JPH05285500A - Method and apparatus for controlling dehydration of slurry - Google Patents

Method and apparatus for controlling dehydration of slurry

Info

Publication number
JPH05285500A
JPH05285500A JP4044628A JP4462892A JPH05285500A JP H05285500 A JPH05285500 A JP H05285500A JP 4044628 A JP4044628 A JP 4044628A JP 4462892 A JP4462892 A JP 4462892A JP H05285500 A JPH05285500 A JP H05285500A
Authority
JP
Japan
Prior art keywords
slurry
coagulant
capillary suction
suction time
cst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4044628A
Other languages
Japanese (ja)
Other versions
JP2937605B2 (en
Inventor
Nobu Togo
展 東郷
Tamotsu Hattori
保 服部
Noboru Okazaki
登 岡崎
Kosaburo Akamatsu
幸三郎 赤松
Tomoyuki Hayashi
知幸 林
Tomohiko Kusumi
知彦 楠見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO MET GOV GESUIDOU SERVICE KK
Organo Corp
Tokyo Metropolitan Government
Original Assignee
TOKYO MET GOV GESUIDOU SERVICE KK
Organo Corp
Tokyo Metropolitan Government
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO MET GOV GESUIDOU SERVICE KK, Organo Corp, Tokyo Metropolitan Government, Japan Organo Co Ltd filed Critical TOKYO MET GOV GESUIDOU SERVICE KK
Priority to US07/896,439 priority Critical patent/US5382356A/en
Priority to DE4234507A priority patent/DE4234507A1/en
Publication of JPH05285500A publication Critical patent/JPH05285500A/en
Application granted granted Critical
Publication of JP2937605B2 publication Critical patent/JP2937605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To control the addition of a polymeric flocculant so that the addition amount of the flocculant to a slurry becomes optimum in order to minimize the water content of a dehydrated cake when the slurry is dehydrated by adding the flocculant to the slurry in a sewage treatment plant. CONSTITUTION:A flocculant is injected in a slurry supply pipe 3 by a flocculant injection pump 6 to perform flocculation reaction and, thereafter, a slurry is dehydrated by a dehydration means 4 to obtain a filtrate 8. The capillary tube suction time (CST) of the filtrate 8 is measured by a CST measuring means 10 and the injection of the flocculant due to a flocculant pump 6 is controlled so as to minimize the CST value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、下水、し尿あるいは産
業排水等の処理設備等から発生するスラリーに最適な量
の有機高分子凝集剤を添加し、高効率にスラリーの脱水
を行うスラリーの脱水制御方法及び装置に関するもので
ある。
FIELD OF THE INVENTION The present invention relates to a slurry for highly efficiently dehydrating a slurry by adding an optimum amount of an organic polymer coagulant to a slurry generated from a treatment facility such as sewage, night soil or industrial wastewater. The present invention relates to a dehydration control method and device.

【0002】[0002]

【従来の技術】一般に、例えば下水処理場におけるスラ
リーの脱水工程は、スラリーに有機高分子凝集剤(以下
高分子凝集剤または単に凝集剤と略称する)を添加し、
その後脱水装置により脱水ケーキを得るようにしてお
り、従来の凝集剤の添加方法については、特公昭57−
31932号、特開昭60−25598号等に示されて
いる。
2. Description of the Related Art Generally, for example, in a dehydration process of a slurry in a sewage treatment plant, an organic polymer coagulant (hereinafter, simply referred to as polymer coagulant or simply coagulant) is added to the slurry,
After that, a dehydrated cake is obtained by a dehydrator, and the conventional method of adding a coagulant is described in JP-B-57-
No. 31932 and JP-A-60-25598.

【0003】特公昭57−31932号に記載の凝集剤
添加方法は、原汚泥(スラリー)の濃度を測定し、その
測定値に基いて汚泥の供給量と凝集剤の注入量を操作す
る制御を行う。
The coagulant addition method described in Japanese Patent Publication No. 57-31932 measures the concentration of raw sludge (slurry) and controls the sludge supply amount and coagulant injection amount based on the measured values. To do.

【0004】また特開昭60−25598号に記載の凝
集剤添加方法は、凝集剤の添加された状態にある凝集汚
泥の毛細管吸引時間(以下CSTと略称する)を測定
し、その時の凝集剤の添加量とCSTとの関係から、C
STの短くなる場合を最適値とし、これに係数を乗じて
添加量を決めるようにしている。
The method of adding a coagulant disclosed in JP-A-60-25598 is to measure the capillary suction time (hereinafter abbreviated as CST) of the coagulated sludge in the state where the coagulant is added, and the coagulant at that time is measured. From the relationship between the addition amount of CST and CST,
The optimum value is set when ST is shortened, and this is multiplied by a coefficient to determine the addition amount.

【0005】ところで、上記した原汚泥の濃度を測定す
る前者の方法では、原汚泥は濃縮槽を経て凝集剤の添加
工程に導かれるため、時間の経過と共に濃度の変動が生
じ、その結果必要とする凝集剤の添加量も変動すること
になるが、原汚泥の濃度に基づいて凝集剤の添加量が決
められていることから、適正な凝集剤注入量を制御する
ことができない場合がある。
By the way, in the former method of measuring the concentration of the raw sludge described above, since the raw sludge is guided to the coagulant addition step through the thickening tank, the concentration changes with the lapse of time, and as a result, it becomes necessary. The addition amount of the coagulant to be added will also vary, but since the addition amount of the coagulant is determined based on the concentration of the raw sludge, it may not be possible to control the appropriate coagulant injection amount.

【0006】一方、CSTを測定することにより凝集剤
の添加量を決める後者の方法では、凝集剤の添加量の増
加と共にCSTが低下する傾向を示し、一定の添加量を
越えるとCSTは増加する。CSTが小さいということ
は、汚泥フロックが大きく成長していることを意味し、
このことから、CSTが最小となるように凝集剤の添加
量を調整すれば良いことに疑いは無い。
On the other hand, in the latter method in which the amount of the coagulant added is determined by measuring the CST, the CST tends to decrease as the amount of the coagulant added increases, and the CST increases when the amount exceeds a certain level. .. A small CST means that the sludge flocs are growing large,
From this, there is no doubt that the addition amount of the aggregating agent may be adjusted so that the CST becomes the minimum.

【0007】しかし、この方法では凝集剤の添加された
状態中においてCSTの測定を行っていることから、試
料として採取する凝集汚泥中のフロック量が異なり、そ
のため計測データに大きなバラツキが生じ、凝集剤の添
加量を最適に制御することが難かしいという問題があ
る。
However, in this method, the CST is measured in the state where the coagulant is added, and therefore the amount of flocs in the coagulated sludge sampled is different, which causes a large variation in the measured data, resulting in coagulation. There is a problem that it is difficult to control the addition amount of the agent optimally.

【0008】例えば、某下水処理場において、凝集剤の
適正注入状態と、過剰注入状態とに分けて夫々凝集剤注
入後の凝集汚泥におけるCST(秒)の測定を同一の原
汚泥に対して複数回行ったところ、適正の注入状態では
[7.6秒、9.9秒、7.8秒、9.7秒、8.3
秒]の計測データが得られ、過剰の注入状態では[2
1.2秒、13.0秒、13.6秒、19.7秒、1
9.8秒]の計測データが得られ、適正注入状態及び過
剰注入状態とも計測データに大きなバラツキが生じた。
For example, at a certain sewage treatment plant, the CST (seconds) of the coagulant sludge after coagulant injection is divided into the proper coagulant injection state and the excessive coagulant injection state, and a plurality of CST (seconds) measurements are made for the same raw sludge. As a result of repeated times, in the proper injection state, [7.6 seconds, 9.9 seconds, 7.8 seconds, 9.7 seconds, 8.3 seconds].
Second] measurement data was obtained, and [2
1.2 seconds, 13.0 seconds, 13.6 seconds, 19.7 seconds, 1
9.8 seconds] was obtained, and large variations occurred in the measurement data in both the proper injection state and the excessive injection state.

【0009】また、予め汚泥のコロイド荷電量を測定
し、その値から汚泥の濃度及び汚泥性状の指標を求め、
これらの値に基づいて給泥量、凝集剤供給量、混和槽攪
拌強度、脱水時間、脱水圧力等の条件を最適値に制御す
る脱水制御方法(特開昭61−200899号)、汚泥
の粗浮遊物及びアニオン度、凝集剤のカチオン度を知る
ことによって凝集剤の添加率をこれら因子の一次関数で
表し添加率を決定する制御方法(特開昭62−1325
99号)等が提案されている。
Further, the amount of colloidal charge of sludge is measured in advance, and the index of sludge concentration and sludge property is obtained from the measured value.
A dehydration control method (Japanese Patent Laid-Open No. 61-200899) for controlling conditions such as the amount of sludge, the amount of coagulant supplied, the stirring strength of a mixing tank, the dehydration time, and the dehydration pressure to optimal values based on these values, and sludge coarse A control method for determining the addition ratio by expressing the addition ratio of the coagulant by a linear function of these factors by knowing the suspended solids, the anion content, and the cation content of the coagulant (JP-A-62-1325).
No. 99) has been proposed.

【0010】しかし、ここに掲げている汚泥のコロイド
電荷量、汚泥の粗浮遊物量、アニオン度、凝集剤のカチ
オン度、等の諸因子の測定には高度の物理的、化学的知
識並びに経験を要すると共に、その測定操作が複雑で結
果がでるまでに相当時間を必要とし、例えば下水処理場
等で初沈汚泥、余剰活性汚泥、消化汚泥を混合処理して
いる場合、混合比率が時々刻々変動しているため、これ
ら因子の値を用いて凝集剤の注入量を制御しようとする
と、どうしても後追いの制御になってしまうという欠点
がある。
However, in order to measure various factors such as the amount of colloidal charge of sludge, the amount of coarse sludge suspended in the sludge, the degree of anion, and the degree of cation of the flocculant, a high degree of physical and chemical knowledge and experience are required. In addition, the measurement operation is complicated and it takes a considerable amount of time to obtain a result.For example, when first sludge, excess activated sludge, and digested sludge are mixed in a sewage treatment plant, the mixing ratio fluctuates from moment to moment. Therefore, if it is attempted to control the injection amount of the coagulant by using the values of these factors, there is a disadvantage in that the control is inevitably followed.

