JPH05283881A - Superconductive magnetic shield container and its manufacture - Google Patents

Superconductive magnetic shield container and its manufacture

Info

Publication number
JPH05283881A
JPH05283881A JP4108398A JP10839892A JPH05283881A JP H05283881 A JPH05283881 A JP H05283881A JP 4108398 A JP4108398 A JP 4108398A JP 10839892 A JP10839892 A JP 10839892A JP H05283881 A JPH05283881 A JP H05283881A
Authority
JP
Japan
Prior art keywords
phase
low
film
base material
magnetic shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4108398A
Other languages
Japanese (ja)
Other versions
JP2604665B2 (en
Inventor
Atsushi Koike
淳 小池
Hirobumi Odaka
博文 小高
Kazuhiko Kato
和彦 加藤
Kazutomo Hoshino
和友 星野
Yuji Yoshida
勇二 吉田
Michiya Yuyama
道也 湯山
Tadashi Inoue
廉 井上
Hiroshi Maeda
弘 前田
Yutaka Kamegawa
豊 亀川
Masayuki Suzuki
雅之 鈴木
Kiyoshi Nakayama
清 中山
Teruo Shimizu
輝夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
National Research Institute for Metals
Nippon Keiki Works Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
National Research Institute for Metals
Nippon Keiki Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, National Research Institute for Metals, Nippon Keiki Works Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP4108398A priority Critical patent/JP2604665B2/en
Publication of JPH05283881A publication Critical patent/JPH05283881A/en
Application granted granted Critical
Publication of JP2604665B2 publication Critical patent/JP2604665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To prevent exforiation from a base material by expansion of a high Tc phase or the drop of density and improve the critical current density of the high Tc phase by putting this container in laminate structure wherein the high-temperature phases and the low-temperature phases of bismuth oxide superconductors are stacked alternately after forming a base as occasion demands on the base material. CONSTITUTION:A film of Ag or the like is made as an undercoating material 2, on the periphery of a base material 1 such as an Ni allay cylinder, etc. Next, a low Tc-phase film 3 is made, and then a high Tc-phase film 4 is made, and the low Tc-phase film 3 formation and the high Tc-phase film formation are performed repeatedly, and a low Tc-phase film 3 is stacked at the outermost layer so as to manufacture a film. It is preferable that the low Tc-phase film 3 should be made right on an undercoating material 2 such as Ag, etc., made as desired on the base material 1 and that the low Tc-phase film 3 made also at the outermost layer. Since the high Tc-phase film is sandwiched by the low Tc-phase films, the expansion of the high Tc-phase at heat treatment is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基材上に77K以上の
臨界温度を有するBi系酸化物超電導体の高Tc相皮膜
と低Tc相皮膜とを積層させてなる超電導磁気シールド
容器及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnetic shield container in which a high Tc phase coating and a low Tc phase coating of a Bi-based oxide superconductor having a critical temperature of 77K or higher are laminated on a base material and a container thereof. It relates to a manufacturing method.

【0002】[0002]

