JPH05286377A - Wheel speed detector - Google Patents

Wheel speed detector

Info

Publication number
JPH05286377A
JPH05286377A JP8731492A JP8731492A JPH05286377A JP H05286377 A JPH05286377 A JP H05286377A JP 8731492 A JP8731492 A JP 8731492A JP 8731492 A JP8731492 A JP 8731492A JP H05286377 A JPH05286377 A JP H05286377A
Authority
JP
Japan
Prior art keywords
wheel
wheel speed
driving
wheels
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8731492A
Other languages
Japanese (ja)
Inventor
Hideyuki Kojima
秀幸 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP8731492A priority Critical patent/JPH05286377A/en
Publication of JPH05286377A publication Critical patent/JPH05286377A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)

Abstract

PURPOSE:To reduce cost by providing an averaging means to detect a weighted mean value as a typical wheel speed in such a manner that the weighting of a detected value on the wheel side read by a high-precision reading means is made smaller than the weighting of a detected value on the wheel side read by a low-precision reading means during high speed run. CONSTITUTION:On a driven wheel side, right and left wheel speeds are found from a memorized time in accordance with pulsing cycles and an averaged value by an averaging means 10 is detected as a wheel speed. Specially, the weighting of a detected value on the wheel side read by high-precision reading means 10a-10c is made smaller than the weighting of a detected value on the wheel side read by a low-precision reading means 10a during high speed run to detect a weighted mean value as a wheel speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車輪のスリップ発生状
態に応じて2輪駆動と4輪駆動との切換を行う車両等に
適用され、常時エンジン駆動力を伝達される駆動輪と、
2輪駆動時等に駆動力が切り離される非駆動輪との車輪
速を検出する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to a vehicle or the like which switches between two-wheel drive and four-wheel drive in accordance with a slip occurrence state of wheels, and drive wheels to which engine driving force is constantly transmitted.
The present invention relates to a device for detecting a wheel speed with a non-driving wheel whose driving force is separated when driving two wheels.

【0002】[0002]

【従来の技術】従来、車両において、例えば変速機の後
段にクラッチ機構を設け、前後輪の車輪速の差や車速等
の車両走行条件に応じて前記クラッチを遮断又は接続操
作することにより、2輪駆動と4輪駆動との切換を可能
にするものがある (実願平1−146462号等参照)
2. Description of the Related Art Conventionally, in a vehicle, for example, a clutch mechanism is provided at a rear stage of a transmission, and the clutch is disengaged or connected according to vehicle traveling conditions such as a difference in wheel speed between front and rear wheels and vehicle speed. There is one that enables switching between four-wheel drive and four-wheel drive (see Japanese Patent Application No. 1-146462).
..

【0003】ここで、かかる2輪駆動−4輪駆動切換制
御を行う制御装置に相殺されるCPUには、4つの車輪
に備えられる車輪速センサから所定の回転角毎に発生す
るパルスを入力すると同時に該パルスの入力時刻を読み
取って記憶する周期計測装置(インプット・キャッチャ
ーと称される) を少なくとも車輪数に合わせて4チャン
ネル以上備えた高機能のものが必要とされてきた。
Here, when a pulse generated from a wheel speed sensor provided for four wheels at predetermined rotation angles is input to the CPU offset by the control device for performing such two-wheel drive / four-wheel drive switching control. At the same time, there has been a need for a highly functional device having a period measuring device (referred to as an input catcher) that reads and stores the input time of the pulse at least 4 channels according to at least the number of wheels.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、かかる
高機能を有するCPUで汎用的なものは高価であり、不
要な機能も多く有するため、実用的でないという問題が
あった。本発明は、このような従来の問題点に鑑みなさ
れたもので、少なくとも1チャンネルはソフトウエア処
理を用いた周期計測を行い、該周期計測による精度の低
下を十分に補償できるようにした車輪速検出装置を提供
することを目的とする。
However, a general-purpose CPU having such a high function is expensive and has many unnecessary functions, which is not practical. The present invention has been made in view of such conventional problems, and at least one channel is subjected to cycle measurement using software processing, and a wheel speed capable of sufficiently compensating for deterioration in accuracy due to the cycle measurement. An object is to provide a detection device.