【0011】[0011]

【発明が解決しようとする課題】本発明は、上記した問
題を解決し、スラリーに凝集剤を適正に添加して、脱水
ケーキの含水率を低くすることができるスラリーの脱水
制御方法及び装置を提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION The present invention solves the above problems and provides a slurry dewatering control method and apparatus capable of appropriately adding a flocculant to a slurry to lower the water content of the dehydrated cake. It is intended to be provided.

【0012】[0012]

【課題を解決するための手段】本発明の目的を実現する
スラリーの脱水制御方法の一例は、スラリーに高分子凝
集剤を添加した後に脱水処理するに際し、脱水ろ液の毛
細管吸引時間を逐次測定し、測定した毛細管吸引時間が
最小となるように高分子凝集剤のスラリーへの添加を調
整することを特徴とする。
One example of a method for controlling the dehydration of a slurry that achieves the object of the present invention is to successively measure a capillary suction time of a dehydrated filtrate during dehydration treatment after adding a polymer flocculant to a slurry. Then, the addition of the polymer coagulant to the slurry is adjusted so that the measured capillary suction time is minimized.

【0013】また本発明の目的を実現するスラリーの脱
水制御装置の一例は、スラリーに対して高分子凝集剤を
注入する凝集剤注入手段と、凝集剤の注入によって凝集
反応したスラリーを脱水する脱水手段を有するスラリー
の脱水系において、該脱水手段からの脱水ろ液の毛細管
吸引時間を計測する脱水ろ液毛細管吸引時間計測手段
と、該脱水ろ液毛細管吸引時間計測手段で計測した値に
基づいて凝集剤注入手段を制御し、凝集剤の注入量を制
御する制御手段とを有することを特徴とする。
Further, one example of a slurry dehydration control apparatus for realizing the object of the present invention is a dehydration apparatus for injecting a polymer coagulant into a slurry, and a dehydration for dehydrating the slurry which has undergone an aggregation reaction by injecting the coagulant. In the slurry dehydration system having means, based on the values measured by the dehydration filtrate capillary suction time measuring means for measuring the capillary suction time of the dehydration filtrate from the dehydrating means, and the dehydration filtrate capillary suction time measuring means And a control unit for controlling the coagulant injection unit and controlling the coagulant injection amount.

【0014】[0014]

【作用】上記した本発明のスラリーの脱水制御方法は、
脱水手段において排出された脱水ろ液には、通常脱水手
段により捕集しきれなかった微粒子がある程度含まれる
こともあるが、試料として採取する脱水ろ液は同一試料
間でそれほどバラツキがないので、この脱水ろ液の毛細
管吸引時間の値にもバラツキがなくなり、またろ液の毛
細管吸引時間が最小となる値が最適添加率であるという
ことから、極めて高精度に凝集剤を適正量スラリーに注
入することができ、スラリーを低含水率で脱水すること
ができる。
The above-described method for controlling the dehydration of the slurry of the present invention is
The dehydrated filtrate discharged in the dehydrating means may contain a certain amount of fine particles that cannot be normally collected by the dehydrating means, but the dehydrated filtrate collected as a sample does not vary so much between the same samples. Since there is no variation in the value of the capillary suction time of this dehydrated filtrate, and the value that minimizes the capillary suction time of the filtrate is the optimum addition rate, it is possible to extremely accurately inject the appropriate amount of flocculant into the slurry. The slurry can be dehydrated at a low water content.

【0015】また、上記した本発明のスラリー脱水制御
装置は、脱水ろ液の毛細管吸引時間を計測するという簡
単な構成により、高精度のスラリー脱水制御が行える。
Further, the above-described slurry dewatering control apparatus of the present invention can perform highly accurate slurry dewatering control with a simple structure of measuring the capillary suction time of the dewatered filtrate.

【0016】[0016]

【実施例】図1は本発明によるスラリーの脱水制御方法
を有効に実施することができる脱水制御装置の一実施例
を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a dehydration control device capable of effectively implementing the slurry dehydration control method according to the present invention.

【0017】1はスラリー貯槽で、例えば遠隔自動流量
調整可能に構成されたスラリーポンプ2によりスラリー
供給管3中を通して脱水手段4に送られる。ここで、脱
水手段4としては、真空脱水機、加圧脱水機、遠心分離
機、ベルトプレス型脱水機、スクリュープレス等が用い
られる。5はスラリー濃度測定手段で、スラリー供給管
3中のスラリー濃度を測定するようにしており、この濃
度測定手段の具体例については後述する。なお、該濃度
測定手段5は必要に応じて設けられるものであり、場合
によっては省略してもよい。
Reference numeral 1 denotes a slurry storage tank, which is sent to a dehydrating means 4 through a slurry supply pipe 3 by a slurry pump 2 which is constructed so that a remote automatic flow rate can be adjusted. Here, as the dehydrating means 4, a vacuum dehydrator, a pressure dehydrator, a centrifugal separator, a belt press type dehydrator, a screw press or the like is used. Reference numeral 5 denotes a slurry concentration measuring means for measuring the slurry concentration in the slurry supply pipe 3, and a specific example of this concentration measuring means will be described later. The concentration measuring means 5 is provided as needed and may be omitted in some cases.

【0018】6は凝集剤ポンプで、公知の有機高分子凝
集剤の収容されている凝集剤貯槽7内の凝集剤をスラリ
ー供給管3中に注入するが、注入箇所は濃度測定手段5
の配置されている箇所よりも下流側とし、濃度測定手段
は原汚泥を測定できるようにしている。凝集剤注入後の
スラリーは次いで凝集剤反応装置13内に導入され、該
凝集剤反応装置13内にてスラリーの凝集が行われ、汚
泥フロックが形成される。なお、脱水手段4の種類によ
っては、凝集剤反応装置13を省略することができる。
A coagulant pump 6 is used to inject the coagulant in the coagulant storage tank 7 containing a known organic polymer coagulant into the slurry supply pipe 3, and the injection point is the concentration measuring means 5.
It is located on the downstream side of the location where is placed, and the concentration measuring means can measure the raw sludge. The slurry after the coagulant is injected is then introduced into the coagulant reaction device 13, where the slurry is coagulated and sludge flocs are formed. The flocculant reaction device 13 may be omitted depending on the type of the dehydrating means 4.

【0019】汚泥フロックを含有する被脱水液を脱水手
段4に供給することにより、ろ液8と脱水ケーキ9とに
分離される。10はろ液CST測定手段で、脱水手段4
からのろ液8のCSTを測定する。ここで、ろ液8は脱
水手段4により捕集しきれなかった微粒子がある程度含
まれることもあるが、同一の試料間では測定するCST
にバラツキは少ないことになる。ここで、CSTの測定
原理については公知であるため詳述しないが、本実施例
では図2に示す装置により自動的にCSTの検出を行っ
ている。
By supplying a liquid to be dehydrated containing sludge flocs to the dehydrating means 4, the liquid 8 is separated into a filtrate 8 and a dehydrated cake 9. 10 is a filtrate CST measuring means, and a dehydrating means 4
The CST of filtrate 8 from is measured. Here, the filtrate 8 may contain a certain amount of fine particles that could not be collected by the dehydrating means 4, but the CST measured between the same samples
There will be little variation. Here, although the principle of CST measurement is well known, it will not be described in detail, but in the present embodiment, the apparatus shown in FIG. 2 automatically detects CST.

【0020】図2に示す装置は、ろ液8の入口管(不図
示)と出口管(不図示)とを有し、自動開閉制御される
弁体(不図示)により、ろ液8の自動貯留が行われるろ
液ポット121(周囲を外容器125で覆い、ろ液の散
逸が防止されている)内に、一対のろ紙抑え板108に
より把持されるろ紙102を所定の位置まで浸漬し、一
方のろ紙抑え板108に設けられている一対の電極10
9間まで、液がろ紙102を毛細管吸引現象により上昇
してきた時間を不図示の計時装置により計測し、これを
CST(秒)とする。計測後は、使用済みのろ紙は隣接
するろ紙廃棄ポット126内に廃棄されることになる。
ろ紙102は、ろ紙ホルダー101の積載板115上に
多数枚積載され、最上位置のろ紙が所定の位置に達した
ことをフォトセンサー117が検出するまで、エアシリ
ンダー114が駆動する。水平姿勢にある最上位置のろ
紙102は、吸引式の搬送機構により、ろ紙受け皿10
6に垂直姿勢に搬送され、一対のろ紙抑え板108によ
り把持可能としている。
The apparatus shown in FIG. 2 has an inlet pipe (not shown) and an outlet pipe (not shown) for the filtrate 8, and the valve body (not shown) controlled to automatically open and close the filtrate 8 automatically. The filter paper 102 gripped by the pair of filter paper presser plates 108 is dipped to a predetermined position in the filtrate pot 121 in which the storage is performed (the periphery is covered with the outer container 125 to prevent the dispersion of the filtrate), A pair of electrodes 10 provided on one filter paper restraining plate 108
The time during which the liquid has risen up the filter paper 102 by the capillary suction phenomenon up to 9 minutes is measured by a timing device (not shown), and this is designated as CST (second). After the measurement, the used filter paper is discarded in the adjacent filter paper discard pot 126.
A large number of filter papers 102 are stacked on the stacking plate 115 of the filter paper holder 101, and the air cylinder 114 is driven until the photo sensor 117 detects that the uppermost filter paper has reached a predetermined position. The filter paper 102 at the uppermost position in the horizontal posture is supplied to the filter paper tray 10 by the suction type transport mechanism.
6 is conveyed in a vertical posture and can be held by a pair of filter paper restraining plates 108.

【0021】この吸引式の搬送機構は、90度回動のア
クチュエータ105により回動するアーム119にエア
ーシリンダー104を取り付け、そのシリンダーロッド
103の先端に吸引部118を取り付けたもので、ろ紙
102はこの吸引部118により吸引保持され(ろ紙の
吸引反対面にフィルムを貼ることにより、高い気密性が
保持されて吸引保持性が良好に保たれる)、90°回動
されてろ紙受け皿106に搬送される。
In this suction type transport mechanism, an air cylinder 104 is attached to an arm 119 which is turned by a 90-degree turning actuator 105, and a suction portion 118 is attached to the tip of a cylinder rod 103 thereof. Suction is held by the suction unit 118 (high airtightness is maintained and suction holding property is kept good by sticking a film on the opposite side of the suction of the filter paper), and it is rotated 90 ° and conveyed to the filter paper tray 106. To be done.