【従来の技術およびその問題点】一般に、磁気シールド
には、能動的遮蔽と、受動的遮蔽とがあり、さらに受動
的な遮蔽には、強磁性遮蔽と超電導遮蔽とがあることは
周知であり、各々の磁気シールドの特性はそれぞれの特
徴を有している(小笠原「低温工学」Vol. 8.No.4,197
3.P135〜147参照)。これら磁気シールドのうち、強磁
性遮蔽は外部磁界を強磁性体、例えばパーマロイで取り
込んで、内部空間に磁場を侵入させないものであるのに
対して、超電導遮蔽は外部磁場を超電導体内に取り込ま
ずに、外部に向かって排除することにより、内部空間に
磁場を侵入させないもので、磁気シールド効果は強磁性
体よりも桁違いに大きい。すなわち、強磁性遮蔽には残
留磁化の存在からくる限界が有り、この限界を超えた領
域での磁気シールドには、超電導磁気シールドに待たな
ければならない。しかるに、例えばNb系の金属系超電
導体では、冷媒として液体ヘリウムを使用する必要があ
るので、磁気シールド施工にはコスト的に障壁があり、
超電導遮蔽は極く一部を除いて実用化されていない。
2. Description of the Related Art Generally, it is well known that magnetic shields include active shields and passive shields, and passive shields include ferromagnetic shields and superconducting shields. , Each magnetic shield has its own characteristics (Ogasawara “Cryogenics” Vol. 8.No.4,197)
3. See P135-147). Among these magnetic shields, the ferromagnetic shield takes in an external magnetic field with a ferromagnetic material, for example, permalloy, so that the magnetic field does not enter the internal space, whereas the superconducting shield does not take the external magnetic field into the superconductor. , By excluding it toward the outside, it prevents the magnetic field from penetrating into the internal space, and the magnetic shield effect is orders of magnitude greater than that of a ferromagnetic material. That is, the ferromagnetic shield has a limit due to the presence of residual magnetization, and the magnetic shield in a region exceeding this limit must wait for the superconducting magnetic shield. However, for example, in a Nb-based metal-based superconductor, since liquid helium needs to be used as a coolant, there is a cost barrier in the magnetic shield construction,
The superconducting shield has not been put to practical use except for a part.

【0003】しかるに、酸化物超電導体の磁気シールド
容器は液体窒素温度で使用できるので大きなメリットが
あり、注目されている。例えば、生体磁気計測や、電子
ビーム露光装置の磁気シールド等、大型の磁気シールド
体を酸化物超電導体で作製する場合、基材上に超電導層
を厚膜化するのが有利である。
However, the magnetic shield container of an oxide superconductor has a great merit because it can be used at the temperature of liquid nitrogen, and has been attracting attention. For example, when a large magnetic shield body such as a biomagnetism measurement or a magnetic shield of an electron beam exposure apparatus is made of an oxide superconductor, it is advantageous to make the superconducting layer thick on the base material.

【0004】一方、溶射法、特にプラズマ溶射法はBi
系酸化物やセラミックス等の皮膜を作製するには簡便な
方法で幅広く用いられている。一般に、これらBi系酸
化物として約100Kの高Tc相及び約90Kの低Tc
相が形成される。従来のプラズマ溶射法でBi系酸化物
の高Tc相の皮膜を形成する場合、溶射後の熱処理によ
り結晶化させて超電導特性を得るが、その際、高Tc相
の皮膜は結晶化過程で体積膨張を引き起こし、基材から
剥離し易く、また密度の低下が著しい。この密度低下は
熱サイクルによるヒートショック及び僅かな衝撃力によ
っても微細な割れを生じやすく、そのため磁気シールド
効果を著しく低下させる傾向が認められていた。従来、
この結晶化過程での臨界電流密度Jcを高めるととも
に、溶射後の熱処理過程での膨れによる密度低下を防ぐ
ため、皮膜面に垂直に荷重を加えて、再度の熱処理を行
う工程を行ってきた。この工程はシールド容器の形状が
大型化、複雑化するとコストを高め、実用化に大きな障
害となっていた。といって、低Tc相のみの皮膜では溶
射後の熱処理過程での膨れが無いもののTc及びJcが
十分でなく、液体窒素による間接冷却時に温度的余裕が
無く、クライオスタットの設計が困難となる。
On the other hand, the thermal spraying method, particularly the plasma spraying method, is Bi
It is widely used by a simple method to form a film of oxides and ceramics. Generally, these Bi-based oxides have a high Tc phase of about 100K and a low Tc of about 90K.
A phase is formed. When a high Tc phase coating of Bi-based oxide is formed by the conventional plasma spraying method, superconducting properties are obtained by crystallization by heat treatment after thermal spraying. At that time, the high Tc phase coating has a volume during the crystallization process. It causes swelling, easily peels from the substrate, and the density is remarkably reduced. It has been recognized that this decrease in density is likely to cause fine cracks due to heat shock due to heat cycle and a slight impact force, so that the magnetic shield effect tends to be significantly decreased. Conventionally,
In order to increase the critical current density Jc in the crystallization process and prevent density decrease due to swelling in the heat treatment process after thermal spraying, a process of performing a heat treatment again by applying a load perpendicular to the film surface has been performed. In this process, if the shape of the shield container becomes large and complicated, the cost increases, which is a major obstacle to practical use. However, with a coating containing only a low Tc phase, Tc and Jc are not sufficient although there is no swelling in the heat treatment process after thermal spraying, and there is no temperature margin during indirect cooling with liquid nitrogen, making it difficult to design the cryostat.