【0005】[0005]

【課題を解決するための手段】このため本発明に係る車
輪速検出装置は図1に示すように、エンジン駆動力を常
時伝達されて駆動される左右の駆動輪と、少なくとも所
定の運転時にエンジン駆動力が切り離されて非駆動状態
となる左右の非駆動輪と、に夫々車輪の所定の回転角毎
にパルスを発生する車輪速信号発生手段を設け、前記各
車輪速信号のパルスの発生周期から各車輪の車輪速を検
出し、駆動輪側と非駆動輪側について夫々左右の車輪速
検出値を処理して代表車輪速を検出する車輪速検出装置
において、前記左右の非駆動輪と前記左右のうち一方の
駆動輪に対しては、対応する各車輪速信号発生手段から
パルスを入力すると同時に当該入力時刻を読み取って記
憶する高精度読取手段を備え、他方の駆動輪に対しては
パルスの発生により割込をかけてソフトウエア処理終了
後に読み取った時刻を記憶する低精度読取手段を備える
一方、駆動輪については左右車輪の車輪速を平均化処理
し、かつ、高車速時は高精度読取手段で読み取られる車
輪側の検出値の重み付けを、低精度読取手段で読み取ら
れる車輪側の検出値の重み付けより小さくして加重平均
処理した値を代表車輪速として検出する平均化処理手段
を備えて構成した。
Therefore, as shown in FIG. 1, a wheel speed detecting device according to the present invention includes left and right drive wheels which are driven by constantly transmitting an engine drive force, and an engine at least during a predetermined operation. Wheel speed signal generating means for generating a pulse for each predetermined rotation angle of the wheel is provided on each of the left and right non-driving wheels which are separated from the driving force and are in a non-driving state, and the pulse generation cycle of each wheel speed signal is provided. In the wheel speed detection device for detecting the wheel speed of each wheel from the wheel speed detection device for detecting the representative wheel speed by processing the left and right wheel speed detection values for the driving wheel side and the non-driving wheel side, respectively. One of the left and right driving wheels is provided with a high-accuracy reading means for reading a pulse from the corresponding wheel speed signal generating means and at the same time reading and storing the input time. Due to the occurrence of It is equipped with a low-precision reading unit that stores the time read after the completion of software processing by interrupting, while averaging the wheel speeds of the left and right wheels for the drive wheels and using the high-precision reading unit at high vehicle speeds. The weighting of the detection value on the wheel side to be read is made smaller than the weighting of the detection value on the wheel side to be read by the low-precision reading means, and the averaging processing means for detecting the value subjected to the weighted average processing as the representative wheel speed is configured. ..

【0006】[0006]

【作用】車輪毎に備えられた車輪速信号発生手段から、
所定回転角毎にパルスが発生され、その中、非駆動輪側
の左右の車輪と駆動輪側の左右一方の車輪については、
高精度読取手段によりパルスが入力されると同時に入力
時刻が読み取られて記憶され、駆動輪側の他方の車輪に
ついては、低精度読取手段によりパルスの発生により割
込をかけてソフトウエア処理終了後に読み取られた時刻
が記憶される。
From the wheel speed signal generation means provided for each wheel,
A pulse is generated for each predetermined rotation angle, and among them, for the left and right wheels on the non-driving wheel side and the left and right wheels on the driving wheel side,
At the same time as the pulse is input by the high-accuracy reading means, the input time is read and stored, and for the other wheel on the driving wheel side, the low-precision reading means interrupts the generation of the pulse and after the software processing is completed. The read time is stored.