【0022】一対のろ紙抑え板108は、一対のエアー
チャック板120に夫々取り付けられていて、アクチュ
エータ107へのエアー供給でろ紙102を把持するよ
うになっており、昇降用エアーシリンダー110の駆動
により昇降する。また昇降用エアーシリンダー110
は、ロッドレスエアーシリンダー等からなる水平スライ
ド軸112に沿って移動可能とし、ろ紙挟着位置、測定
位置及びろ紙廃棄位置の夫々に対応して設けられている
リミットスイッチ222、223、224により、該各
位置に自動停止するようになっている。このろ液CST
の測定は逐次一定時間毎に行われ、その測定結果を制御
手段(不図示)に送り、凝集剤ポンプ6による凝集剤の
注入量を制御する。
The pair of filter paper restraining plates 108 are attached to the pair of air chuck plates 120, respectively, so that the filter paper 102 can be gripped by supplying air to the actuator 107, and by driving the lifting air cylinder 110. Move up and down. In addition, the lifting air cylinder 110
Is movable along a horizontal slide shaft 112 composed of a rodless air cylinder or the like, and by limit switches 222, 223 and 224 provided corresponding to the filter paper sandwiching position, the measuring position and the filter paper discarding position, respectively. It automatically stops at each of the positions. This filtrate CST
Is sequentially performed at regular intervals, and the measurement result is sent to a control means (not shown) to control the coagulant injection amount by the coagulant pump 6.

【0023】なお、自動的に測定した脱水ろ液のCST
のデータは、従来例において示した場合と同じ条件で測
定したところ適正の注入状態では[7.2秒、7.8
秒、8.1秒、7.6秒、7.4秒]の計測データが得
られ、過剰の注入状態では[16.6秒、16.2秒、
15.1秒、15.1秒、15.7秒]の計測データが
得られた。
The CST of the dehydrated filtrate measured automatically
The data of [7] was measured under the same conditions as those shown in the conventional example, and [7.2 seconds, 7.8
Sec., 8.1 sec., 7.6 sec., 7.4 sec.] Was obtained, and [16.6 sec., 16.2 sec.
15.1 seconds, 15.1 seconds, 15.7 seconds] was obtained.

【0024】このことから、CSTは脱水ろ液について
計測することがバラツキが非常に少なく、計測データに
高信頼性が得られると言える。
From this, it can be said that the CST has very little variation in measurement of the dehydrated filtrate, and the measurement data has high reliability.

【0025】凝集剤の最適添加量(率)を制御する上記
の制御手段は、スラリー濃度測定手段5からのスラリー
濃度情報、スラリー供給量、凝集剤濃度及び凝集剤ポン
プ6による凝集剤注入量が入力され、この凝集剤注入量
を増減させ、その時の各々のろ液CST値の前後関係を
比較することによって、CST値を最小にする凝集剤の
注入量を求める。
The above-mentioned control means for controlling the optimum addition amount (rate) of the coagulant includes the slurry concentration information from the slurry concentration measuring means 5, the slurry supply amount, the coagulant concentration and the coagulant injection amount by the coagulant pump 6. The coagulant injection amount that minimizes the CST value is obtained by increasing or decreasing the coagulant injection amount that has been input and comparing the front and rear relationships of the respective filtrate CST values at that time.

【0026】また、スラリー濃度の値より添加率も下記
式より同時に求められる。
Further, the addition rate can also be obtained from the slurry concentration value at the same time by the following formula.

【0027】添加率=(凝集剤注入量×凝集剤濃度)÷
(スラリー供給量×スラリー濃度)×100 これらの値は記憶手段(不図示)に記憶し、以降の制御
に用いられる。
Addition rate = (Coagulant injection amount × Flocculant concentration) ÷
(Slurry supply amount × slurry concentration) × 100 These values are stored in a storage unit (not shown) and used for subsequent control.

【0028】このようにして記憶したデータ等に基づい
て得られた、ろ液CSTと凝集剤添加率との関係、凝集
剤添加率(対TS、なおTSとはスラリー中の全固形物
含有量のことである)とケーキ含水率との関係の一例を
図3に示す。図3は某下水処理場のスラリーを対称にし
て得たデータであり、図3の(A)に示すろ液CSTと
凝集剤添加率との関係を示す図は、凝集剤添加率が0.
75%付近においてろ液CSTが最も小さくなってお
り、また図3の(B)に示す凝集剤添加率(対TS)と
ケーキ含水率との関係を示す図においては、やはり凝集
剤添加率が0.75%付近においてケーキ含水率が最も
少ないものとなっている。
The relationship between the filtrate CST and the coagulant addition rate obtained based on the data stored in this way, the coagulant addition rate (against TS, where TS is the total solid content in the slurry) 3) and the cake water content are shown in FIG. FIG. 3 shows data obtained by symmetrically arranging the slurry of a certain sewage treatment plant. The graph showing the relationship between the filtrate CST and the coagulant addition rate shown in FIG.
The filtrate CST is the smallest at around 75%, and in the graph showing the relationship between the coagulant addition rate (against TS) and the cake water content shown in (B) of FIG. The water content of the cake is the lowest around 0.75%.

【0029】したがって、ろ液CSTが最小となる凝集
剤添加率とケーキ含水率が最小となる凝集剤添加率とは
略一致し、かつ両関係曲線はその形状においても極めて
類似していることがわかる。
Therefore, the coagulant addition rate at which the filtrate CST is minimized and the coagulant addition rate at which the cake water content is minimized are substantially the same, and both relationship curves are also very similar in their shapes. Recognize.

【0030】次に本実施例の制御動作について説明する
と、先ず供給汚泥に適当量の凝集剤を添加し、脱水手段
4により脱水を開始する。脱水によって脱水手段4から
排出されるろ液8のCSTをろ液CST測定手段10に
より測定し、その測定値を前記の制御手段に記憶させ
る。
Next, the control operation of this embodiment will be described. First, an appropriate amount of coagulant is added to the supplied sludge, and the dehydration means 4 starts dehydration. The CST of the filtrate 8 discharged from the dehydrating means 4 by dehydration is measured by the filtrate CST measuring means 10, and the measured value is stored in the control means.

【0031】次に、凝集剤の添加量を若干増加させて一
定時間経過後、再び同様の測定によりろ液CST値を求
め、今回の値が前回の値より大きい場合は凝集剤添加量
を増加させたにもかかわらずろ液CST値が増大してい
るので、最適添加率より過剰に添加されていると判断す
る。したがって、この場合は凝集剤の添加量を減少して
いく。
Next, after slightly increasing the addition amount of the coagulant and after a certain period of time, the filtrate CST value is obtained again by the same measurement. If the present value is larger than the previous value, the coagulant addition amount is increased. Although the CST value of the filtrate was increased despite the fact that it was carried out, it is judged that the filtrate was added in excess of the optimum addition rate. Therefore, in this case, the addition amount of the coagulant is reduced.

【0032】一方、凝集剤の添加量(率)を減少させて
いる状態で、今回のろ液CST値が前回のろ液CST値
よりも大きくなった場合は、凝集剤の添加量を減少させ
ることにより今回のろ液CST値が大きくなったので凝
集剤不足と判断し、凝集剤の添加量(率)を増加させ
る。このようにして一定時間毎のろ液CST値を測定
し、この値が最小となるように凝集剤の注入量を制御す
ることにより、凝集剤を最適添加率において注入するこ
とができる。
On the other hand, if the present filtrate CST value becomes larger than the previous filtrate CST value while the coagulant addition amount (rate) is being decreased, the coagulant addition amount is decreased. As a result, the CST value of the filtrate this time has increased, so it is determined that the coagulant is insufficient, and the addition amount (rate) of the coagulant is increased. In this way, the coagulant can be injected at the optimum addition rate by measuring the filtrate CST value at regular intervals and controlling the injection amount of the coagulant so that this value is minimized.

【0033】ここで、凝集剤の供給量を全くでたらめな
量から始めるような制御方式とすると、最適値となるま
で時間がかかり、その間の脱水処理も効率の悪いものと
なるので、処理するスラリーの性状、凝集剤の種類等に
応じて予め凝集剤のスラリーに対する添加量を凝集テス
ト等によって大体決めておけば、短時間で最適状態での
制御が得られる。
Here, if a control system is adopted in which the supply amount of the coagulant is started from a completely random amount, it takes time to reach the optimum value, and the dehydration treatment during that time becomes inefficient, so the slurry to be treated is inefficient. If the amount of the coagulant to be added to the slurry is determined in advance by a coagulation test or the like according to the properties of the above, the type of coagulant, etc., control in an optimum state can be obtained in a short time.

【0034】なお、脱水ケーキの含水率と凝集剤の添加
率との関係は、図3の(B)に示すように2次曲線を描
くが、この図からわかるように、脱水ケーキの含水率の
最小値の前後の範囲内において凝集剤の添加率が若干変
化しても、得られるケーキの含水率はそれ程極端に高く
はならない。
The relationship between the water content of the dehydrated cake and the addition rate of the coagulant is represented by a quadratic curve as shown in FIG. 3B. As can be seen from this figure, the water content of the dehydrated cake is Even if the addition rate of the coagulant changes slightly within the range around the minimum value of, the water content of the obtained cake does not become extremely high.

【0035】したがって、凝集剤の使用量を極力節約し
たいような場合には、得られる脱水ケーキの含水率があ
まり高くならないような範囲内において、上記最適添加
率よりも多少少ない添加率で脱水手段を運転してもよ
い。上記範囲は、ろ液CSTが最小となる凝集剤の添加
率に対して略0.7〜1.0の定数を乗じた添加率であ
る。
Therefore, in the case where it is desired to save the amount of the coagulant used as much as possible, the dehydration means is added at a slightly lower addition rate than the above-mentioned optimum addition rate within a range in which the water content of the obtained dehydrated cake does not become too high. You may drive. The above range is the addition rate obtained by multiplying the addition rate of the coagulant that minimizes the filtrate CST by a constant of approximately 0.7 to 1.0.