【0005】本発明は、溶射後の熱処理過程での高Tc
相の膨れによる基材からの剥離や密度の低下を防ぎ、こ
れにより高Tc相の臨界電流密度Jcを改善し、磁気シ
ールド容器の大型化を可能にした磁気シールド容器及び
その製造方法を提供することを目的とする。
The present invention has a high Tc in the heat treatment process after thermal spraying.
(EN) A magnetic shield container capable of preventing peeling from a base material and a decrease in density due to phase swelling, thereby improving the critical current density Jc of a high Tc phase, and increasing the size of the magnetic shield container, and a manufacturing method thereof. The purpose is to

【0006】[0006]

【課題を達成するための手段】本発明は、基材上に必要
に応じて下地層を形成した後、溶射法によりビスマス系
酸化物超電導体の高Tc相と低Tc相とを交互に積層さ
せた積層構造とすることにより、前記課題を解決したも
のである。
According to the present invention, an underlayer is formed on a base material if necessary, and then a high Tc phase and a low Tc phase of a bismuth oxide superconductor are alternately laminated by a thermal spraying method. The above-mentioned problems are solved by using such a laminated structure.

【0007】このような本発明において、前記低Tc相
はPb又はAg、あるいはこれら両元素を0.01〜
0.3モル比含むものであってもよい。例えば低Tc相
はBi:Sr:Ca:Cu=2:2:1:2(221
2)の組成比で表されるが、この組成に例えばPbを複
合化させ、Bi:Pb:Sr:Ca:Cu=2:0.
2:2:1:2とすることができる。このように複合化
することにより低Tc相を発現するための熱処理温度
を、通常の870℃から高Tc相の発現温度である84
0℃にまで低下させることができる。形成された高Tc
相と低Tc相の皮膜は同一温度の熱処理により両者とも
超電導特性を発現できる。さらに、前記元素を添加する
ことにより、例えば低Tc相の部分溶融温度を850℃
に低下させることができる。この場合、皮膜形成後の熱
処理で例えば低Tc相が部分溶融する温度に短時間保持
した後、高Tc相が超電導特性を発現する温度、例えば
830〜840℃で熱処理することができる。このよう
な熱処理を施すことにより、溶射された低Tc相皮膜は
部分溶融して高Tc相皮膜を挾み込み、高Tc相皮膜の
基材からの剥離を防ぎ、膨れを防止して膜の緻密化を促
進することができる。
In the present invention as described above, the low Tc phase contains Pb or Ag, or 0.01 to 0.01% of both elements.
It may contain 0.3 molar ratio. For example, the low Tc phase is Bi: Sr: Ca: Cu = 2: 2: 1: 2 (221
It is represented by the composition ratio of 2). For example, Pb is compounded in this composition, and Bi: Pb: Sr: Ca: Cu = 2: 0.
It can be 2: 2: 1: 2. The heat treatment temperature for expressing the low Tc phase by complexing in this way is from the normal 870 ° C. to the high Tc phase expression temperature.
It can be lowered to 0 ° C. High Tc formed
Both the phase and low Tc phase films can exhibit superconducting properties by heat treatment at the same temperature. Further, by adding the above-mentioned element, for example, the partial melting temperature of the low Tc phase is increased to 850 ° C.
Can be reduced to In this case, for example, after the film is formed, it can be heat-treated at a temperature at which the low Tc phase partially melts, for a short time, and then at a temperature at which the high Tc phase exhibits superconducting properties, for example, at 830 to 840 ° C. By performing such a heat treatment, the sprayed low Tc phase coating is partially melted and the high Tc phase coating is sandwiched, and the high Tc phase coating is prevented from peeling from the base material and swelling is prevented. Densification can be promoted.