【0007】そして、駆動輪側については、前記のよう
にして記憶された時刻からパルス発生周期に基づいて左
右の車輪の車輪速が夫々求められ、平均化処理手段によ
り平均化処理した値が車輪速として検出される。特に、
高車速時は高精度読取手段で読み取られる車輪側の検出
値の重み付けを、低精度読取手段で読み取られる車輪側
の検出値の重み付けより小さくして加重平均処理した値
が車輪速として検出される。
On the drive wheel side, the wheel speeds of the left and right wheels are respectively obtained from the times stored as described above based on the pulse generation cycle, and the values averaged by the averaging means are the wheels. Detected as fast. In particular,
When the vehicle speed is high, the weighting of the wheel-side detection value read by the high-precision reading means is made smaller than the weighting of the wheel-side detection value read by the low-precision reading means, and the value obtained by weighted averaging is detected as the wheel speed. ..

【0008】[0008]

【実施例】以下に本発明の実施例を図に基づいて説明す
る。一実施例を示す図2において、エンジン1の駆動力
は、図示しないトランスファーを介して2分割され、一
方はフロントディファレンシャル2に伝達されて左右の
前輪3A,3Bを駆動し、もう一方は、プロペラシャフ
ト4に介装した電磁クラッチ5を介してリアディファレ
シャル6に伝達されて左右の後輪7A,7Bを駆動す
る。また、これら前輪3A,3B及び後輪7A,7B近
傍には、それぞれ車輪の所定回転角毎にパルスを発生す
る車輪速信号発生手段としての車輪速センサ8a〜8d
が設けられる。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 2 showing an embodiment, the driving force of the engine 1 is divided into two via a transfer (not shown), one of which is transmitted to the front differential 2 to drive the left and right front wheels 3A and 3B, and the other of which is a propeller. It is transmitted to the rear differential 6 via an electromagnetic clutch 5 mounted on the shaft 4 and drives the left and right rear wheels 7A, 7B. In the vicinity of the front wheels 3A, 3B and the rear wheels 7A, 7B, wheel speed sensors 8a to 8d as wheel speed signal generating means for generating a pulse at each predetermined rotation angle of the wheel.
Is provided.

【0009】2輪駆動−4輪駆動の切換を制御するコン
トロールユニット9は、CPU10を内蔵し、前記車輪
速センサ8a〜8dからの検出信号に基づいて予め設定
された走行条件のマップから2輪駆動と4輪駆動とを切
換制御する。ここで、前記CPU10は、高精度読取手
段としてパルスの入力 (立ち上がり) に同期してフリー
ランカウンタの値つまりパルス入力時刻を読み取って記
憶する周期計測装置10a〜10cを3チャンネル分備
えている。そして、これら3チャンネルの周期計測装置
10a〜10cは、夫々駆動輪である左右の前輪3のう
ちの一方、例えば左側の前輪3Aと、通常走行時は非駆
動輪となる左右の後輪7A,7Bに夫々備えられる車輪
速センサ8a,8c,8dからの車輪速信号を入力す
る。
The control unit 9 for controlling the switching between the two-wheel drive and the four-wheel drive has a built-in CPU 10, and the two wheels are selected from a map of traveling conditions preset based on the detection signals from the wheel speed sensors 8a to 8d. Switching control between drive and four-wheel drive is performed. Here, the CPU 10 is provided with three channels of cycle measuring devices 10a to 10c as high-precision reading means for reading and storing the value of the free-run counter, that is, the pulse input time, in synchronization with the pulse input (rising). The three-channel period measuring devices 10a to 10c respectively include one of the left and right front wheels 3 that are driving wheels, for example, the left front wheel 3A, and the left and right rear wheels 7A that are non-driving wheels during normal traveling. The wheel speed signals from the wheel speed sensors 8a, 8c and 8d respectively provided in 7B are input.

【0010】また、残る右側の前輪3Bに備えられた車
輪速センサ8bからの車輪速信号はCPU10の割込ポ
ートIRQに入力される。そして、CPU10は上記各
車輪の車輪速信号を入力して以下のように前輪の車輪速
と後輪の車輪速とを検出し、該検出値に2輪駆動−4輪
駆動切換制御に用いる。
A wheel speed signal from a wheel speed sensor 8b provided on the remaining right front wheel 3B is input to an interrupt port IRQ of the CPU 10. Then, the CPU 10 inputs the wheel speed signals of the respective wheels, detects the wheel speeds of the front wheels and the wheel speeds of the rear wheels as follows, and uses the detected values for the two-wheel drive / four-wheel drive switching control.