【0036】図1におけるスラリーの濃度を検出するス
ラリー濃度検出手段5としては、重量法、泡消去法、誘
電率法等を用いた手段が知られている。ところで、通常
スラリーの脱水施設においては、スラリーの濃度は時間
変動、曜日変動、季節変動等があり、このスラリーの濃
度変動に対応して有機高分子凝集剤の量も増減しなけれ
ば最良の脱水ケーキ含水率は得られない。
As the slurry concentration detecting means 5 for detecting the concentration of the slurry in FIG. 1, means using a gravimetric method, a bubble elimination method, a dielectric constant method, etc. is known. By the way, in a normal slurry dehydration facility, the concentration of the slurry varies with time, day of the week, seasonal variation, etc., and if the amount of the organic polymer coagulant does not increase or decrease in response to the variation in the concentration of the slurry, the best dehydration is possible. No cake water content is obtained.

【0037】しかし、上述の濃度検出手段のうち、重量
法は正確な濃度測定が行えるものの、濃度の検出に長時
間を要し、また泡消去法、誘電率法は検出値にバラツキ
が多く、瞬時の対応には不向きであった。そのため、瞬
時の検出を可能とし、検出値にバラツキが少ない濃度検
出手段を用いることが望ましい。
However, among the above-mentioned concentration detecting means, although the gravimetric method can accurately measure the concentration, it takes a long time to detect the concentration, and the bubble elimination method and the dielectric constant method have many variations in the detected value. It was not suitable for immediate response. Therefore, it is desirable to use the concentration detecting means that enables the instantaneous detection and has a small variation in the detected value.

【0038】このような要求を満足するスラリー濃度を
測定する濃度測定装置としては以下に説明するものがあ
る。
The concentration measuring device for measuring the concentration of the slurry satisfying such requirements is described below.

【0039】すなわち、スラリーの性状を表す因子とし
て、温度、粘度、電気伝導率、水素イオン濃度(P
H)、粒度分布、アニオン度、CST等があるが、以下
に説明する測定装置は、この中で、スラリーの温度、粘
度、電気伝導率、CSTの各因子を適宜組み合わせてス
ラリー濃度を計算によって求めるようにしたものであ
り、以下の4通りの組み合わせの濃度測定装置である。
That is, as factors showing the properties of the slurry, temperature, viscosity, electric conductivity, hydrogen ion concentration (P
H), particle size distribution, anion degree, CST, etc., but the measuring device described below calculates the slurry concentration by appropriately combining the respective factors of the temperature, viscosity, electric conductivity, and CST of the slurry. The density measuring device is obtained by the following four combinations.

【0040】(1)スラリーの温度、スラリーのCST (2)スラリーの温度、スラリーのCST、及びスラリ
ーの電気伝導率 (3)スラリーの温度、スラリーの粘度及びスラリーの
電気伝導率 (4)スラリーの温度、スラリーの粘度、スラリーの電
気伝導率、スラリーのCST 上記の(1)に示す濃度測定装置は、図4に示すよう
に、例えばアルコール温度計、水銀温度計あるいは電気
的な温度計等の温度測定手段21で検出した温度データ
と、CST測定手段22、例えば図2に示した装置によ
り測定したCST値とを演算装置Aの変換器A−1に入
力し、演算器A−2により演算してスラリー濃度(S
C)を演算する。この演算された濃度は、濃度表示装置
(不図示)等に表示するため出力部A−3に出力され、
また例えば上記した凝集剤の初期添加率等を制御するた
めに制御部A−4に出力される。
(1) Temperature of slurry, CST of slurry (2) Temperature of slurry, CST of slurry, and electric conductivity of slurry (3) Temperature of slurry, viscosity of slurry and electric conductivity of slurry (4) Slurry Temperature, the viscosity of the slurry, the electrical conductivity of the slurry, the CST of the slurry, the concentration measuring device shown in (1) above, as shown in FIG. 4, for example, an alcohol thermometer, a mercury thermometer or an electric thermometer, etc. The temperature data detected by the temperature measuring means 21 and the CST measuring means 22, for example, the CST value measured by the device shown in FIG. 2 are input to the converter A-1 of the arithmetic unit A, and the arithmetic unit A-2 is used. Calculate the slurry concentration (S
C) is calculated. The calculated density is output to the output unit A-3 for display on a density display device (not shown) or the like,
Further, for example, it is output to the control unit A-4 in order to control the above-mentioned initial addition rate of the coagulant and the like.

【0041】演算器A−2は、スラリーの濃度(SC:
%)を目的変量、スラリーの温度(T:℃)とCST
(C:秒)を説明変量にとって、多変量解析を行うもの
で、本発明者等の研究によれば某下水処理場におけるス
ラリーについて SC=−2.02×10-2・T+1.34×10-2・C+2.08 (式1) なる式が得られた。
The calculator A-2 has a slurry concentration (SC:
%) Is the target variable, the temperature of the slurry (T: ° C) and CST
Multivariate analysis is performed using (C: second) as an explanatory variable. According to the study by the present inventors, the slurry in a certain sewage treatment plant is SC = −2.02 × 10 −2 · T + 1.34 × 10 An expression of −2 · C + 2.08 (Equation 1) was obtained.

【0042】したがって、図4における演算装置Aの演
算器A−2に、この式をインプットしておけば、温度情
報と、CST情報とにより略リアルタイムにスラリー濃
度を得ることができる。
Therefore, by inputting this equation into the calculator A-2 of the calculator A in FIG. 4, the slurry concentration can be obtained in substantially real time from the temperature information and the CST information.

【0043】図8は、上記した式1により計測したスラ
リー濃度(汚泥濃度計算値)と、公知の重量法により計
測したスラリー濃度(汚泥濃度実測値)との関係を示す
図であり、図中破線で示した直線は上記両スラリー濃度
の相関関係を示したものである。本実施例による濃度測
定装置は略実測値に近い計測精度を得ることができた。
FIG. 8 is a diagram showing the relationship between the slurry concentration (calculated value of sludge concentration) measured by the above equation 1 and the slurry concentration (measured value of sludge concentration) measured by a known gravimetric method. The straight line shown by the broken line shows the correlation between the two slurry concentrations. The concentration measuring device according to the present embodiment was able to obtain the measurement accuracy close to the actual measurement value.

【0044】図5は、上記の(2)に示すスラリー濃度
測定装置のブロック図を示すもので、図4に示す濃度測
定装置に、さらに電気伝導率測定手段23を設け、スラ
リー濃度を目的変量とし、スラリー温度、スラリーCS
Tと共に、スラリーの電気伝導率(EC :μs/cm)
を説明変量とし、多変量解析により求めた式により、上
記の(1)の濃度測定装置と同様にスラリー濃度を得る
ようにしている。スラリーの電気伝導率(EC )は、公
知の電気伝導度計により行い、この値がスラリー温度情
報及びスラリーCSTと共に演算装置Aに入力される。
演算装置Aには、多変量解析により求めた式2がインプ
ットされており、入力された情報に基づきスラリー濃度
(SC)を演算する。
FIG. 5 is a block diagram of the slurry concentration measuring device shown in the above (2). The concentration measuring device shown in FIG. 4 is further provided with an electric conductivity measuring means 23 to change the slurry concentration to a target variable. , Slurry temperature, slurry CS
Along with T, the electrical conductivity of the slurry (E C : μs / cm)
Is used as the explanatory variable, and the slurry concentration is obtained in the same manner as in the concentration measuring device of (1) above by the formula obtained by the multivariate analysis. The electric conductivity (E C ) of the slurry is measured by a known electric conductivity meter, and this value is input to the arithmetic unit A together with the slurry temperature information and the slurry CST.
Equation 2 obtained by multivariate analysis is input to the arithmetic unit A, and the slurry concentration (SC) is calculated based on the input information.

【0045】ここで、上記した式1と同じスラリーに対
し、本実施例では下記の式2が多変量解析により得られ
た。
Here, with respect to the same slurry as the above formula 1, the following formula 2 was obtained by multivariate analysis in this example.

【0046】 SC=2.02×10-2・T−1.40×10-3C +1.14×10-2・C+5.81・・・・(式2) 図9は、図8と同様に汚泥濃度実測値に対する本実施例
による汚泥濃度測定装置の計測値を示す図で、図8に比
較して計測精度は向上している。
SC = 2.02 × 10 −2 · T−1.40 × 10 −3 E C + 1.14 × 10 −2 · C + 5.81 ... (Equation 2) FIG. 9 corresponds to FIG. Similarly, it is a diagram showing the measured value of the sludge concentration measuring device according to the present embodiment with respect to the actually measured value of sludge concentration, and the measurement accuracy is improved compared to FIG. 8.

【0047】上記の(3)に示す汚泥濃度測定装置は、
図6に示すように、上記した(3)の装置におけるスラ
リーCSTの情報に代え、スラリー粘度(N:Cp)を
スラリー温度及びスラリー電気伝導率と共に説明変量と
して用いており、公知の共軸二重円筒式回転粘度計等の
粘度測定手段24で検出したスラリーの粘度情報を、ス
ラリーの温度情報及び電気伝導率情報と共に演算装置A
に入力する。
The sludge concentration measuring device shown in (3) above is
As shown in FIG. 6, the slurry viscosity (N: Cp) is used as an explanatory variable together with the slurry temperature and the slurry electric conductivity, instead of the information on the slurry CST in the apparatus of (3), and the known coaxial axis is used. The viscosity information of the slurry detected by the viscosity measuring means 24 such as a heavy cylinder type rotary viscometer is used together with the temperature information and the electric conductivity information of the slurry, and the arithmetic unit A.
To enter.

【0048】ここで、上記した式1と同じスラリーに対
し、本実施例では下記の式3が多変量解析により得られ
た。
Here, for the same slurry as the above-mentioned formula 1, the following formula 3 was obtained by multivariate analysis in this example.

【0049】 SC=2.25×10-2・T+9.36×10-3N −4.50×10-4・EC +1.89・・・・(式3) 図10は、図8と同様に汚泥濃度実測値に対する本実施
例による汚泥濃度測定装置の計測値を示す図で、図9に
示す場合と比較して高濃度側での計測精度が向上してい
る。
SC = 2.25 × 10 −2 · T + 9.36 × 10 −3 N −4.50 × 10 −4 · E C +1.89 ... (Equation 3) FIG. 10 corresponds to FIG. Similarly, it is a diagram showing the measured value of the sludge concentration measuring device according to the present embodiment with respect to the actually measured value of sludge concentration, and the measurement accuracy on the high concentration side is improved compared to the case shown in FIG.