【0008】以下に、本発明を添付図面を参照して説明
する。図1は本発明に係る多層構造の一例を示すもので
あり、図において、1はNi系合金製円筒等の基材であ
り、この基材1の外周上にはアンダーコーティング材2
としてAg等の皮膜を50〜100μm形成する。次
に、低Tc相皮膜3を約50μm形成した後、高Tc相
皮膜4を約100μm形成し、その低Tc相皮膜3及び
高Tc相皮膜4の繰返しを3回行い、最外層に低Tc相
皮膜3を約50μm積層して合計で約500μmの皮膜
を作製した。
The present invention will be described below with reference to the accompanying drawings. FIG. 1 shows an example of a multi-layer structure according to the present invention. In the figure, 1 is a base material such as a cylinder of Ni-based alloy, and an undercoating material 2 is provided on the outer periphery of the base material 1.
As a coating, a film of Ag or the like is formed in a thickness of 50 to 100 μm. Next, after forming a low Tc phase coating 3 of about 50 μm, a high Tc phase coating 4 of about 100 μm was formed, and the low Tc phase coating 3 and the high Tc phase coating 4 were repeated 3 times, and the low Tc was formed on the outermost layer. The phase coating 3 was laminated in a thickness of about 50 μm to form a coating having a total thickness of about 500 μm.

【0009】図1に示すように、好ましくは基材1上
の、所望により形成されたAg等のアンダーコーティン
グ材2の直上には低Tc相皮膜3を形成し、そして最上
層にも低Tc相皮膜3を形成するようにする。
As shown in FIG. 1, preferably, a low Tc phase film 3 is formed on a base material 1 directly on an undercoating material 2 such as Ag, which is optionally formed, and a low Tc is also formed on the uppermost layer. The phase film 3 is formed.

【0010】[0010]

【発明の効果】本発明によれば、高Tc相皮膜が低Tc
相皮膜に挾まれているため熱処理時の高Tc相の膨れが
防止され、さらに低Tc相皮膜による密度低下防止効果
により溶射皮膜全体の密度低下が防止され、ヒートショ
ック及び僅かな応力負荷での割れが防止され、磁気シー
ルド効果が向上し、基材からの剥離も防止される。従っ
て、液体ヘリウムを冷媒として使用する大型の磁気シー
ルド容器が得られる。
According to the present invention, a high Tc phase film has a low Tc.
Since it is sandwiched by the phase coating, the swelling of the high Tc phase during heat treatment is prevented, and the density reduction prevention effect of the low Tc phase coating prevents the density reduction of the thermal spray coating as a whole. Cracking is prevented, the magnetic shield effect is improved, and peeling from the base material is also prevented. Therefore, a large magnetic shield container using liquid helium as a refrigerant can be obtained.

【0011】以下に実施例を示す。Examples will be shown below.

【0012】[0012]

【実施例1】Bi系酸化物の高Tc相および低Tc相は
Bi23,SrCO3,CaCO3およびCuOの原料を
用い、高Tc相はBi1.5Pb0.5Sr1.9Ca1.9Cu2.
8Oyの組成(以下略、1.5−0.5−1.9−1.
9−2.8)になるように混合して、また、低Tc相は
Bi2Pb0.2Sr2Ca1Cu2Ox(以下略、2−0.
2−2−1−2)になるように混合して、それぞれ80
0℃×10hの仮焼結と、840℃×100hの本焼結
を行った後、粉砕して粒径50〜100μmの範囲に作
製した。このような粒子を用いて、外径100mm(厚
み1.6mm)長さ500mmのインコネル625の円
筒に、以下に示すような溶射条件と溶射工程を行った。
EXAMPLE 1 High Tc phase and the low-Tc phase of Bi-based oxide with Bi 2 O 3, SrCO 3, CaCO 3 and CuO raw material, the high Tc phase is Bi 1. 5 Pb 0. 5 Sr 1. 9 Ca 1. 9 Cu 2.
8 Oy composition (hereinafter, abbreviated to 1.5-0.5-1.9-1.
Mixed and to be 9-2.8) The low Tc phase Bi 2 Pb 0. 2 Sr 2 Ca 1 Cu 2 Ox ( hereinafter generally, 2-0.
2-2-1-2) and mix each to 80
After pre-sintering at 0 ° C. × 10 h and main sintering at 840 ° C. × 100 h, the powder was pulverized to have a particle size of 50 to 100 μm. Using such particles, a cylinder of Inconel 625 having an outer diameter of 100 mm (thickness of 1.6 mm) and a length of 500 mm was subjected to the thermal spraying conditions and the thermal spraying process as described below.

