JPH05286758A - Fiber-added carbon-containing refractories - Google Patents

Fiber-added carbon-containing refractories

Info

Publication number
JPH05286758A
JPH05286758A JP4114288A JP11428892A JPH05286758A JP H05286758 A JPH05286758 A JP H05286758A JP 4114288 A JP4114288 A JP 4114288A JP 11428892 A JP11428892 A JP 11428892A JP H05286758 A JPH05286758 A JP H05286758A
Authority
JP
Japan
Prior art keywords
refractory raw
fiber
raw material
refractories
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4114288A
Other languages
Japanese (ja)
Inventor
Takeshi Matsui
剛 松井
Hatsuo Taira
初雄 平
Kazuhiko Takeuchi
和彦 竹内
Atsushi Nakao
淳 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4114288A priority Critical patent/JPH05286758A/en
Publication of JPH05286758A publication Critical patent/JPH05286758A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain the carbon-contg. refractories having excellent thermal impact resistance by compounding aluminous refractory raw materials contg. aluminous fibers, silicon carbide base refractory raw materials and graphite. CONSTITUTION:The refractory raw materials for the above refractories consist of 65 to 85wt.% aluminous refractory raw materials, 5 to 15wt.% silicon carbide base refractory raw materials and 10 to 20wt.% graphite, in which 3 to 20wt.% of the aluminous refractory raw materials are the aluminous fibers. The refractories having the extremely outstanding thermal impact resistance are obtd. by adding the fibers to the carbon-contg. refractories in such a manner. The refractories having the extremely outstanding mechanical impact resistance and thermal impact resistance are obtd. by adding the aluminous fibers and metallic powder in combination with the refractories in such a case. The crack generated by the thermal stress arising from a temp. fluctuation in the carbon-contg. refractories incorporated with the aluminous fibers progresses by drawing the aluminous fibers and, therefore, the resistance to the progression of the crack is increased and the improvement in the thermal impact resistance are resulted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融金属処理用容器、
特に溶銑予備処理炉等の内張り炭素含有耐火物に関する
ものである。
FIELD OF THE INVENTION The present invention relates to a container for treating molten metal,
In particular, it relates to a refractory material containing carbon contained in a hot metal pretreatment furnace.

【0002】[0002]

【従来の技術】溶融金属処理容器の内張り耐火物として
は、耐スラグ性、耐熱衝撃性に優れた炭素含有耐火物が
適用され、高耐用化が図られている(例えば特開昭58
−64261号公報、特開昭60−42273号公
報)。さらに、これらの耐火物の高温での機械的特性の
向上を図るためにマグネシアと金属の併用添加が行われ
ている(特開平3−65556号公報、特開平3−88
763号公報)。
2. Description of the Related Art As a refractory lining for a molten metal treatment container, a carbon-containing refractory having excellent slag resistance and thermal shock resistance is applied to achieve high durability (for example, Japanese Patent Laid-Open No. 58-58).
-64261, JP-A-60-42273). Further, in order to improve the mechanical properties of these refractory materials at high temperatures, magnesia and a metal have been added in combination (Japanese Patent Laid-Open Nos. 3-65556 and 3-88).
763).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、溶融金
属処理容器の内張り耐火物として使用されている Al2
3−SiC−炭素系耐火物 をさらに高耐用化させるた
めには、耐機械的衝撃性および耐熱衝撃性の向上を図る
ことが必要不可欠である。Al23−SiC−炭素系耐
火物の耐機械的衝撃性の向上を図るためにマグネシアと
金属の併用添加が行われているが、耐熱衝撃性の向上に
は至っていない。本発明は、炭素含有耐火物に繊維を添
加することにより耐熱衝撃性に極めて優れた炭素含有耐
火物を提供することおよび繊維、金属を併用添加するこ
とにより耐機械的衝撃性、耐熱衝撃性に極めて優れた炭
素含有耐火物を提供することにある。
However, Al 2 used as a refractory lining for molten metal processing vessels
In order to further improve the durability of the O 3 -SiC-carbon refractory, it is essential to improve mechanical shock resistance and thermal shock resistance. In order to improve the mechanical shock resistance of the Al 2 O 3 -SiC-carbon refractory material, magnesia and a metal have been added in combination, but the thermal shock resistance has not been improved. The present invention provides a carbon-containing refractory having excellent thermal shock resistance by adding a fiber to a carbon-containing refractory, and a mechanical impact resistance and a thermal shock resistance by adding a fiber and a metal together. It is to provide an extremely excellent refractory material containing carbon.