【0050】上記の(4)に示す汚泥濃度測定装置は、
図7に示すように、スラリーの温度、粘度、電気伝導率
及びCSTの情報を説明変量とし、多変量解析により得
られた式を演算装置Aの演算器A−2にインプットし、
これら4種のスラリー情報からスラリー濃度を検出す
る。
The sludge concentration measuring device shown in (4) above is
As shown in FIG. 7, the temperature, viscosity, electric conductivity and CST information of the slurry are used as explanatory variables, and the equation obtained by the multivariate analysis is input to the arithmetic unit A-2 of the arithmetic unit A,
The slurry concentration is detected from these four types of slurry information.

【0051】ここで、上記した式1と同じスラリーに対
し、本実施例では下記の式4が多変量解析により得られ
た。
Here, with respect to the same slurry as the above formula 1, the following formula 4 was obtained by multivariate analysis in this example.

【0052】 SC=2.68×10-2・T+8.47×10-3N−5.07×10-4・EC +7.49×10-3・C+1.86・・・・(式4) 本実施例では、上記した(1)〜(3)に示す各実施例
に比べ、図11に示すように、低濃度から高濃度にかけ
てバラツキの非常に少ない測定ができた。
SC = 2.68 × 10 −2 · T + 8.47 × 10 −3 N−5.07 × 10 −4 · E C + 7.49 × 10 −3 · C + 1.86 ··· (Equation 4 In this example, as compared with each of the examples (1) to (3) described above, as shown in FIG. 11, it was possible to perform measurement with very little variation from low concentration to high concentration.

【0053】以上説明した制御方法は、基本的にはスラ
リーに対する凝集剤の添加量を、脱水ろ液のCST値の
みを指標として制御するというものであったが、別法と
して凝集剤を添加する前のスラリー自身のCST値と前
記脱水ろ液のCST値との両方のCST値を利用するこ
とによっても、凝集剤の添加量を最適に制御することが
可能である。以下これについて詳述する。
The control method described above basically controls the amount of the coagulant added to the slurry by using only the CST value of the dehydrated filtrate as an index. Alternatively, the coagulant is added. It is also possible to optimally control the addition amount of the coagulant by using the CST value of both the CST value of the previous slurry itself and the CST value of the dehydrated filtrate. This will be described in detail below.

【0054】図12はスラリーのCST値とろ液のCS
T値の両方を利用して、凝集剤の添加量を制御するスラ
リーの脱水制御装置の一実施例を示しており、脱水ろ液
のCSTを測定することは前述した図1に示す実施例と
同様である。
FIG. 12 shows the CST value of the slurry and the CS of the filtrate.
An example of a slurry dehydration control device that controls the addition amount of a coagulant by using both T values is shown, and measuring the CST of a dehydrated filtrate is the same as the example shown in FIG. It is the same.

【0055】11は図2に示す装置と同じ装置を用いた
スラリーのCST測定手段で、経時的に計測しているス
ラリーCST情報を凝集剤添加制御器12に出力する。
この制御器12には、図1の場合と同様に脱水ろ液のC
STを検出するCST測定手段10からのろ液CST情
報も入力され、これら両CST情報から後述するスラリ
ーCSTの減少率を演算し、これによって凝集剤ポンプ
6からスラリー供給管3に注入する凝集剤の注入量を制
御し、凝集反応装置13によりスラリーと凝集剤とを反
応させるようにしている。
Reference numeral 11 denotes a slurry CST measuring means using the same device as that shown in FIG. 2, and outputs slurry CST information measured over time to the flocculant addition controller 12.
As in the case of FIG. 1, the controller 12 contains C of the dehydrated filtrate.
The filtrate CST information from the CST measuring means 10 for detecting ST is also inputted, and the reduction rate of the slurry CST described later is calculated from both of these CST information, and thereby the coagulant injected from the coagulant pump 6 into the slurry supply pipe 3 is calculated. Is controlled so that the slurry reacts with the flocculant by the flocculation reaction device 13.

【0056】制御器12は、スラリーCSTの減少率を
演算し、このスラリーCSTの減少率が最大となるよう
に凝集剤ポンプ6を制御する。
The controller 12 calculates the reduction rate of the slurry CST and controls the coagulant pump 6 so that the reduction rate of the slurry CST becomes maximum.

【0057】ここで、スラリーのCST減少率(%)
は、 (スラリーのCST値−ろ液CST値)/スラリーのC
ST値×100 (式5) により求められ、例えば前記図3のデータを得たのと同
じスラリーに対して、凝集剤添加率との間において、図
13に示すような関係となる。
Here, the CST reduction rate (%) of the slurry
Is (CST value of slurry-CST value of filtrate) / C of slurry
ST value × 100 (Equation 5). For example, for the same slurry from which the data of FIG. 3 was obtained, the coagulant addition rate has the relationship shown in FIG.

【0058】図13において、スラリーCSTの減少率
は凝集剤添加率が0.75%付近において最大となって
おり、この添加率は図3(B)においてケーキ含水率が
最低となる添加率に略一致している。
In FIG. 13, the reduction rate of the slurry CST is the maximum when the coagulant addition rate is around 0.75%, and this addition rate is the addition rate at which the cake water content becomes the minimum in FIG. 3 (B). They are almost the same.

【0059】したがって、スラリー減少率が最大となる
ように凝集剤の添加率を制御すれば、脱水ケーキの含水
率が最小となり、効率の良い凝集剤添加制御が行える。
Therefore, if the coagulant addition rate is controlled so that the slurry reduction rate is maximized, the water content of the dehydrated cake is minimized, and efficient coagulant addition control can be performed.

【0060】本実施例の制御動作は、スラリーCST測
定手段11で検出したスラリーCSTが制御器12に入
力され、供給汚泥に凝集剤を添加し、脱水手段4により
ろ液8として排出されるまでの時間を待って、ろ液CS
T測定手段10によりろ液CSTを測定する。制御器1
2はスラリーCST値とろ液CST値とにより、上記の
式5からスラリーCSTの減少率を演算し、これを記憶
する。
The control operation of this embodiment is performed until the slurry CST detected by the slurry CST measuring means 11 is input to the controller 12, the coagulant is added to the supplied sludge, and the sludge is discharged as the filtrate 8 by the dehydrating means 4. Wait for the time, filtrate CS
The filtrate CST is measured by the T measuring means 10. Controller 1
2 calculates the reduction rate of the slurry CST from the above equation 5 based on the slurry CST value and the filtrate CST value, and stores this.

【0061】次に、凝集剤の添加量を若干増加させて一
定時間経過後、再び同様の測定、演算によりスラリーC
STの減少率を求め、前回の値と比較して、今回の値が
前回の値より小さい場合は、凝集剤を過剰に添加したに
もかかわらずスラリーCSTの減少率が低下しているの
で、最適添加率より過剰に添加されていると判断する。
したがって、この場合は、凝集剤の添加量を減少してい
く。一方、凝集剤の添加量(率)を減少させている状態
で、今回のスラリー減少率が前回のスラリー減少率より
も小さくなった場合、凝集剤の添加量を減少させること
により今回のスラリーCST減少率が小さくなったの
で、凝集剤不足と判断し、凝集剤の添加率を増加させ
る。このようにして一定時間毎のスラリーCST減少率
を演算し、この値が最大となるように凝集剤の注入量を
制御することにより、凝集剤を最適添加率において注入
することができる。
Next, the amount of the flocculant added was slightly increased, and after a certain period of time, the slurry C was again measured by the same measurement and calculation.
The reduction rate of ST is calculated, and compared with the previous value. When this value is smaller than the previous value, the reduction rate of slurry CST has decreased even though the coagulant was added excessively. It is judged that the amount added is in excess of the optimum addition rate.
Therefore, in this case, the amount of the coagulant added is reduced. On the other hand, if the slurry reduction rate of this time becomes smaller than the previous slurry reduction rate while the addition amount (rate) of the flocculant is decreased, the slurry CST of this time is reduced by reducing the addition amount of the flocculant. Since the reduction rate has become small, it is determined that the coagulant is insufficient, and the coagulant addition rate is increased. In this way, the slurry CST reduction rate is calculated at regular time intervals, and the coagulant injection amount is controlled so that this value becomes maximum, whereby the coagulant can be injected at the optimum addition rate.

【0062】なお本実施例では、スラリーCSTの測定
点とろ液CSTの測定点とに時間的差があるが、その間
の時間をずらして両CSTを測定したり、またその差を
無視することができる場合には同時に測定してもよい。
In this embodiment, there is a time difference between the measurement point of the slurry CST and the measurement point of the filtrate CST, but it is possible to measure both CSTs by shifting the time between them and to ignore the difference. If possible, you may measure simultaneously.

【0063】また、凝集剤の添加率を極力節約しようと
する場合には、上記の減少率最大値における添加率より
若干少ない添加率で運転制御させることも可能であり、
これは前述したろ液CST値のみに基づいた制御方法の
場合と同様である。
In order to save the addition rate of the coagulant as much as possible, it is possible to control the operation at an addition rate slightly smaller than the addition rate at the maximum reduction rate.
This is the same as the case of the control method based only on the filtrate CST value described above.

【0064】図14及び図15は毛細管吸引時間自動測
定装置の他の実施例を示す。
14 and 15 show another embodiment of the automatic capillary suction time measuring device.

【0065】本実施例の毛細管吸引時間自動測定装置
は、ターンテーブル上に回動可能に載置したロール状を
なす連続したろ紙301と、このろ紙301をセンサ装
置303によって一定量ずつ引き出すろ紙引き出し手段
302と、このろ紙引き出し手段302によって引き出
されたろ紙301を両側から抑え付けるろ紙挟持手段3
04と、このろ紙挟持手段304によって抑え付けられ
たろ紙301を所定寸法にカットするろ紙切断手段30
5と、前記ろ紙挟持手段304をなす一対のろ紙抑え板
306の一方の抑え面307に付設した3本の電極30
8A,308B,308Cと、前記ろ紙挟持手段304
を取付けた回動可能な支持アーム309と、この支持ア
ーム309を上下動させる昇降手段310と、この昇降
手段310によって上下動する前記カットされたろ紙3
01の下方位置に配置した被測定試料を容れる試料ポッ
ト311とから構成される。なお、312は測定終了後
のろ紙301を廃棄するろ紙廃棄ポットである。
The automatic capillary suction time measuring device of this embodiment is composed of a continuous roll-shaped filter paper 301 rotatably mounted on a turntable and a filter paper drawer for pulling out the filter paper 301 by a sensor device 303 in a fixed amount. A means 302 and a filter paper holding means 3 for holding the filter paper 301 pulled out by the filter paper pulling means 302 from both sides.
04 and a filter paper cutting means 30 for cutting the filter paper 301 held by the filter paper holding means 304 into a predetermined size.
5 and three electrodes 30 attached to one holding surface 307 of the pair of filter paper holding plates 306 forming the filter paper holding means 304.
8A, 308B, 308C and the filter paper holding means 304
A rotatable support arm 309 attached with the support arm 309, an elevating means 310 for vertically moving the support arm 309, and the cut filter paper 3 vertically moved by the elevating means 310.
01 and a sample pot 311 for containing the sample to be measured. A reference numeral 312 denotes a filter paper discard pot for discarding the filter paper 301 after the measurement.