【0013】2−0.2−2−1−2粒子および1.5
−0.5−1.9−1.9−2.8粒子の溶射条件はト
ーチ作動出力が約11KW(80A×135V)、作動
ガスとして空気を用いて、プラズマジエットを発生させ
それぞれの粒子を90mmの位置で送入した。プラズマ
・セパレーション(P−SEP)ガス流量を25l/m
inとし、アーク発生起点から115mmの距離に上記
のインコネル円筒を置き、Bi系酸化物皮膜を付着させ
た。図2に溶射法の模式図を示す。インコネル円筒上に
は、あらかじめ、アンダーコーテイング材としてAg皮
膜を形成させた。その溶射条件はトーチ作動出力が約1
3KW(110A×118V)、作動ガスとしてアンゴ
ルを用いて、プラズマジエットを発生させAg粒子を5
0mmの位置で送入し、P−SEPガス流量を451/
minとし、アーク発生起点から115mmの距離にあ
る上記のインコネル円筒にAg系皮膜を約100um付
着させた。その他の条件として、プラズマ溶射は大気中
で行い、インコネル円筒は回転速度120rpm、送り
速度13.8mm/secで行った。
2-0.2-2-1-2 particles and 1.5
-0.5-1.9-1.9-2.8 Particles are sprayed under the condition that the torch operation output is about 11 kW (80A × 135V), air is used as the working gas, plasma jet is generated, and each particle is generated. It was fed at a position of 90 mm. Plasma separation (P-SEP) gas flow rate 25 l / m
In, the above Inconel cylinder was placed at a distance of 115 mm from the starting point of arc generation, and a Bi-based oxide film was attached. FIG. 2 shows a schematic diagram of the thermal spraying method. An Ag coating was previously formed as an undercoating material on the Inconel cylinder. The spraying condition is that the torch actuation output is about 1
3KW (110A × 118V), using Angol as working gas, plasma jet is generated to generate Ag particles of 5
It is fed at the position of 0 mm and the flow rate of P-SEP gas is 451 /
min, and the Ag-based film was deposited on the above Inconel cylinder at a distance of 115 mm from the arc generation starting point to about 100 μm. As other conditions, plasma spraying was performed in the atmosphere, and the Inconel cylinder was rotated at a rotation speed of 120 rpm and a feed speed of 13.8 mm / sec.

【0014】溶射手順は、まず、インコネル円筒表面を
Al23粒子で粗くし後、Ag粒子を着けてから、低T
c相の2−0.2−2−1−2粒子を約50μmを着け
た後、高Tc相を約100μmを着けて、それを3回く
り返して溶射し、最外層の低Tc相を約50μmに着け
てトータルで約500μmにした。溶射直後の皮膜は非
結晶質で絶縁体に近く、この皮膜を、840℃×150
hの熱処理を施した後、常温まで60℃/hの徐冷を加
えた。作製された積層皮膜の臨界温度Tc(抵抗=O)
は105Kとなり、臨界電流密度Jcは77Kの温度、
磁界H=Oにおいて約800A/cm2、また、磁気シ
ールド特性は1ガウスの外部磁界100万分の1の磁気
遮蔽効果が得られた。
The thermal spraying procedure is as follows. First, the surface of the Inconel cylinder is roughened with Al 2 O 3 particles, then Ag particles are applied, and then the low T
After coating the c-phase 2-0.2-2-1-2 particles with a thickness of about 50 μm, the high Tc phase with a thickness of about 100 μm was sprayed by repeating three times, and the low Tc phase of the outermost layer was treated with about 100 μm. A total of about 500 μm was obtained by wearing 50 μm. Immediately after thermal spraying, the film is amorphous and close to an insulator.
After heat treatment for h, slow cooling of 60 ° C./h was added to room temperature. Critical temperature Tc (resistance = O) of the produced laminated film
Is 105K, the critical current density Jc is 77K,
In the magnetic field H = O, a magnetic shielding effect of about 800 A / cm 2 and a magnetic shielding property of an external magnetic field of 1 gauss and 1 / 1,000,000 was obtained.