【0011】まず、前記3チャンネルの周期計測装置1
0a〜10cに入力された左側の前輪3Aの車輪速セン
サ8a及び左右の後輪7A,7Bの車輪速センサ8c,
8dから所定回転角毎にパルスが発生すると、パルスの
立ち上がりに同期してフリーランカウンタのカウント値
Tが読み取られて最新のカウント値T1 ,前回のカウン
ト値T0 が夫々レジスタに記憶される (図3参照) 。こ
れらの処理はハードウエアにより迅速に実行される。
First, the period measuring device 1 for the three channels
The wheel speed sensor 8a of the left front wheel 3A and the wheel speed sensors 8c of the left and right rear wheels 7A and 7B, which are input to 0a to 10c,
When a pulse is generated at a predetermined rotation angle from 8d, the count value T of the free-run counter is read in synchronization with the rising edge of the pulse, and the latest count value T 1 and the previous count value T 0 are stored in the registers. (See Figure 3). These processes are quickly executed by hardware.

【0012】一方、右側の前輪3Bの車輪速センサ8b
から同様にパルスが発生されると、該パルスの立ち上が
りに同期して割込が掛けられる。そして、該割込が受け
付けられると、フリーランカウンタのカウント値を読み
取りにいく処理が開始され、所定時間後にカウント値が
読み取られる。この時の最新の読取値T1 ’と前回の読
取値T0 ’を夫々メモリに記憶する (図4参照) 。尚、
CPU10によるかかるカウント値の読取機能が低精度
読取手段に相当する。
On the other hand, a wheel speed sensor 8b for the right front wheel 3B
Similarly, when a pulse is generated, the interrupt is generated in synchronization with the rising edge of the pulse. Then, when the interrupt is accepted, the process of reading the count value of the free-run counter is started, and the count value is read after a predetermined time. The latest read value T 1 'at this time and the last read value T 0 ' are stored in the memory (see FIG. 4). still,
The function of reading the count value by the CPU 10 corresponds to the low-precision reading means.

【0013】次に、CPU10による車輪速の演算検出
ルーチンを図5に従って説明する。ステップ (図ではS
と記す。以下同様) 1では、各車輪速センサ8a〜8d
からの車輪速信号に基づいて前述した各レジスタ又はメ
モリに記憶されたカウント値を読み込む。ステップ2で
は、夫々の車輪速センサ8a〜8dについて、夫々最新
に読み取ったカウント値T1 又はT1 ’から前回読み取
ったカウント値T0 又はT0 ’を差し引いて車輪速信号
のパルス発生周期を演算し、該周期に反比例する値とし
て各車輪の車輪速を演算する。
Next, a wheel speed calculation detection routine by the CPU 10 will be described with reference to FIG. Step (S in the figure
Is written. The same applies to the following) 1, the wheel speed sensors 8a to 8d
The count value stored in each of the registers or the memory described above is read based on the wheel speed signal from the. In step 2, the wheel speed sensors 8a~8d each, a pulse generation cycle of subtracting the count value T 1 or 'count value read last time from T 0 or T 0' T 1 read respectively latest wheel speed signal The wheel speed of each wheel is calculated as a value inversely proportional to the cycle.