【0066】先ず、本実施例で使用するろ紙301は、
図14に示すように連続したロール状をなしており、架
台313の上面に付設したターンテーブル314上にセ
ットされる。なお、図中の315はターンテーブル14
の中心軸、316はろ紙301の案内を兼ねたろ紙ホル
ダーである。
First, the filter paper 301 used in this embodiment is
As shown in FIG. 14, it is in the form of a continuous roll and is set on a turntable 314 attached to the upper surface of the pedestal 313. 315 in the figure is the turntable 14
A central axis 316 of the filter paper holder 316 also serves as a guide for the filter paper 301.

【0067】次に、ろ紙引き出し手段302は、ろ紙ホ
ルダー316の出ロ部317付近に付設され、たとえば
発光素子318Aと受光素子318Bとからなるセンサ
装置303によってロール状のろ紙301を一定量ずつ
引き出す作用をなす。図示する実施例のろ紙引き出し手
段302は、駆動ローラー319Aと、この駆動ローラ
ー319Aに適当な圧力で当接ずる押えローラー319
Bとからなっている。なお、駆動ローラー319Aは前
記センサ装置303の検出信号を受けて自動的に停止状
態となるステッピングモーターなどを駆動源(図示せ
ず)とするとよい。また、駆動ローラー319Aの所定
数の回転後にステッピングモーターが自動的に停止する
ようにしてもよく、あるいはこれとは別に前記ターンテ
ーブル314に固定された回転軸をプーリー及びVベル
トを介してステッピングモーターなどにより直接回転駆
動させるようにしてもよいものである。ろ紙の送り出し
が停止状態になると、この信号を受けてろ紙挟持手段3
04が作動し、ろ紙の両側を一対のろ紙抑え板306,
306によって抑え付ける。なお一対のろ紙抑え板30
6,306の離接用駆動装置は図示を省略してある。
Next, the filter paper pull-out means 302 is attached near the outlet portion 317 of the filter paper holder 316, and the roll-shaped filter paper 301 is pulled out by a predetermined amount by a sensor device 303 including, for example, a light emitting element 318A and a light receiving element 318B. Act. The filter paper pull-out means 302 of the illustrated embodiment is a drive roller 319A and a pressing roller 319 that abuts against the drive roller 319A with an appropriate pressure.
It consists of B and. Note that the drive roller 319A may use a stepping motor or the like that automatically stops when receiving a detection signal from the sensor device 303 as a drive source (not shown). Further, the stepping motor may be automatically stopped after the driving roller 319A is rotated a predetermined number of times, or separately from the stepping motor, the rotation shaft fixed to the turntable 314 is connected to the stepping motor via a pulley and a V-belt. For example, it may be directly driven to rotate. When the delivery of the filter paper is stopped, the filter paper holding means 3 receives this signal.
04 is activated, and a pair of filter paper restraining plates 306,
Hold down by 306. A pair of filter paper press plates 30
The separating / connecting drive devices 6, 306 are not shown.

【0068】次に、ろ紙切断手段305は、ろ紙引き出
し手段302と前記センサ装置303の間に付設され、
一定量のろ紙301の引き出し後に停止状態となったと
ころで、一対の切断刃によりろ紙301を所定寸法にカ
ットするものであり、通常はカットされたろ紙301が
短冊状となるようにカットするとよい(ろ紙カッターの
駆動部は図示せず)。なお、この切断にあたり、ろ紙3
01は前記したように一対のろ紙抑え板306,306
によって両側を挟持されているので、一対の切断刃によ
って正確にカットされるものであり、切断工程の終了後
においてもカットされた例えば短冊状のろ紙301はろ
紙挟持手段304によって抑え付けられたままとなって
いるものである。
Next, a filter paper cutting means 305 is attached between the filter paper drawing means 302 and the sensor device 303,
The filter paper 301 is cut into a predetermined size by a pair of cutting blades when the filter paper 301 is stopped after a certain amount of the filter paper 301 is pulled out. Usually, the cut filter paper 301 is cut into a strip shape ( The drive unit of the filter paper cutter is not shown). In addition, in this cutting, filter paper 3
01 is a pair of filter paper pressing plates 306, 306 as described above.
Since both sides are clamped by the pair of cutting blades, they are accurately cut by a pair of cutting blades. For example, the strip-shaped filter paper 301 cut after the cutting process is still held by the filter paper sandwiching means 304. Has become.

【0069】前記ろ紙挟持手段304をなす一対のろ紙
抑え板306,306の一方の抑え面には、先ず、同一
の高さ位置に一対の電極308A及び308Bが付設さ
れており、また電極308Aの真上に所定間隔離間して
電極308Cが付設されている。なお、短冊状のろ紙3
01を安定した状態で抑え付けるためろ紙の抑え面に
は、前記電極308Cの突設高さと同一高さで前記電極
308Bの真上にダミーの抑え突起322を突設してあ
る。また、当該抑え突起322の代わりに電極を付設し
てもよい。この電極308A,308B,308Cは図
示しない計時装置に電気的に接続されているのはいうま
でもない。
First, a pair of electrodes 308A and 308B are provided at the same height position on one holding surface of a pair of filter paper holding plates 306, 306 forming the filter paper holding means 304. An electrode 308C is provided directly above and spaced apart by a predetermined distance. In addition, strip-shaped filter paper 3
In order to hold 01 in a stable state, the holding surface of the filter paper is provided with a dummy holding protrusion 322 at the same height as the protruding height of the electrode 308C and directly above the electrode 308B. An electrode may be attached instead of the restraining protrusion 322. It goes without saying that the electrodes 308A, 308B, 308C are electrically connected to a timing device (not shown).

【0070】次に、前記ろ紙挟持手段304を先端部に
取付けた支持アーム309は、ステッピングモーターあ
るいは空気作動式ロータリーアクチュエーターのような
駆動装置320によって回動可能となっている。すなわ
ち、図示する実施例では駆動装置320の回転軸321
に支持アーム309が取付けてあり、駆動装置320が
運転を開始すると、支持アーム309がたとえば時計方
向に一定角度回動し、所定の位置にてリミットスイッチ
の作動により停止するものである。なお、この支持アー
ム309の回動に伴い短冊状のろ紙301を挟持したろ
紙挟持手段4も一緒に回動するのはいうまでもない。
Next, the support arm 309 to which the filter paper holding means 304 is attached at the front end can be rotated by a drive device 320 such as a stepping motor or an air-operated rotary actuator. That is, in the illustrated embodiment, the rotary shaft 321 of the drive device 320.
The support arm 309 is attached to the support arm 309, and when the drive device 320 starts operation, the support arm 309 rotates, for example, clockwise by a certain angle, and stops at a predetermined position by the operation of the limit switch. It goes without saying that the filter paper holding means 4 holding the strip-shaped filter paper 301 also rotates together with the rotation of the support arm 309.

【0071】前記支持アーム309を上下動させる昇降
手段310は、図示する実施例の場合、支持アーム30
9を回動させる駆動装置320自体を昇降動作させるエ
アシリンダーとなっているが、これをモーター駆動させ
るようにしてもよいものである。また、この昇降手段3
10によって上下動する前記カットされた短冊状のろ紙
301の下方位置には汚泥のような被測定試料を容れる
試料ポット311が用意されている。なお試料ポット3
11は図示する実施例の場合2基配設してあるが、これ
を1基のみとしてもよいのは勿論である。さらに、前記
支持アーム309が回動する円周域には前記試料ポット
311に隣接して使用済みろ紙の廃棄ポット312が配
設されている。
The lifting means 310 for moving the support arm 309 up and down is the same as the support arm 30 in the illustrated embodiment.
Although it is an air cylinder that raises and lowers the drive device 320 itself that rotates the motor 9, it may be driven by a motor. Also, the lifting means 3
A sample pot 311 containing a sample to be measured such as sludge is prepared below the cut strip-shaped filter paper 301 that moves up and down by 10. Sample pot 3
In the illustrated embodiment, two units 11 are provided, but it is of course possible to provide only one unit. Further, a waste pot 312 for the used filter paper is disposed adjacent to the sample pot 311 in the circumferential area in which the support arm 309 rotates.

【0072】次に、本実施例装置の使用例につき説明す
れば、架台313のターンテーブル314上にセットさ
れたロール状の連続したろ紙301は、ろ紙引き出し手
段302をなす駆動ローラー319Aが回転を始める
と、ろ紙ホルダー316の出ロ部317から徐々に引き
出されていく。そして、センサ装置303をなす発光素
子318Aと受光素子318Bの問まで引き出されてく
ると、センサ装置303からの検知信号によって駆動ロ
ーラー319Aの駆動源であるステッピングモーターが
運転を自動的に停止する。
Next, a description will be given of an example of use of the apparatus of this embodiment. In the continuous roll-shaped filter paper 301 set on the turntable 314 of the mount 313, the drive roller 319A forming the filter paper pull-out means 302 rotates. When started, the filter paper holder 316 is gradually pulled out from the outlet portion 317. When the light-emitting element 318A and the light-receiving element 318B forming the sensor device 303 are pulled out, the stepping motor, which is the drive source of the drive roller 319A, automatically stops the operation in response to the detection signal from the sensor device 303.