【0015】[0015]

【実施例2】実施例1と同様な溶射法を用いて、高Tc
相と低Tc相の積層構造皮膜を作製した。この皮膜を8
50℃で10分間部分溶融し、その後、840℃×15
0時間の熱処理を施し、実施例1と同様に徐冷した。作
製された皮膜のTcは100KでJcは77K,H=O
において約500A/cm2、磁気シールド特性は1ガ
ウスの外部磁界で100万分の1の磁気遮蔽効果を得
た。
Example 2 Using the same thermal spraying method as in Example 1, high Tc was obtained.
A layered structure film of the phase and the low Tc phase was prepared. 8 this film
Partially melt at 50 ° C for 10 minutes, then 840 ° C x 15
It was heat-treated for 0 hours and gradually cooled in the same manner as in Example 1. The produced film has Tc of 100K, Jc of 77K, and H = O.
Of about 500 A / cm 2 , and the magnetic shielding characteristic was 1 millionth of a magnetic shielding effect with an external magnetic field of 1 gauss.

【0016】[0016]

【実施例3】実施例1と同様な溶射方法を用いて、高T
c相と低Tc相の積層構造皮膜を作製した。なお、Bi
系酸化物の低Tc相組成はAgを含むBi2Ag0.2Sr
2CaCu2Oxを用いた。その後、同様な熱処理を行っ
た。作製された積層皮膜の臨界温度Tc(抵抗=O)は
101Kとなり、臨界電流密度Jcは77Kの温度、磁
界H=Oにおいて約700A/cm2、また、磁気シー
ルド特性は1Gで100万分の1の磁気遮蔽効果が得ら
れた。
Example 3 Using the same thermal spraying method as in Example 1, high T
A laminated structure film of c phase and low Tc phase was prepared. Note that Bi
Bi 2 Ag 0 is low Tc phase composition of the system oxide containing Ag. 2 Sr
2 CaCu 2 Ox was used. Then, the same heat treatment was performed. The prepared laminated film has a critical temperature Tc (resistance = O) of 101 K, a critical current density Jc of 77 K, a magnetic field H = O of about 700 A / cm 2 , and a magnetic shield characteristic of 1 G per million. The magnetic shielding effect of was obtained.

【0017】[0017]

【比較例】実施例1と同様な溶射条件で、高Tc相の単
層をAgでアンダーコーティングしたインコネル基材上
(幅0.5cm、長さ2cmの短冊状)に溶射した。こ
の皮膜を840℃×150時間熱処理したところ、5枚
の試験片の内4枚は、高Tc相皮膜が基材から完全に剥
離してしまい、基材上に超電導膜を形成することができ
なかった。残りの1枚のTcは100K、Jcは10A
/cm2であった。次に実施例1と同様にAgでアンダ
ーコーティングしたインコネル円筒上に高Tc単層皮膜
を溶射し、同様に熱処理したところ、皮膜は基材上から
完全に剥離してしまい、磁気シールド容器を作製できな
かった。
[Comparative Example] Under the same thermal spraying conditions as in Example 1, a high Tc phase single layer was sprayed onto an Inconel substrate (width: 0.5 cm, length: 2 cm strip) undercoated with Ag. When this film was heat-treated at 840 ° C. for 150 hours, the high Tc phase film was completely peeled from the base material in four of the five test pieces, and a superconducting film could be formed on the base material. There wasn't. The remaining Tc is 100K and Jc is 10A.
Was / cm 2 . Next, as in Example 1, when a high Tc single layer coating was sprayed on an Inconel cylinder undercoated with Ag and heat treated in the same manner, the coating was completely peeled off from the base material, and a magnetic shield container was produced. could not.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る皮膜の多層構造の一例を示す概略
説明図である。
FIG. 1 is a schematic explanatory view showing an example of a multilayer structure of a film according to the present invention.