【0014】ステップ3では、駆動輪である前輪3A,
3Bの代表する車輪速Vwfを検出すべく、まず、ステッ
プ2で求めた左右の前輪3A,3Bの車輪速Vwfl ,
wfrの平均の車輪速VwfAVを (Vwfl +Vwfr ) /2と
して演算する。ステップ4では、左右の車輪速Vwfl ,
wfr を加重平均演算して代表車輪速Vwfを演算するた
めのVwfl , wfr の重みm,n (m+n=1) を、前
記平均車輪速VwfAVに対して予め設定された特性 (図6
参照) のマップから検索する。ここで、該重みm,nの
特性は、平均車輪速VwfAVが所定値未満の低中速域では
m=n=0.5であるが、所定値以上の高速域では図6
に示すように車速の増大に応じてステップ的にmが増大
するように設定されている。尚、平均車輪速Vwf AVの代
わりに、後述するようにして求められる車体速VFF若し
くは左右の車輪速Vwfl , wfr のいずれかを用いても
よい。
In step 3, the front wheels 3A, which are the driving wheels,
In order to detect the wheel speed V wf representative of 3B, first, the wheel speeds V wfl, V of the left and right front wheels 3A, 3B obtained in step 2 are detected.
computing the average of the wheel speed V WfAV of wfr as (V wfl + V wfr) / 2. In step 4, the left and right wheel speeds V wfl,
The weights m, n (m + n = 1) of V wfl and V wfr for calculating a representative wheel speed V wf by performing a weighted average calculation of V wfr are characteristics set in advance for the average wheel speed V wfAV ( Figure 6
Search from the map (see). Here, the characteristics of the weights m and n are m = n = 0.5 in a low / medium speed range in which the average wheel speed V wfAV is less than a predetermined value, but in FIG.
As shown in, m is set to increase stepwise in accordance with the increase in vehicle speed. Instead of the average wheel speed V wf AV , either the vehicle body speed V FF or the left and right wheel speeds V wfl, V wfr , which will be described later, may be used.

【0015】ステップ5では、前記重みm,nに基づい
て前輪の代表車輪速Vwfを次式により演算する。 Vwf=mVwfl +nVwfr ここで、前記平均車輪速VwfAVが所定値未満の低中速域
ではm=n=0.5であるため、代表車輪速Vwfは平均
車輪速VwfAVに一致する。
In step 5, the representative wheel speed V wf of the front wheels is calculated by the following equation based on the weights m and n. V wf = mV wfl + nV wfr Here, since the average wheel speed V wfAV is m = n = 0.5 in a low / medium speed range where the average wheel speed V wfAV is less than a predetermined value, the representative wheel speed V wf matches the average wheel speed V wfAV . To do.

【0016】ステップ6では、非駆動輪である後輪7
A,7Bを代表する車輪速Vwrを検出すべく、まず、車
体速VFFを左右の車輪速Vwrl , wrr のうちの小さい
方を選択することによって求める。大きい方はスリップ
していると考えられるためである。ステップ7では、車
輪速Vwrl , wrr と車体速VFFとに基づいて旋回運転
時の旋回軌跡補正値ΔVHを次式により求める。
In step 6, the rear wheels 7 which are non-driving wheels are used.
In order to detect the wheel speed V wr representing A and 7B, first, the vehicle body speed V FF is obtained by selecting the smaller one of the left and right wheel speeds V wrl and V wrr . This is because the larger one is considered to be slipping. In step 7, the turning locus correction value ΔVH at the time of turning operation is obtained by the following equation based on the wheel speeds V wrl, V wrr and the vehicle speed V FF .

【0017】ΔVH={K1− (VFF) 2 K2}・ (V
wrl −Vwrr ) /VFF ここで、K1,K2は車両の諸元から決まる定数であ
る。ステップ8では、後輪の代表車輪速Vwfを前記車体
速VFFから旋回軌跡補正値ΔVHを差し引いた値として
求める。尚非旋回運転時はVwrl −Vwrr =0となって
代表車輪速Vwfは車体速VFFに一致する。
[0017] ΔVH = {K1- (V FF) 2 K2} · (V
wrl− V wrr ) / V FF Here, K1 and K2 are constants determined from the specifications of the vehicle. In step 8, the representative wheel speed V wf of the rear wheels is obtained as a value obtained by subtracting the turning locus correction value ΔVH from the vehicle body speed V FF . During non-turning operation, V wrl -V wrr = 0 and the representative wheel speed V wf matches the vehicle body speed V FF .