【0073】次いで、センサ装置303の手前に位置さ
せてあるろ紙挟持手段304をなす一対のろ紙抑え板3
06,306がその間隔をつめてきてろ紙301の両側
を抑え付ける。ろ紙挟持手段304によってろ紙301
が抑え付けられると、ろ紙切断手段305を作動させる
稼働装置が運転を開始し、一対の切断刃によってろ紙3
01を正確にカットする。ろ紙301が切断されると、
ろ紙挟持手段4を取付けた支持アーム309の駆動装置
320が運転を開始し、支持アーム309を図14の矢
印線に示すように時計方向に回動させ、試料ポット31
1のところで回動を自動的に停止する。短冊状のろ紙3
01は前記したようにろ紙挟持手段304をなすろ紙抑
え板306,306によって両側を挟持されていて支持
アーム309と一緒に回動し、このままの状態で試料ポ
ット311の真上に位置することとなる。
Next, a pair of filter paper pressing plates 3 forming filter paper sandwiching means 304 located in front of the sensor device 303.
06 and 306 close the gap and hold down both sides of the filter paper 301. The filter paper 301 by the filter paper sandwiching means 304
When the pressure is suppressed, the operating device that operates the filter paper cutting means 305 starts operating, and the filter paper 3 is moved by the pair of cutting blades.
Cut 01 exactly. When the filter paper 301 is cut,
The drive device 320 of the support arm 309 to which the filter paper holding means 4 is attached starts operation, and the support arm 309 is rotated clockwise as indicated by the arrow in FIG.
At 1, the rotation is automatically stopped. Strip-shaped filter paper 3
01 is sandwiched on both sides by the filter paper restraining plates 306, 306 forming the filter paper sandwiching means 304 as described above, and rotates together with the support arm 309, and is positioned directly above the sample pot 311 in this state. Become.

【0074】支持アーム309の回転が停止すると、今
度は昇降手段310が運転を開始し、支持アーム309
を、短冊状ろ紙301の下端部が試料ポット311内の
被測定試料、例えば汚泥中に一定深さまで浸漬するよう
一定距離下降させる。汚泥の中に一定の深さに入ったろ
紙301は吸液性を有しており、汚泥中の液分は毛細管
吸引現象によってろ紙301の上方に進んでいき、ろ紙
抑え板306の下部に付設した一対の電極308A,3
08Bに到る。電極308A,308Bに汚泥中の液分
が到達するとこれら両電極問が導通状態となり、計時装
置(図示せず)がカウントを開始する。また、汚泥中の
液分が更にろ紙301の上方に進んでいき、上部の電極
308Cに液分が到達するとカウントを停止する。
When the rotation of the support arm 309 is stopped, the raising / lowering means 310 starts its operation this time, and the support arm 309
Is lowered for a certain distance so that the lower end of the strip-shaped filter paper 301 is immersed in the sample to be measured in the sample pot 311 such as sludge to a certain depth. The filter paper 301 having a certain depth in the sludge has a liquid absorbing property, and the liquid component in the sludge advances above the filter paper 301 by the capillary suction phenomenon and is attached to the lower part of the filter paper restraining plate 306. Pair of electrodes 308A, 3
It reaches 08B. When the liquid content in the sludge reaches the electrodes 308A and 308B, these electrodes are brought into conduction, and a timing device (not shown) starts counting. Further, when the liquid component in the sludge further advances above the filter paper 301 and reaches the upper electrode 308C, the counting is stopped.

【0075】計時装置がカウントを開始してから停止す
るまでの時間は計時装置に記憶され、プリンター装置な
どによって出力させることができるものである。
The time from the start of counting to the stop of the timer is stored in the timer and can be output by a printer or the like.

【0076】なお、前記したダミーの抑え突起322の
代わりに電極を付設した場合は、汚泥中の液分が当該電
極あるいは前記した電極308Cのいずれか一方に到達
した時に計時装置のカウントを停止するように構成す
る。
When an electrode is provided instead of the dummy restraining protrusion 322, the counting of the timing device is stopped when the liquid component in the sludge reaches either the electrode or the electrode 308C. To configure.

【0077】測定が終了すると、昇降手段310が運転
を始め、ろ紙挟持手段304を取付けた支持アーム30
9を一定高さまで上昇させ、駆動装置320によってさ
らに支持アーム309を時計方向に回転させ、ろ紙廃棄
ポット312のところで停止させる。次いで、支持アー
ム309の先端部に付設してあるろ紙挟持手段304を
なすろ紙抑え板6,6を引き離して使用済みろ紙301
をろ紙廃棄ポット312内に落下させる。
When the measurement is completed, the elevating means 310 starts to operate and the supporting arm 30 to which the filter paper holding means 304 is attached.
9 is raised to a certain height, and the driving device 320 further rotates the support arm 309 in the clockwise direction and stops it at the filter paper waste pot 312. Next, the filter paper holding plates 6 and 6 forming the filter paper holding means 304 attached to the tip of the support arm 309 are pulled apart to remove the used filter paper 301.
Is dropped into the filter paper discard pot 312.

【0078】この一連の操作を終えると、支持アーム3
09は駆動装置320によって反時計方向に回転し、元
の位置まで戻って待機状態となるものである。
When this series of operations is completed, the support arm 3
Reference numeral 09 is a device that rotates counterclockwise by the drive device 320, returns to the original position, and enters a standby state.

【0079】なお、本実施例ではろ紙挟持手段をなす一
対のろ紙抑え板の一方の抑え面にのみ電極を付設した
が、例えば電極308A,308Bを一方の抑え面に付
設し、電極308Cを他方の抑え面に付設するようにし
てもよいし、更には一方の抑え面に本実施例と同様に3
本の電極を付設し、他方の抑え面にも当該3本の電極の
付設位置と相対する位置に同じく3本の電極を付設する
ようにしてもよい。
In this embodiment, the electrodes are provided only on one holding surface of the pair of filter paper holding plates forming the paper holding means. However, for example, the electrodes 308A and 308B are provided on one holding surface and the electrode 308C is provided on the other holding surface. It may be attached to the restraining surface of No. 3, or to one restraining surface in the same manner as in the present embodiment.
It is also possible to attach three electrodes and also attach three electrodes to the other restraining surface at positions opposite to the attachment positions of the three electrodes.

【0080】本実施例の毛細管吸引時問自動測定装置は
以上のような構成、作用からなり、従来のCST法によ
る毛細管吸引時問測定装置に伴う不具合点を解消するこ
とができるものである。特に、連続したロール状の吸液
性ろ紙を用い、これを所定寸法にカットして測定を行う
ので、ろ紙補充の手間を大幅に省くことができる共に、
全工程を自動化したので、きわめて能率良く測定作業を
行うことができるものである。
The automatic device for measuring capillary suction time according to the present embodiment has the above-described structure and operation, and can solve the problems associated with the conventional device for measuring capillary suction time by the CST method. In particular, a continuous roll of absorbent filter paper is used, and this is cut into a predetermined size for measurement, so that the time and effort of filter paper replenishment can be greatly saved,
Since all the processes are automated, the measurement work can be performed very efficiently.

【0081】[0081]

【発明の効果】以上説明したように、本発明によれば、
計測精度の高いろ液のCSTを測定し、この値に基づい
て凝集剤のスラリーへの注入量を制御するので、含水率
の最も低い状態で過剰添加のない最適な凝集剤添加状態
でスラリーの脱水を行わせることができる。
As described above, according to the present invention,
The CST of the filtrate with high measurement accuracy is measured, and the injection amount of the flocculant into the slurry is controlled based on this value. Therefore, the slurry with the optimum flocculant addition state without excessive addition in the state of the lowest water content is used. Dehydration can be performed.

【0082】また、ろ液のCSTと共にスラリーのCS
Tを制御に利用することにより、最適な凝集剤注入制御
が行えることに加えてスラリーの濃度変化等のスラリー
性状の変化を常時監視することができるという効果も得
られる。
Also, the CS of the slurry along with the CST of the filtrate
By using T for control, it is possible to obtain the effect that optimum coagulant injection control can be performed, and that changes in slurry properties such as changes in slurry concentration can be constantly monitored.

【0083】さらに、ろ液のCSTを測定するという簡
単な構成により、あるいはせいぜいこれにスラリーのC
ST測定という構成を付加することにより高精度の凝集
剤注入制御が行える。
In addition, the CST of the slurry can be measured by a simple structure in which the CST of the filtrate is measured, or at most.
By adding the structure of ST measurement, highly accurate coagulant injection control can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるスラリーの脱水制御装置の一実施
例を示すブロック図。
FIG. 1 is a block diagram showing an embodiment of a slurry dehydration control device according to the present invention.

【図2】ろ液CST測定装置の斜視図。FIG. 2 is a perspective view of a filtrate CST measuring device.

【図3】ろ液CSTと凝集剤添加率(A)、ケーキ含水
率と凝集剤添加率(B)との関係を示す図。
FIG. 3 is a diagram showing a relationship between a filtrate CST and a coagulant addition rate (A), and a cake water content and a coagulant addition rate (B).

【図4】濃度測定装置のブロック図。FIG. 4 is a block diagram of a concentration measuring device.

【図5】濃度測定装置のブロック図。FIG. 5 is a block diagram of a concentration measuring device.

【図6】濃度測定装置のブロック図。FIG. 6 is a block diagram of a concentration measuring device.

【図7】濃度測定装置のブロック図。FIG. 7 is a block diagram of a concentration measuring device.

【図8】汚泥濃度計算値と汚泥濃度実測値との関係を示
す図。
FIG. 8 is a diagram showing a relationship between a calculated sludge concentration value and an actually measured sludge concentration value.

【図9】汚泥濃度計算値と汚泥濃度実測値との関係を示
す図。
FIG. 9 is a diagram showing a relationship between a calculated sludge concentration value and an actually measured sludge concentration value.

【図10】汚泥濃度計算値と汚泥濃度実測値との関係を
示す図。
FIG. 10 is a diagram showing a relationship between a calculated sludge concentration value and an actually measured sludge concentration value.

【図11】汚泥濃度計算値と汚泥濃度実測値との関係を
示す図。
FIG. 11 is a diagram showing a relationship between a calculated sludge concentration value and an actually measured sludge concentration value.

【図12】本発明によるスラリーの脱水制御装置の他の
実施例を示すブロック図。
FIG. 12 is a block diagram showing another embodiment of the slurry dehydration control device according to the present invention.

【図13】スラリーCST減少率と凝集剤添加率との関
係を示す図。
FIG. 13 is a diagram showing a relationship between a slurry CST reduction rate and a coagulant addition rate.

【図14】毛細管吸引時間自動測定装置の他の実施例を
示す平面図。
FIG. 14 is a plan view showing another embodiment of the automatic capillary suction time measuring device.

【図15】図14に示す装置の正面図。FIG. 15 is a front view of the device shown in FIG.

【符号の説明】[Explanation of symbols]

1…スラリー貯槽 7…凝集剤貯
槽 2…スラリーポンプ 8…ろ液 3…スラリー供給管 9…脱水ケー
キ 4…脱水手段 10…ろ液C
ST測定手段 5…スラリー濃度測定手段 11…スラリ
ーCST測定手段 6…凝集剤ポンプ 12…制御器
DESCRIPTION OF SYMBOLS 1 ... Slurry storage tank 7 ... Flocculant storage tank 2 ... Slurry pump 8 ... Filtrate 3 ... Slurry supply pipe 9 ... Dehydration cake 4 ... Dehydration means 10 ... Filtrate C
ST measuring means 5 ... Slurry concentration measuring means 11 ... Slurry CST measuring means 6 ... Flocculant pump 12 ... Controller

フロントページの続き (72)発明者 岡崎 登 東京都練馬区上石神井3丁目19番7−108 号 (72)発明者 赤松 幸三郎 千葉県船橋市旭町676番地32号 (72)発明者 林 知幸 埼玉県戸田市川岸1丁目4番9号 オルガ ノ株式会社総合研究所内 (72)発明者 楠見 知彦 埼玉県戸田市川岸1丁目4番9号 オルガ ノ株式会社総合研究所内Front page continuation (72) Inventor Noboru Okazaki 3-19-7-108 Kamiishakuji, Nerima-ku, Tokyo (72) Inventor Kozaburo Akamatsu 676 32-32, Asahimachi, Funabashi, Chiba (72) Inventor Tomoyuki Hayashi Saitama Pref. 1-4-9 Kawagishi, Toda City, Tochigi Prefecture Organo Research Institute (72) Inventor Tomohiko Kusumi 1-4-9, Kawagishi, Toda City Toda City, Saitama Pref. Organo Research Institute

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 スラリーに高分子凝集剤を添加した後に
脱水処理するに際し、脱水ろ液の毛細管吸引時間を逐次
測定し、測定した毛細管吸引時間が最小となるように高
分子凝集剤のスラリーへの添加を調整することを特徴と
するスラリーの脱水制御方法。
1. When adding a polymer coagulant to the slurry and then performing a dehydration treatment, the capillary suction time of the dehydrated filtrate is sequentially measured, and a slurry of the polymer coagulant is added so that the measured capillary suction time is minimized. A method for controlling dehydration of a slurry, which comprises adjusting the addition of water.
【請求項2】 請求項1において、被処理スラリーの脱
水ろ液の毛細管吸引時間が最小となる高分子凝集剤の添
加率に対して、0.7〜1.0の定数を乗じて高分子凝
集剤のスラリーへの添加を調整することを特徴とするス
ラリーの脱水制御方法。
2. The polymer according to claim 1, wherein the addition ratio of the polymer flocculant that minimizes the capillary suction time of the dehydrated filtrate of the slurry to be treated is multiplied by a constant of 0.7 to 1.0. A method for controlling the dehydration of a slurry, which comprises adjusting the addition of a flocculant to the slurry.
【請求項3】 スラリーに高分子凝集剤を添加した後に
脱水処理するに際し、スラリーの毛細管吸引時間及び脱
水ろ液の毛細管吸引時間を夫々逐次計測し、スラリーの
毛細管吸引時間と脱水ろ液の毛細管吸引時間とからスラ
リーの毛細管吸引時間の減少率を演算し、毛細管吸引時
間の減少率が最大となるように高分子凝集剤の添加を調
整することを特徴とするスラリーの脱水制御方法。
3. A capillary suction time of the slurry and a capillary suction time of the dehydrated filtrate are sequentially measured in the dehydration treatment after adding the polymer coagulant to the slurry, and the capillary suction time of the slurry and the capillary suction of the dehydrated filtrate are sequentially measured. A method for controlling dehydration of slurry, which comprises calculating a reduction rate of a capillary suction time of a slurry from a suction time and adjusting the addition of a polymer coagulant so that the reduction rate of the capillary suction time is maximized.
【請求項4】 スラリーに対して高分子凝集剤を注入す
る凝集剤注入手段と、凝集剤の注入によって凝集反応し
たスラリーを脱水する脱水手段を有するスラリーの脱水
系において、 該脱水手段からの脱水ろ液の毛細管吸引時間を計測する
脱水ろ液毛細管吸引時間計測手段と、該脱水ろ液毛細管
吸引時間計測手段で計測した値に基づいて凝集剤注入手
段を制御し、凝集剤の注入量を制御する制御手段とを有
することを特徴とするスラリーの脱水制御装置。
4. A dehydration system for a slurry, comprising a coagulant injecting means for injecting a polymer coagulant into a slurry and a dehydrating means for dehydrating the slurry which has undergone an agglutination reaction by injecting the coagulant. Dehydration filtrate capillary suction time measuring means for measuring the capillary suction time of the filtrate, and controlling the coagulant injecting means based on the value measured by the dehydration filtrate capillary suction time measuring means to control the coagulant injection amount. And a control means for controlling the dewatering of the slurry.
【請求項5】 スラリーに対して高分子凝集剤を注入す
る凝集剤注入手段と、凝集剤の注入によって凝集反応し
たスラリーを脱水する脱水手段を有するスラリーの脱水
系において、 スラリーの毛細管吸引時間を計測するスラリー毛細管吸
引時間計測手段と、脱水ろ液の毛細管吸引時間を計測す
る脱水ろ液毛細管吸引時間計測手段と、該両毛細管吸引
時間計測手段からの計測値に基づき該凝集剤注入手段を
制御して凝集剤の注入量を制御する制御手段とを有し、
該制御手段はスラリー毛細管吸引時間と脱水ろ液毛細管
吸引時間とからスラリー毛細管吸引時間の減少率を逐次
演算し、この値に基づいて凝集剤の注入を制御すること
を特徴とするスラリーの脱水制御装置。
5. A slurry suction system comprising a flocculant injecting means for injecting a polymer flocculant into the slurry and a dehydrating means for dehydrating the slurry which has undergone an agglutination reaction by injecting the flocculant Slurry capillary suction time measuring means for measuring, dehydrated filtrate capillary suction time measuring means for measuring capillary suction time of dehydrated filtrate, and controlling the coagulant injecting means based on the measured values from both capillary suction time measuring means And a control means for controlling the injection amount of the coagulant,
The control means successively calculates the reduction rate of the slurry capillary suction time from the slurry capillary suction time and the dehydrated filtrate capillary suction time, and controls the injection of the flocculant based on this value, thereby controlling the dehydration of the slurry. apparatus.
JP4462892A 1991-11-29 1992-03-02 Slurry dewatering control method and apparatus Expired - Fee Related JP2937605B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US07/896,439 US5382356A (en) 1991-11-29 1992-06-10 Method and apparatus for controlling sludge dewatering
DE4234507A DE4234507A1 (en) 1991-11-29 1992-10-13 Controlling sludge removal from water - by using capillary suction time measurements to control amount of polyelectrolyte coagulant to be added

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3-316635 1991-11-29
JP31663591 1991-11-29

Publications (2)

Publication Number Publication Date
JPH05285500A true JPH05285500A (en) 1993-11-02
JP2937605B2 JP2937605B2 (en) 1999-08-23

Family

ID=18079236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4462892A Expired - Fee Related JP2937605B2 (en) 1991-11-29 1992-03-02 Slurry dewatering control method and apparatus

Country Status (1)

Country Link
JP (1) JP2937605B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100736513B1 (en) * 2006-12-29 2007-07-06 효성에바라엔지니어링 주식회사 A suction pressure/time detector by batch type for water supply and a treating method of water using the same
KR100736514B1 (en) * 2006-12-29 2007-07-06 효성에바라엔지니어링 주식회사 A suction pressure/time detector by continuous type for water supply and a treating method of water using the same
JP2016061078A (en) * 2014-09-18 2016-04-25 栗田工業株式会社 Dust prevention processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100736513B1 (en) * 2006-12-29 2007-07-06 효성에바라엔지니어링 주식회사 A suction pressure/time detector by batch type for water supply and a treating method of water using the same
KR100736514B1 (en) * 2006-12-29 2007-07-06 효성에바라엔지니어링 주식회사 A suction pressure/time detector by continuous type for water supply and a treating method of water using the same
JP2016061078A (en) * 2014-09-18 2016-04-25 栗田工業株式会社 Dust prevention processing method

Also Published As

Publication number Publication date
JP2937605B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
US5382356A (en) Method and apparatus for controlling sludge dewatering
CN201331497Y (en) Permanganate index on-line automatic monitor device
JPH05285500A (en) Method and apparatus for controlling dehydration of slurry
US3731807A (en) Apparatus for automatically determining the optimum amounts of reagents to be added to a liquid for its clarification
US4576723A (en) Estimation of the degree of dispersion in flowing concentrated dispersions
US5620609A (en) Process and apparatus for dewatering controlled by monitoring light scattered by supernatant
CN111138004A (en) Coagulant adding control system and method
CN105668723B (en) Capacitor deionizing instrument, system and capacitive deionization method
US4116832A (en) Method and means for the automatic regulation of sludge extraction in sewage treatment apparatus
JP3741308B2 (en) Method for constant control of moisture content of cake and control device therefor
JPS6221599B2 (en)
CN214409016U (en) Sequencing batch type sewage sampling device and intelligent water quality monitoring system
CN108645766A (en) Sludge settling ratio online auto monitoring device
CN111672355B (en) Gypsum board production system
CN112798807A (en) Sequencing batch type sewage sampling device and intelligent water quality monitoring system
JPH06229919A (en) Method and apparatus for measuring water content of dehydrated cake
CN114162895A (en) Harmless printing and dyeing wastewater color removal device based on modified fly ash
CN219657579U (en) Quick digestion detection system for permanganate index
CN115127966B (en) Measuring device and measuring method for sludge sedimentation performance
CN110736774B (en) Electrodialysis foundation experiment standard test method
CN217425722U (en) Portable rainfall sensor automatic calibration device
CN106404775B (en) A kind of the Single wavelength autocontrol method and device of quick photometric titration
CN219915370U (en) Water quality detection device and water treatment system
CN221148647U (en) Online sea sand desalination detection device
CN117342654A (en) Sewage electrochemical circulating treatment device and treatment method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees