producing alkyl-substituted aromatic compound | |
WO2017033955A1 (en) | Method for producing halogenated acrylic ester derivative | |
JPH06179633A (en) | Production of arylethylene glycol | |
JPS5833205B2 (en) | Method for producing conjugated diene |