【図2】本発明における溶射方法の摸式図である。FIG. 2 is a schematic diagram of a thermal spraying method according to the present invention.

【符号の説明】 1 基材 2 アンダーコーティング材 3 低Tc相皮膜 4 高Tc相皮膜[Explanation of symbols] 1 base material 2 undercoating material 3 low Tc phase coating 4 high Tc phase coating

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小高 博文 千葉県市川市原木1−3−1−114 (72)発明者 加藤 和彦 埼玉県熊谷市代708 (72)発明者 星野 和友 埼玉県上尾市大谷本郷441−19 (72)発明者 吉田 勇二 茨城県筑波市千現一丁目2番1号 科学技 術庁金属材料技術研究所 筑波支所内 (72)発明者 湯山 道也 茨城県筑波市千現一丁目2番1号 科学技 術庁金属材料技術研究所 筑波支所内 (72)発明者 井上 廉 茨城県筑波市千現一丁目2番1号 科学技 術庁金属材料技術研究所 筑波支所内 (72)発明者 前田 弘 茨城県筑波市千現一丁目2番1号 科学技 術庁金属材料技術研究所 筑波支所内 (72)発明者 亀川 豊 東京都太田区南久が原一丁目13番6号 株 式会社日本計器製作所内 (72)発明者 鈴木 雅之 東京都太田区南久が原一丁目13番6号 株 式会社日本計器製作所内 (72)発明者 中山 清 東京都太田区南久が原一丁目13番6号 株 式会社日本計器製作所内 (72)発明者 清水 輝夫 東京都太田区南久が原一丁目13番6号 株 式会社日本計器製作所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hirofumi Odaka 1-3-1-114 Haraki, Ichikawa City, Chiba Prefecture (72) Inventor Kazuhiko Kato 708, Kumagaya City, Saitama Prefecture (72) Inventor Kazutomo Hoshino Ageo, Saitama Prefecture 441-19 Otanihongo, Ichi, Japan (72) Yuji Yoshida, Inventor Yuji Yoshida, 1-12-1 Sengen, Tsukuba, Ibaraki Prefectural Institute for Metals Technology, Tsukuba Branch (72) Inventor, Michiya Yuyama 2-1-1, Institute of Metals and Materials Research, Science and Technology Agency Tsukuba Branch (72) Inventor Ren 2-1-1, Sengen, Gengen, Tsukuba, Ibaraki Prefectural Institute of Metals and Materials Research, Science and Technology Agency, Tsukuba Branch (72) Inventor Hiroshi Maeda 1-12-1 Sengen, Tsukuba-shi, Ibaraki, Tsukuba Branch, Institute for Metals Technology, Science and Technology Agency (72) Inventor Yutaka Kamegawa 13-13-6, Minamikyugahara, Ota-ku, Tokyo Company Japan Keiki Seisakusho (72) Inventor Masayuki Suzuki 1-13-6 Minamikyugahara, Ota-ku, Tokyo Stock company Nihon Keiki Seisakusho (72) Inventor Kiyoshi Nakayama 1-13-6 Minamikyugahara, Ota-ku, Tokyo (72) Inventor Teruo Shimizu 1-13-6 Minamikyugahara, Ota-ku, Tokyo Incorporated Nippon Keiki Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基材上に必要に応じて下地層を形成した
後、溶射法によりビスマス系酸化物超電導体の低Tc相
(80K相)と高Tc相(110K相)の組成を基本と
する超電導皮膜を交互に積層させることを特徴とする超
電導磁気シールド容器の製造方法。
1. A basic composition of a low Tc phase (80K phase) and a high Tc phase (110K phase) of a bismuth-based oxide superconductor is formed by a thermal spraying method after an underlayer is formed on a substrate as required. A method for manufacturing a superconducting magnetic shield container, characterized in that the superconducting coatings are alternately laminated.
【請求項2】 前記低Tc相の組成に0.01〜0.3
モル比のPb及びAgの1種類もしくは2種類の元素を
含む請求項1記載の方法。
2. The composition of the low Tc phase is 0.01 to 0.3.
The method according to claim 1, comprising one or two elements of Pb and Ag in a molar ratio.
【請求項3】 基材上に所望により形成される下地層
と、その上に形成されたビスマス系酸化物超電導体の低
Tc相(80K相)溶射層と高Tc相(110K相)溶
射層とが交互に積層されてなる超電導磁気シールド容
器。
3. An undercoat layer optionally formed on a substrate, and a low Tc phase (80K phase) sprayed layer and a high Tc phase (110K phase) sprayed layer of a bismuth oxide superconductor formed thereon. A superconducting magnetic shield container in which and are alternately stacked.
JP4108398A 1992-04-02 1992-04-02 Superconducting magnetic shield container and method of manufacturing the same Expired - Fee Related JP2604665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4108398A JP2604665B2 (en) 1992-04-02 1992-04-02 Superconducting magnetic shield container and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4108398A JP2604665B2 (en) 1992-04-02 1992-04-02 Superconducting magnetic shield container and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05283881A true JPH05283881A (en) 1993-10-29
JP2604665B2 JP2604665B2 (en) 1997-04-30