【0018】以上のようにして求められた、前輪の代表
車輪速Vwfと後輪の代表車輪速Vwfとに基づいて、2輪
駆動−4輪駆動の切換制御が行われる。具体的には、前
輪の代表車輪速Vwfと後輪の代表車体速Vwfとの差から
駆動輪のスリップ状態が分かるから、該スリップが大き
い時には、駆動輪に対するトルク配分が大き過ぎると判
断して、非駆動輪である後輪7A, 7Bへのトルク伝達
率を大きくするように制御する。
[0018] obtained as described above, on the basis of the representative wheel speed V wf of the front and rear wheels of the representative wheel speed V wf, switching control of two-wheel drive -4-wheel driving is performed. Specifically, the slip state of the drive wheels is known from the difference between the representative wheel speed V wf of the front wheels and the representative vehicle body speed V wf of the rear wheels. Therefore , when the slip is large, it is determined that the torque distribution to the drive wheels is too large. Then, control is performed to increase the torque transmission rate to the rear wheels 7A and 7B which are non-driving wheels.

【0019】かかる車輪速の検出に当り、非駆動輪であ
る後輪側は、左右の車輪速の大小関係や差分が2輪−4
輪駆動切換制御に大きな影響を与える。そこで、後輪の
車輪速の検出用には、車輪速をリアルタイムで高精度に
検出できる周期計測装置10b, 10cを従来同様に使
用する。これに対し、駆動輪側は、左右の車輪速に差が
あっても平均化して代表車輪速とすればよいため、非駆
動輪ほどには検出精度を要求されないので残り1チャン
ネルの周期計測装置10aは、一方の車輪7Aの車輪速
検出に使用するが、他方の車輪7Bの車輪速検出は、前
述した割込によるソフトウエア処理により行う。
In detecting the wheel speed, the rear wheel side, which is a non-driving wheel, has a difference in magnitude or difference between the left and right wheel speeds of two wheels-4.
It has a great influence on the wheel drive switching control. Therefore, for detecting the wheel speed of the rear wheels, the cycle measuring devices 10b , 10c capable of detecting the wheel speed in real time with high accuracy are used as in the conventional case. On the other hand, on the drive wheel side, even if there is a difference in the left and right wheel speeds, it is sufficient to average them to obtain the representative wheel speed. Therefore, the detection accuracy is not required as much as for the non-drive wheels, so the remaining cycle measuring device for one channel is used. 10a is used to detect the wheel speed of one wheel 7A, but the wheel speed of the other wheel 7B is detected by the software processing by the above-mentioned interrupt.

【0020】ところで、前記ソフトウエア処理による検
出誤差は次式のように求められる (図4参照) 検出誤差= (T1 ’−T0 ’) − (T1 −T0 ) =Te1−Te2 ここで、Te1, e2は夫々最新及び前回パルスを発生と
同時に割込が掛けられてから該割込が受け付けられるま
での処理待ち時間である。即ち、処理時間は一定である
が、処理待ち時間は、割込が掛けられた時のメインルー
チンの処理状態により異なるから、これが検出誤差とな
って生じるのである。
By the way, the detection error by the software processing is obtained by the following equation (see FIG. 4) detection error = (T 1 '-T 0 ')-(T 1 -T 0 ) = T e1 -T e2 Here, T e1 and T e2 are processing waiting times from the generation of the latest pulse and the generation of the previous pulse at the same time when the interrupt is generated to the acceptance of the interrupt. That is, the processing time is constant, but the processing waiting time differs depending on the processing state of the main routine at the time of the interruption, which causes a detection error.

【0021】そして、かかる検出誤差は車輪速信号のパ
ルスの入力周期とは無関係に発生する誤差であり、した
がって周期が短いほど、つまり高車速であるほど検出誤
差の影響は大きい。一方、検出誤差が無い若しくは小さ
い場合は駆動輪の車輪速は左右の車輪速を均等に平均し
て求めるべきものである。
The detection error is an error that occurs regardless of the pulse input cycle of the wheel speed signal. Therefore, the shorter the cycle, that is, the higher the vehicle speed, the greater the influence of the detection error. On the other hand, when there is no detection error or the detection error is small, the wheel speeds of the drive wheels should be obtained by averaging the left and right wheel speeds evenly.

【0022】そこで、以上の点を考慮して検出誤差の影
響が増大する高車速時は、周期計測装置によって高精度
に検出される車輪速の重みを大きくし、検出誤差の影響
が小さい低中車速時には左右均等の重みとして車輪速を
決定することにより、ソフトウエア処理で車輪速を求め
る場合でも可及的に高い検出精度を確保できるのであ
る。
Therefore, in consideration of the above points, when the vehicle speed is high at which the influence of the detection error increases, the weight of the wheel speed detected by the cycle measuring device with high accuracy is increased, and the influence of the detection error is small. By determining the wheel speeds as equal weights on the left and right at the vehicle speed, it is possible to secure detection accuracy as high as possible even when the wheel speeds are obtained by software processing.

【0023】[0023]

【発明の効果】以上説明してきたように本発明によれ
ば、車輪速検出精度が比較的小さくて済む駆動輪側の一
方の車輪の車輪速をソフトウエア処理で求める一方、検
出誤差の影響が増大する高車速時は周期計測装置により
高精度に検出された側の車輪速の方の重みを大きくして
加重平均により駆動輪の車輪速を決定する構成としたた
め、周期計測装置の装備数の少ない安価なCPUを使用
しても可及的に高い検出精度を確保でき、延いては該車
輪速検出に基づく制御の性能を高めることができるもの
である。
As described above, according to the present invention, the wheel speed of one wheel on the drive wheel side, which requires relatively small wheel speed detection accuracy, is determined by software processing, while the influence of the detection error is reduced. When the vehicle speed increases, the weight of the wheel speed on the side detected with high accuracy by the cycle measuring device is increased and the wheel speed of the driving wheels is determined by the weighted average. Even if a small number of inexpensive CPUs are used, the detection accuracy as high as possible can be secured, and the control performance based on the wheel speed detection can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成機能を示すブロック図FIG. 1 is a block diagram showing constituent functions of the present invention.

【図2】本発明の一実施例の構成を示す図FIG. 2 is a diagram showing a configuration of an embodiment of the present invention.

【図3】同上実施例の周期計測装置のカウント値読取作
用を示すタイムチャート
FIG. 3 is a time chart showing a count value reading operation of the cycle measuring apparatus according to the embodiment.

【図4】同じくソフトウエア処理によるカウント値読取
作用を示すタイムチャート
FIG. 4 is a time chart showing a count value reading operation by software processing.

【図5】同じく車輪速検出ルーチンを示すフローチャー
FIG. 5 is a flowchart showing a wheel speed detection routine.

【図6】同じく駆動輪側の車輪速を検出するための加重
平均の重みを示す線図
FIG. 6 is a diagram showing a weight of a weighted average for similarly detecting a wheel speed on the drive wheel side.

【符号の説明】[Explanation of symbols]

1 エンジン 3A 前輪 (左側) 3B 前輪 (右側) 7A 後輪 (左側) 7B 後ろ (右側) 8a〜8d 車輪速センサ 10 CPU 10a〜10a 周期計測装置 1 engine 3A front wheel (left side) 3B front wheel (right side) 7A rear wheel (left side) 7B rear (right side) 8a-8d wheel speed sensor 10 CPU 10a-10a cycle measuring device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】エンジン駆動力を常時伝達されて駆動され
る左右の駆動輪と、少なくとも所定の運転時にエンジン
駆動力が切り離されて非駆動状態となる左右の非駆動輪
と、に夫々車輪の所定の回転角毎にパルスを発生する車
輪速信号発生手段を設け、前記各車輪速信号のパルスの
発生周期から各車輪の車輪速を検出し、駆動輪側と非駆
動輪側について夫々左右の車輪速検出値を処理して代表
車輪速を検出する車輪速検出装置において、前記左右の
非駆動輪と前記左右のうち一方の駆動輪に対しては、対
応する各車輪速信号発生手段からパルスを入力すると同
時に当該入力時刻を読み取って記憶する高精度読取手段
を備え、他方の駆動輪に対してはパルスの発生により割
込をかけてソフトウエア処理終了後に読み取った時刻を
記憶する低精度読取手段を備える一方、駆動輪について
は左右車輪の車輪速を平均化処理し、かつ、高車速時は
高精度読取手段で読み取られる車輪側の検出値の重み付
けを、低精度読取手段で読み取られる車輪側の検出値の
重み付けより小さくして加重平均処理した値を代表車輪
速として検出する平均化処理手段を備えて構成したこと
を特徴とする車輪速検出装置。
1. A left and right driving wheel that is driven by constantly transmitting an engine driving force, and a left and right non-driving wheel that is in a non-driving state when the engine driving force is disconnected at least during a predetermined operation. A wheel speed signal generating means for generating a pulse for each predetermined rotation angle is provided, the wheel speed of each wheel is detected from the pulse generation cycle of each wheel speed signal, and the left and right wheels are respectively separated on the driving wheel side and the non-driving wheel side. In a wheel speed detecting device for processing a wheel speed detection value to detect a representative wheel speed, for each of the left and right non-driving wheels and one of the left and right driving wheels, a pulse is output from the corresponding wheel speed signal generating means. It is equipped with a high-precision reading unit that reads and stores the input time at the same time as inputting, and a low-precision reading that stores the time read after the software processing is completed by interrupting the other driving wheel due to the generation of a pulse. On the other hand, for the driving wheels, the wheel speeds of the left and right wheels are averaged, and when the vehicle speed is high, the weights of the detection values on the wheel side read by the high-accuracy reading means are read by the low-accuracy reading means. A wheel speed detecting device comprising: an averaging processing unit configured to detect a value obtained by performing weighted averaging processing by making the weight smaller than the weighting of the detection value on the side as a representative wheel speed.
JP8731492A 1992-04-08 1992-04-08 Wheel speed detector Pending JPH05286377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8731492A JPH05286377A (en) 1992-04-08 1992-04-08 Wheel speed detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8731492A JPH05286377A (en) 1992-04-08 1992-04-08 Wheel speed detector

Publications (1)

Publication Number Publication Date
JPH05286377A true JPH05286377A (en) 1993-11-02

Family

ID=13911385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8731492A Pending JPH05286377A (en) 1992-04-08 1992-04-08 Wheel speed detector

Country Status (1)

Country Link
JP (1) JPH05286377A (en)

Similar Documents

Publication Publication Date Title
US6802226B2 (en) Physical amount estimating apparatus, road surface friction condition estimating apparatus, steering angle neutral point estimating apparatus and air pressure reduction estimating apparatus
US6420966B2 (en) Method for alarming decrease in tire air-pressure and apparatus used therefor
US6999859B2 (en) Vehicle speed measuring apparatus
JP2620998B2 (en) Vehicle body speed estimation method in antilock control device for vehicle
JP2002022766A (en) Sensor failure determining device
US5424714A (en) Hydroplaning detecting system
EP1174291A2 (en) Apparatus and method for alarming decrease in tyre air pressure
JPH05286377A (en) Wheel speed detector
JPH10104049A (en) Measuring apparatus for weight of vehicle
JP2004017716A (en) Tire air pressure lowering detecting method and device and tire air pressure reduction determining program
JP3929965B2 (en) Load sensitivity calculation method and apparatus for tire dynamic load radius, and tire load sensitivity calculation program
JP2009119958A (en) Vehicle state estimation unit
JPH03195973A (en) Car body speed estimating apparatus
JP3033229B2 (en) Vehicle running state calculation device
JP3050026B2 (en) Tire pressure drop detection method
JPH0522821Y2 (en)
JPH02162226A (en) Slip judging apparatus of vehicle
JP2943400B2 (en) Vehicle steering angle detection device
JP2001091411A (en) Front-rear axle load controlling method in four-wheel drive vehicle bench test
JP3033397B2 (en) Abnormality detection device for yaw rate sensor output
JPH04244463A (en) Estimating method for car body speed of automobile
JPH0811565A (en) Differential controller for vehicle
JP3206954B2 (en) Automatic transmission control device
JP2001215234A (en) Vehicle speed computing device
JPH08156538A (en) Tire inflation pressure detecting device for vehicle