【0004】[0004]

【課題を解決するための手段】本発明は、アルミナ質耐
火原料65〜85wt%、炭化珪素質耐火原料5〜15
wt%および黒鉛10〜20wt%からなる耐火原料に
おいて、前記アルミナ質耐火原料の3〜20wt%は、
繊維径5〜30μm、繊維長50μm〜2.0mmのア
ルミナ質繊維であることを特徴とする繊維添加炭素含有
耐火物である。
SUMMARY OF THE INVENTION The present invention is directed to an alumina refractory raw material of 65 to 85 wt% and a silicon carbide refractory raw material of 5 to 15%.
In a refractory raw material composed of 10 wt% and 10 to 20 wt% of graphite, 3 to 20 wt% of the alumina refractory raw material is
A fiber-containing carbon-containing refractory material, which is an alumina fiber having a fiber diameter of 5 to 30 μm and a fiber length of 50 μm to 2.0 mm.

【0005】さらに、本発明は、アルミナ質耐火原料6
5〜85wt%、炭化珪素質耐火原料5〜15wt%お
よび黒鉛10〜20wt%からなる耐火原料において、
前記アルミナ質耐火原料の3〜20wt%は、繊維径5
〜30μm、繊維長50μm〜2.0mmのアルミナ質
繊維であることを特徴とする耐火原料100wt%に対
して、耐火原料用の金属粉末を3〜20wt%添加した
ことを特徴とする繊維添加炭素含有耐火物である。
Further, the present invention relates to an alumina refractory raw material 6
In a refractory raw material composed of 5 to 85 wt%, silicon carbide refractory raw material 5 to 15 wt% and graphite 10 to 20 wt%,
3 to 20 wt% of the alumina refractory raw material has a fiber diameter of 5
To 30 μm and fiber length of 50 μm to 2.0 mm, 100% by weight of refractory raw material characterized by being added with 3 to 20% by weight of metal powder for refractory raw material, fiber-added carbon It is a refractory material.

【0006】アルミナの含有量を65〜85wt%とし
たのは、耐食性、耐熱衝撃性に優れるからである。アル
ミナが65wt%未満では、耐食性に劣り、85wt%
を超えると耐熱衝撃性に劣るからである。アルミナ質耐
火原料は、電融品、焼結品等が使用可能であるが、純度
が95%以上で嵩比重、結晶粒径の大きいものが望まし
い。
The content of alumina is set to 65 to 85 wt% because it is excellent in corrosion resistance and thermal shock resistance. If the alumina content is less than 65 wt%, the corrosion resistance is poor, and 85 wt%
This is because the thermal shock resistance is inferior when it exceeds. As the alumina-based refractory raw material, an electromelted product, a sintered product or the like can be used, but a material having a purity of 95% or more, a bulk specific gravity and a large crystal grain size is desirable.

【0007】炭化珪素の含有量を5〜15wt%とした
のは、耐食性、耐酸化性に優れるからである。炭化珪素
が5wt%未満では耐酸化性に劣り、15wt%を超え
ると耐食性に劣るからである。炭化珪素質耐火原料は、
α−SiCを使用し、純度が90%以上で結晶粒径が1
50μm以下のものが望ましい。
The content of silicon carbide is set to 5 to 15 wt% because it is excellent in corrosion resistance and oxidation resistance. This is because if the silicon carbide content is less than 5 wt%, the oxidation resistance is poor, and if it exceeds 15 wt%, the corrosion resistance is poor. Silicon carbide refractory raw material,
Uses α-SiC and has a purity of 90% or more and a crystal grain size of 1
It is preferably 50 μm or less.

【0008】黒鉛の含有量を10〜20wt%としたの
は、耐スラグ浸潤性、耐熱衝撃性に優れるからである。
黒鉛が10wt%未満では、耐スラグ浸潤性、耐熱衝撃
性に劣り、20wt%を超えると耐酸化性に劣るためで
ある。黒鉛は、天然または人造黒鉛、メソフェーズカー
ボン、コークス等を指し、純度は90%以上で粒径が5
00μm以下のものが望ましい。
The graphite content is set to 10 to 20 wt% because it is excellent in slag infiltration resistance and thermal shock resistance.
This is because if the graphite content is less than 10 wt%, the slag infiltration resistance and thermal shock resistance are poor, and if it exceeds 20 wt%, the oxidation resistance is poor. Graphite refers to natural or artificial graphite, mesophase carbon, coke, etc., with a purity of 90% or more and a particle size of 5
It is desirable that the thickness is 00 μm or less.

【0009】アルミナ質繊維の添加量を3〜20wt%
としたのは、繊維添加による亀裂進展抵抗の増加が認め
られることと繊維のからみ合いによる強度の低下を防止
するためである。添加量が1wt%未満であると繊維添
加による亀裂進展抵抗の増加が認められないのと添加量
が20wt%を超えると繊維のからみ合いにより強度が
低下するからである。
The amount of alumina fiber added is 3 to 20 wt%.
The reason is that an increase in crack growth resistance due to the addition of fibers is recognized and a decrease in strength due to fiber entanglement is prevented. If the addition amount is less than 1 wt%, the increase in crack growth resistance due to the addition of fibers is not recognized, and if the addition amount exceeds 20 wt%, the strength decreases due to the entanglement of the fibers.

【0010】本発明に用いるアルミナ質繊維は、繊維径
5〜30μm、繊維長50μm〜2.0mmの単繊維で
ある。アルミナ質繊維の繊維径を5〜30μmとしたの
は、繊維の引き抜き効果を高めるためである。繊維径が
5μm未満であると細かすぎて凝集し、繊維の引き抜き
効果が認められないのと繊維径が30μmを超えると繊
維の製造が長時間となり原料コスト高となり実用には供
しえないからである。また、繊維長を50μm〜2.0
mmとしたのは、繊維の引き抜き効果が顕著に認められ
ることと耐火原料との混練時に繊維の折れを防止するた
めである。繊維長が50μm未満であると繊維の引き抜
き効果が認められないのと繊維長が2.0mmを超える
と耐火原料との混練時に繊維の折れが生じるからであ
る。
The alumina fiber used in the present invention is a single fiber having a fiber diameter of 5 to 30 μm and a fiber length of 50 μm to 2.0 mm. The reason why the fiber diameter of the alumina fiber is set to 5 to 30 μm is to enhance the fiber drawing effect. If the fiber diameter is less than 5 μm, the fibers are too fine and agglomerate, and the fiber pull-out effect is not recognized, and if the fiber diameter exceeds 30 μm, the production of the fiber takes a long time and the raw material cost becomes high, and it cannot be put to practical use. is there. The fiber length is 50 μm to 2.0.
The reason why mm is set is that the fiber pulling-out effect is remarkably recognized and the fiber is prevented from being broken at the time of kneading with the refractory raw material. If the fiber length is less than 50 μm, the effect of pulling out the fibers is not recognized, and if the fiber length exceeds 2.0 mm, the fibers are broken during kneading with the refractory raw material.

【0011】耐火物原料用の金属粉末とは、例えばA
l、Si、Ti、Al−Si、Al−Ti、Al−Mg
等の単体または合金を指し、粒径が150μm以下で、
炭化物が生成しやすく、かつ生成した酸化物の耐火度が
高いことが望ましい。金属粉末の添加量を3〜20wt
%としたのは、耐機械的衝撃性および耐熱衝撃性に優れ
るからである。添加量が2wt%未満では、耐機械的衝
撃性に劣り、添加量が10wt%を超えると耐熱衝撃性
に劣るからである。
The metal powder for the refractory material is, for example, A
l, Si, Ti, Al-Si, Al-Ti, Al-Mg
A simple substance or alloy such as
It is desirable that carbides are easily formed and that the oxides formed have high fire resistance. Addition amount of metal powder is 3 ~ 20wt
% Is because it is excellent in mechanical shock resistance and thermal shock resistance. This is because if the added amount is less than 2 wt%, the mechanical shock resistance is poor, and if the added amount exceeds 10 wt%, the thermal shock resistance is poor.

【0012】[0012]

【作用】本発明におけるアルミナ質繊維を添加した炭素
含有耐火物は以下の機構により耐熱衝撃性の向上をもた
らす。温度変動による熱応力により発生した亀裂の進展
を考えた場合、亀裂進展方向に耐火原料が存在すると従
来の炭素含有耐火物では、進展した亀裂が耐火原料を迂
回し黒鉛中のみを進展していく。一方、本発明による耐
火物では、進展した亀裂がアルミナ質繊維を引き抜いて
進展することから、亀裂進展抵抗が大きくなり、耐熱衝
撃性の向上をもたらす。
The carbon-containing refractory to which the alumina fiber is added according to the present invention improves the thermal shock resistance by the following mechanism. Considering the progress of cracks caused by thermal stress due to temperature fluctuations, if a refractory raw material exists in the crack growth direction, in conventional carbon-containing refractories, the advanced crack bypasses the refractory raw material and propagates only in graphite. .. On the other hand, in the refractory material according to the present invention, since the cracks that have propagated propagate by pulling out the alumina fibers, the crack propagation resistance increases and the thermal shock resistance improves.

【0013】また、アルミナ質繊維とアルミナ、炭化珪
素、黒鉛および混練時に添加するフェノール樹脂との間
に化学的な結合は存在しないので、アルミナ質繊維は進
展した亀裂により容易に引き抜かれ、繊維添加による効
果を最大限に発揮する。
Further, since there is no chemical bond between the alumina fiber and the alumina, silicon carbide, graphite and the phenol resin added at the time of kneading, the alumina fiber is easily pulled out due to the developed crack, and the fiber addition Maximize the effect of.

【0014】さらに、本発明の炭素含有耐火物は、添加
した金属粉末の以下の反応により耐機械的衝撃性の向上
をもたらす。ここでは、金属Alを例にとり説明する。
炉の予熱あるいは稼働時に金属Alは反応してAl43
およびAl23を生成し、かつ生成時に体積膨張を伴
う。この体積膨張によって、耐火物組織中の気孔が塞が
り組織が緻密化され、強度、弾性率が増加することにな
り、耐機械的衝撃性の向上をもたらす。
Further, the carbon-containing refractory material of the present invention improves the mechanical shock resistance by the following reaction of the added metal powder. Here, description will be made by taking metal Al as an example.
Metal Al reacts during preheating or operation of the furnace and Al 4 C 3
And Al 2 O 3 are produced, and accompanied by volume expansion. Due to this volume expansion, the pores in the refractory structure are closed, the structure is densified, and the strength and elastic modulus are increased, and the mechanical shock resistance is improved.

【0015】[0015]

【実施例】以下、実施例に基づき本発明について説明す
る。 実施例1 溶融金属処理容器の内張り耐火物として本発明の繊維を
添加したAl23−SiC−C系耐火物の実施例を表1
に示す。
EXAMPLES The present invention will be described below based on examples. Example 1 Examples of Al 2 O 3 —SiC—C refractories to which the fiber of the present invention was added as refractory linings for molten metal treatment containers are shown in Table 1.
Shown in.

【0016】[0016]

【表1】 [Table 1]

【0017】アルミナ質耐火原料は電融アルミナを使用
し、炭化珪素質耐火原料はα−SiCを使用し、黒鉛は
純度99%の天然黒鉛を使用した。表1に示す原料組成
にそれぞれ液状のフェノール系バインダーを適量添加し
て、混練、真空フリクション成形、乾燥(90℃×24
hrs.)、硬化処理(250℃×10hrs.)を実
施してAl23−SiC−C煉瓦を得た。この煉瓦を1
000℃の温度で還元焼成した後に、見掛気孔率の測
定、耐熱衝撃性評価試験を実施し、結果を表1に併載し
た。
Fused alumina was used as the alumina refractory raw material, α-SiC was used as the silicon carbide refractory raw material, and natural graphite having a purity of 99% was used as the graphite. An appropriate amount of liquid phenolic binder is added to each of the raw material compositions shown in Table 1, and kneading, vacuum friction molding, and drying (90 ° C x 24
hrs. ), To obtain a Al 2 O 3 -SiC-C brick implemented curing treatment (250 ℃ × 10hrs.). 1 this brick
After reduction baking at a temperature of 000 ° C., the apparent porosity was measured and the thermal shock resistance evaluation test was carried out. The results are also shown in Table 1.

【0018】また、本発明と比較のためアルミナ質繊維
未添加のAl23−SiC−C煉瓦について実施した見
掛気孔率の測定、耐熱衝撃性評価試験も表1に併せて示
した。ここで、耐熱衝撃性の評価は、耐熱衝撃性指数
R""により繊維未添加煉瓦を100として指数表示で示
した。耐熱衝撃性指数R""の計算式は、R""=2Eγ/
σ2 (E:弾性率、γ:破壊エネルギー、σ:引張強
度)である。耐熱衝撃性は、耐熱衝撃性指数R""が大き
いものほど優れている。本発明の繊維添加Al23−S
iC−C煉瓦は、表1に示すように、R""が高く極めて
優れた耐熱衝撃性を示した。一方、比較例はR""が低く
耐熱衝撃性に劣っている。
For comparison with the present invention, Table 1 also shows the measurement of apparent porosity and the thermal shock resistance evaluation test conducted on Al 2 O 3 --SiC--C bricks to which alumina fibers were not added. Here, the evaluation of the thermal shock resistance was shown by the thermal shock resistance index R "" with the fiber-free brick as 100 in the index display. The calculation formula for the thermal shock resistance index R "" is R "" = 2Eγ /
σ 2 (E: elastic modulus, γ: breaking energy, σ: tensile strength). The larger the thermal shock resistance index R "", the better the thermal shock resistance. Fiber-added Al 2 O 3 -S of the present invention
As shown in Table 1, the iC-C brick had a high R "" and showed extremely excellent thermal shock resistance. On the other hand, the comparative example has a low R "" and is inferior in thermal shock resistance.

【0019】実施例2Example 2

【0020】[0020]

【表2】 [Table 2]

【0021】アルミナ質耐火原料は電融アルミナを使用
し、炭化珪素質耐火原料はα−SiCを使用し、黒鉛は
純度99%の天然黒鉛を使用した。表2に示す原料組成
にそれぞれ液状のフェノール系バインダーを適量添加し
て、混練、真空フリクション成形、乾燥(90℃×24
hrs.)、硬化処理(250℃×10hrs.)を実
施してAl23−SiC−C煉瓦を得た。この煉瓦を1
000℃の温度で還元焼成した後に、見掛気孔率の測
定、耐機械的衝撃性評価試験、耐熱衝撃性評価試験を実
施し、結果を表2に併載した。
Fused alumina was used as the alumina refractory raw material, α-SiC was used as the silicon carbide refractory raw material, and natural graphite having a purity of 99% was used as the graphite. An appropriate amount of liquid phenolic binder is added to each of the raw material compositions shown in Table 2, kneading, vacuum friction molding, and drying (90 ° C x 24
hrs. ) And curing treatment (250 ° C. × 10 hrs.) Were performed to obtain an Al 2 O 3 —SiC—C brick. 1 this brick
After reduction firing at a temperature of 000 ° C., apparent porosity measurement, mechanical shock resistance evaluation test, and thermal shock resistance evaluation test were carried out, and the results are also shown in Table 2.

【0022】また、本発明のアルミナ質繊維未添加のA
23−SiC−C煉瓦について実施した見掛気孔率の
測定、耐機械的衝撃性評価試験、耐熱衝撃性評価試験結
果も表2に併せて示した。
A containing no alumina fiber of the present invention
l 2 O 3 -SiC-C Measurement of apparent porosity carried out on bricks, high mechanical shock resistance evaluation test, also the thermal shock resistance evaluation test results are shown together in Table 2.

【0023】ここで、耐機械的衝撃性の評価は曲げ強度
を測定することにより行った。耐熱衝撃性の評価は、耐
熱衝撃性指数R""により繊維未添加煉瓦を100として
指数表示で示した。耐熱衝撃性指数R""の計算式は、
R""=2Eγ/σ2 (E:弾性率、γ:破壊エネルギ
ー、σ:引張強度)である。耐熱衝撃性は、耐熱衝撃性
指数R""が大きいものほど優れている。本発明の繊維添
加Al23−SiC−C煉瓦は、表2に示すように、曲
げ強度が高く極めて優れた耐機械的衝撃性を示すととも
に、R""が高く優れた耐熱衝撃性を示した。一方、比較
例は耐機械的衝撃性は優れるが、耐熱衝撃性は劣るか、
あるいは耐機械的衝撃性および耐熱衝撃性の両方の特性
に優れるものではなかった。
The mechanical impact resistance was evaluated by measuring the bending strength. The evaluation of the thermal shock resistance was shown by the thermal shock resistance index R "" with the fiber-free brick as 100, and indicated by an index. The formula for the thermal shock resistance index R "" is
R "" = 2Eγ / σ 2 (E: elastic modulus, γ: breaking energy, σ: tensile strength). The larger the thermal shock resistance index R "", the better the thermal shock resistance. As shown in Table 2, the fiber-added Al 2 O 3 —SiC—C brick of the present invention has high bending strength and extremely excellent mechanical shock resistance, and also has high R ″ ″ and excellent thermal shock resistance. Indicated. On the other hand, the comparative example is excellent in mechanical shock resistance but inferior in thermal shock resistance,
Alternatively, it was not excellent in both properties of mechanical shock resistance and thermal shock resistance.

【0024】[0024]

【発明の効果】本発明によって、耐熱衝撃性とともに耐
機械的衝撃性が従来の炭素含有耐火物に対して飛躍的に
向上したことは炉体寿命、炉材コスト削減につながり、
非常に有効である。
According to the present invention, thermal shock resistance and mechanical shock resistance are dramatically improved as compared with conventional carbon-containing refractories, which leads to reduction in furnace life and furnace material cost.
It is very effective.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年6月29日[Submission date] June 29, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】アルミナ質繊維の添加量を3〜20wt%
としたのは、繊維添加による亀裂進展抵抗の増加が認め
られることと繊維のからみ合いによる強度の低下を防止
するためである。添加量が3wt%未満であると繊維添
加による亀裂進展抵抗の増加が認められないのと添加量
が20wt%を超えると繊維のからみ合いにより強度が
低下するからである。
The amount of alumina fiber added is 3 to 20 wt%.
The reason is that an increase in crack growth resistance due to the addition of fibers is recognized and a decrease in strength due to fiber entanglement is prevented. If the addition amount is less than 3 wt% , the increase in crack growth resistance due to the addition of fibers is not recognized, and if the addition amount exceeds 20 wt%, the strength decreases due to the entanglement of the fibers.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】耐火物原料用の金属粉末とは、例えばA
l、Si、Ti、Al−Si、Al−Ti、Al−Mg
等の単体または合金を指し、粒径が150μm以下で、
炭化物が生成しやすく、かつ生成した酸化物の耐火度が
高いことが望ましい。金属粉末の添加量を3〜20wt
%としたのは、耐機械的衝撃性および耐熱衝撃性に優れ
るからである。添加量が3wt%未満では、耐機械的衝
撃性に劣り、添加量が20wt%を超えると耐熱衝撃性
に劣るからである。
The metal powder for the refractory material is, for example, A
l, Si, Ti, Al-Si, Al-Ti, Al-Mg
A simple substance or alloy such as
It is desirable that carbides are easily formed and that the oxides formed have high fire resistance. Addition amount of metal powder is 3 ~ 20wt
% Is because it is excellent in mechanical shock resistance and thermal shock resistance. This is because if the added amount is less than 3 wt% , the mechanical shock resistance is poor, and if the added amount exceeds 20 wt% , the thermal shock resistance is poor.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】[0016]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中尾 淳 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsushi Nakao 20-1 Shintomi, Futtsu City, Chiba Nippon Steel Corporation Corporate Technology Development Division

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ質耐火原料65〜85wt%、
炭化珪素質耐火原料5〜15wt%および黒鉛10〜2
0wt%からなる耐火原料において、前記アルミナ質耐
火原料の3〜20wt%はアルミナ質繊維であることを
特徴とする繊維添加炭素含有耐火物。
1. Alumina refractory raw material 65-85 wt%,
Silicon carbide refractory raw material 5 to 15 wt% and graphite 10 to 2
In the refractory raw material consisting of 0 wt%, 3 to 20 wt% of the alumina refractory raw material is an alumina fibrous material, and a fiber-containing carbon-containing refractory.
【請求項2】 アルミナ質耐火原料65〜85wt%、
炭化珪素質耐火原料5〜15wt%および黒鉛10〜2
0wt%からなる耐火原料において、前記アルミナ質耐
火原料の3〜20wt%はアルミナ質繊維である耐火原
料100wt%に対して、耐火物原料用の金属粉末を3
〜20wt%添加したことを特徴とする繊維添加炭素含
有耐火物。
2. Alumina refractory raw material 65-85 wt%,
Silicon carbide refractory raw material 5 to 15 wt% and graphite 10 to 2
In the refractory raw material consisting of 0 wt%, 3 to 20 wt% of the alumina-based refractory raw material is alumina-based fibers, and 3 wt% of the refractory raw material metal powder to 100 wt% of the refractory raw material.
A fiber-containing carbon-containing refractory characterized by being added in an amount of ˜20 wt%.
【請求項3】 上記のアルミナ質繊維は、繊維径5〜3
0μm、繊維長50μm〜2.0mmであることを特徴
とする請求項1または2記載の繊維添加炭素含有耐火
物。
3. The alumina fiber has a fiber diameter of 5 to 3.
The fiber-containing carbon-containing refractory material according to claim 1 or 2, which has a fiber length of 0 µm and a fiber length of 50 µm to 2.0 mm.
JP4114288A 1992-04-08 1992-04-08 Fiber-added carbon-containing refractories Withdrawn JPH05286758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4114288A JPH05286758A (en) 1992-04-08 1992-04-08 Fiber-added carbon-containing refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4114288A JPH05286758A (en) 1992-04-08 1992-04-08 Fiber-added carbon-containing refractories

Publications (1)

Publication Number Publication Date
JPH05286758A true JPH05286758A (en) 1993-11-02

Family

ID=14634103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4114288A Withdrawn JPH05286758A (en) 1992-04-08 1992-04-08 Fiber-added carbon-containing refractories

Country Status (1)

Country Link
JP (1) JPH05286758A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020019702A (en) * 2000-09-06 2002-03-13 한종웅 Fireproof material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020019702A (en) * 2000-09-06 2002-03-13 한종웅 Fireproof material

Similar Documents

Publication Publication Date Title
JPH05286758A (en) Fiber-added carbon-containing refractories
JP4187183B2 (en) Magnesia-carbon brick
JP6420748B2 (en) Unburned silicon carbide-containing high alumina brick used for lining of containers holding molten metal
JPS59501406A (en) fireproof composition
JPH05286760A (en) Fiber-added carbon-containing refractories
JPH026371A (en) Production of silicon carbide brick having sialon linkage
JPH05286759A (en) Fiber-added carbon-containing refractories
KR100569209B1 (en) Magnesia-Spinel-Carbon Basic Refractory
JP2022060911A (en) Method of producing lf-ladle magnesia-carbon brick
JPH05262559A (en) Unburned carbon-containing brick
JPH06287057A (en) Carbon-containing refractory
JP4471254B2 (en) Magnesia-carbon brick
JP2633018B2 (en) Carbon containing refractories
JPS62260768A (en) Refractories for blast furnace basin
JP3330811B2 (en) Carbon-containing refractory and melting and refining vessel for molten metal lined with the refractory
JPS593069A (en) Alumina-silicon carbide-carbon refractories
JP3201679B2 (en) High spalling resistant magnesia carbon brick and its manufacturing method
JP3002296B2 (en) Method for producing coarse aggregate blended magnesia-carbon refractory
JPH05221711A (en) Refractory base stock and refractory using the same
JPH05221722A (en) Stock for refractory and refractory using the same
JPH06101975A (en) Blast furnace lining carbonaceous refractories
JP2948020B2 (en) Carbon containing refractories
JPH0477368A (en) Monolithic refractory for trough material for blast furnace
JP2002087889A (en) Low heat conductive carbon-containing refractory
JPH02274370A (en) Refractories for vessel for pretreatment of molten iron

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608