Family

ID=14483750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4108398A Expired - Fee Related JP2604665B2 (en) 1992-04-02 1992-04-02 Superconducting magnetic shield container and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2604665B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256423A (en) * 1988-04-15 1990-02-26 Takeda Chem Ind Ltd Naphthopyran derivative and use thereof
JPH03235088A (en) * 1990-02-13 1991-10-21 Ngk Insulators Ltd Bismuth based superconductor composite

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256423A (en) * 1988-04-15 1990-02-26 Takeda Chem Ind Ltd Naphthopyran derivative and use thereof
JPH03235088A (en) * 1990-02-13 1991-10-21 Ngk Insulators Ltd Bismuth based superconductor composite

Also Published As

Publication number Publication date
JP2604665B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
JP5101779B2 (en) Structure for high critical current superconducting tape
US6226858B1 (en) Method of manufacturing an oxide superconductor wire
JP3601830B2 (en) Structure having an effective biaxially oriented structure and method for producing the structure
US6624122B1 (en) High critical current superconducting tapes
US5063200A (en) Ceramic superconductor article
US20070032384A1 (en) Structure for improved high critical current densities in YBCO coatings
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
US5187149A (en) Method of making a ribbon-like or sheet-like superconducting oxide composite body
US7445808B2 (en) Method of forming a superconducting article
JP2003529201A (en) Long superconducting structure and its manufacturing method
US7642222B1 (en) Method for improving performance of high temperature superconductors within a magnetic field
Bonin Materials for superconducting cavities
JPH05283881A (en) Superconductive magnetic shield container and its manufacture
JPH06209182A (en) Superconducting magnetic shield container and its manufacture
JP3090709B2 (en) Oxide superconducting wire and method of manufacturing the same
JPH0393110A (en) Superconducting wire-rod
JP2816792B2 (en) Superconducting magnetic shield container and method of manufacturing the same
Watanabe et al. Nb/sub 3/Al formation process in powder metallurgy processed wires and sputtered multilayer films
JP3536920B2 (en) Alloy superconductor and method of manufacturing the same
JPH02173258A (en) Method and device for forming thin film
Kumakura et al. Development of Bi-2212 tapes and coils applying the dip-coating process
JPH07226115A (en) Ittrium oxide superconductive member and its manufacture
JPH02288113A (en) Manufacture of complex of metal-oxide superconductor
JPH01170076A (en) Semiconductor substrate provided with superconductor layer
JPH04113683A (en) Manufacture of thin film device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees