JPH0528372Y2 - - Google Patents

Info

Publication number
JPH0528372Y2
JPH0528372Y2 JP17323186U JP17323186U JPH0528372Y2 JP H0528372 Y2 JPH0528372 Y2 JP H0528372Y2 JP 17323186 U JP17323186 U JP 17323186U JP 17323186 U JP17323186 U JP 17323186U JP H0528372 Y2 JPH0528372 Y2 JP H0528372Y2
Authority
JP
Japan
Prior art keywords
negative pressure
passage
fuel
valve
air valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17323186U
Other languages
Japanese (ja)
Other versions
JPS6378154U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17323186U priority Critical patent/JPH0528372Y2/ja
Publication of JPS6378154U publication Critical patent/JPS6378154U/ja
Application granted granted Critical
Publication of JPH0528372Y2 publication Critical patent/JPH0528372Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、燃料通路に連通する吸気流量検出用
負圧通路内の液面レベルを一定に保ように燃料流
量を制御することにより空燃比を適正に保持する
ようにした燃料供給装置に関するものである。
[Detailed description of the invention] [Field of industrial application] The present invention improves the air-fuel ratio by controlling the fuel flow rate to maintain a constant liquid level in the negative pressure passage for detecting the intake flow rate, which communicates with the fuel passage. This invention relates to a fuel supply device that properly maintains the fuel.

〔従来の技術〕[Conventional technology]

従来、この種装置として、例えば第5図に示さ
れるものがあり、図において、1は吸気通路、2
は固定ベンチユリ、3は吸気通路1を開閉し得る
エアバルブ、4はダイアフラム4aを有しエアバ
ルブ3の作動を制御する負圧アクチユエータ、5
は負圧アクチユエータ4の負圧室4bと連通しエ
アバルブ3の下流側に開口する負圧取入れ口、6
は負圧室6aへ導かれた負圧取入れ口5を介して
の負圧によりON・OFF作動しバルブ6bにより
負圧アクチユエータ4の負圧室4bへ大気を導入
せしめ得るコントロールバルブ、7はスロツトル
シヤフト8を介してエアバルブ3の下流側に設け
られたスロツトルバルブ、9はスロー系ベンチユ
リ、10は燃料室11の液面を基準液面高さに保
持すべく該燃料室11へ燃料を供給するソレノイ
ドバルブ、12は燃料室11の液面高さを検出す
るレベルセンサ、13はメインジエツト、14は
スロー系通路14a及びメイン系通路14bが合
流して後その途中においてスロー系ベンチユリ9
及び吸気通路1へ開口するポート14c,14d
を有しスローポート15と連通している燃料通
路、16は負圧通路17内の燃料柱17aの高さ
が一定となるようにレベルセンサ18からの出力
信号に基づきメインジエツト13からの燃料の流
量を制御するソレノイドバルブ、19は負圧通路
20内の燃料柱20aの高さが一定となるように
レベルセンサ21の出力信号に基づきパイロツト
ジエツト22からの燃料の流量を制御するソレノ
イドバルブである。
Conventionally, there is a device of this type as shown in FIG. 5, for example, in which 1 indicates an intake passage, 2
3 is a fixed bench lily; 3 is an air valve capable of opening and closing the intake passage 1; 4 is a negative pressure actuator having a diaphragm 4a and controlling the operation of the air valve 3; 5;
6 is a negative pressure intake port communicating with the negative pressure chamber 4b of the negative pressure actuator 4 and opening on the downstream side of the air valve 3;
7 is a control valve that can be turned on and off by the negative pressure introduced into the negative pressure chamber 6a through the negative pressure intake port 5, and can introduce atmospheric air into the negative pressure chamber 4b of the negative pressure actuator 4 through the valve 6b. A throttle valve 9 is provided on the downstream side of the air valve 3 via a throttle shaft 8; 9 is a slow-flow vent lily; 10 is a throttle valve for supplying fuel to the fuel chamber 11 in order to maintain the liquid level in the fuel chamber 11 at a reference level; A solenoid valve 12 is a level sensor for detecting the liquid level in the fuel chamber 11, 13 is a main jet, and 14 is a slow system vent 9 in the middle after the slow system passage 14a and the main system passage 14b join together.
and ports 14c and 14d that open to the intake passage 1
A fuel passageway 16 communicating with the slow port 15 controls the flow rate of fuel from the main jet 13 based on the output signal from the level sensor 18 so that the height of the fuel column 17a in the negative pressure passageway 17 is constant. 19 is a solenoid valve that controls the flow rate of fuel from the pilot jet 22 based on the output signal of the level sensor 21 so that the height of the fuel column 20a in the negative pressure passage 20 is constant. .

この装置では、エンジンのスロー域においてエ
アバルブ3は吸気通路1を閉塞せしめているが、
該エアバルブ3の下流側の負圧が所定の値に達す
ると負圧取入れ口5を介してコントロールバルブ
6の負圧室6aへ導入される負圧によりバルブ6
bが負圧アクチユエータ4の負圧室4bを大気か
ら遮断せしめると共に、該負圧室4bへ負圧が導
入される。これによりエアバルブ3は吸気通路1
を開き始め、この結果、スロー域からメイン域へ
の移行が行なわれる。
In this device, the air valve 3 closes the intake passage 1 in the slow range of the engine, but
When the negative pressure on the downstream side of the air valve 3 reaches a predetermined value, the negative pressure introduced into the negative pressure chamber 6a of the control valve 6 through the negative pressure intake port 5 causes the valve 6 to
b isolates the negative pressure chamber 4b of the negative pressure actuator 4 from the atmosphere and introduces negative pressure into the negative pressure chamber 4b. As a result, the air valve 3 is connected to the intake passage 1.
begins to open, resulting in a transition from the slow area to the main area.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

かかる従来の装置における吸入空気流量とエア
バルブ3の下流側の負圧との関係は第6図の如く
表される。この場合、スロツトルバルブが全開し
たエンジン最大出力付近の出力低下を防止するた
めに、エアバルブ3による制御負圧は小さく設定
する必要がある。しかし、第6図に示す如く、か
かる制御負圧を小さくした場合、エアバルブ3の
下流側の吸入空気量を大きく設定することはでき
なかつた。従つて、吸入空気量に対する、レベル
センサ18,21の検出信号に基づく液面制御可
能な範囲が限定されてしまうという問題があつ
た。
The relationship between the intake air flow rate and the negative pressure on the downstream side of the air valve 3 in such a conventional device is expressed as shown in FIG. In this case, the negative pressure controlled by the air valve 3 needs to be set small in order to prevent the output from decreasing near the maximum engine output when the throttle valve is fully opened. However, as shown in FIG. 6, when such a controlled negative pressure is made small, it is not possible to set a large amount of intake air on the downstream side of the air valve 3. Therefore, there is a problem in that the range in which the liquid level can be controlled based on the detection signals of the level sensors 18 and 21 with respect to the amount of intake air is limited.

また、このように吸入空気量が大きい領域では
液面制御が行われ得ないので、レベルセンサ18
の検出信号によるメーン系の液面制御において固
定ベンチユリ2内の負圧が一定値以上になつて、
かかる負圧により負圧通路17の先端より燃料が
吐出せしめられ、即ち負圧通路17が通常の帰化
器となる領域では、吐出燃料の計量精度が確保で
きないという問題があつた。
In addition, since liquid level control cannot be performed in such a region where the amount of intake air is large, the level sensor 18
When the negative pressure inside the fixed bench lily 2 exceeds a certain value in the main system liquid level control using the detection signal,
This negative pressure causes fuel to be discharged from the tip of the negative pressure passage 17, that is, in a region where the negative pressure passage 17 functions as a normal naturalizing device, there is a problem in that the metering accuracy of the discharged fuel cannot be ensured.

そこで、本考案はかかる実情に鑑み、エアバル
ブの下流側の負圧に対する液面制御可能な範囲を
広く確保することにより吸入空気量が大きい領域
でも制御可能と成し、固定ベンチユリ内の負圧が
精度確保に必要な値となるまで負圧通路先端から
の燃料の吐出が防止され得る燃料供給装置を提供
することを目的とする。
In view of this situation, the present invention has been developed to ensure a wide range in which the liquid level can be controlled for the negative pressure on the downstream side of the air valve, thereby making it possible to control even in areas where the amount of intake air is large, thereby reducing the negative pressure in the fixed bench lily. It is an object of the present invention to provide a fuel supply device that can prevent fuel from being discharged from the tip of a negative pressure passage until a value necessary to ensure accuracy is reached.

〔問題点を解決するための手段及び作用〕[Means and actions for solving problems]

本考案による燃料供給装置では、負圧アクチユ
エータの負圧室もしくはそのコントロールバルブ
の負圧室が大気へ通ずる通路と連通されていて、
該通路はスロツトルシヤフトの回転に対応して開
閉せしめられるようになつている。従つて、スロ
ツトルバルブが開き始めて後所定の開度となるま
で負圧アクチユエータの負圧室が大気と連通せし
められていて、エアバルブは吸気通路を閉塞せし
め、この間該エアバルブの下流側の負圧のみが増
大せしめられるので負圧通路の先端より固定ベン
チユリ内へ燃料が吐出することはなく適正な液面
制御がなされると共に、さらにスロツトルバルブ
が開くと負圧アクチユエータの負圧室は大気から
遮断されるのでエアバルブが開き、該エアバルブ
の下流側の負圧が一旦小さくなるが、このときス
ロツトルバルブは比較的全開付近まで開いている
のでエアバルブは最大出力に必要な吸気が確保さ
れるようにその下流側の負圧を制御し得る。
In the fuel supply device according to the present invention, the negative pressure chamber of the negative pressure actuator or the negative pressure chamber of its control valve is communicated with a passage leading to the atmosphere,
The passage is adapted to be opened and closed in response to rotation of the throttle shaft. Therefore, after the throttle valve begins to open, the negative pressure chamber of the negative pressure actuator is communicated with the atmosphere until it reaches a predetermined opening degree, and the air valve closes the intake passage, during which time the negative pressure downstream of the air valve is maintained. Since the fuel is not discharged from the end of the negative pressure passage into the stationary bench lily, proper liquid level control is achieved, and when the throttle valve opens, the negative pressure chamber of the negative pressure actuator is removed from the atmosphere. Since the air valve is shut off, the air valve opens, and the negative pressure on the downstream side of the air valve decreases temporarily, but at this time, the throttle valve is relatively open to nearly full opening, so the air valve is able to secure the intake air necessary for maximum output. It is possible to control the negative pressure on the downstream side.

〔実施例〕〔Example〕

以下、第1図乃至第4図に基づき本考案による
燃料供給装置の一実施例について従来例と同一の
部材には同一の符号を用いて説明すれば、図中、
23はスロツトルシヤフト8の回転により一端が
大気へ通じるように開閉され得、他端が負圧アク
チユエータ4の負圧室4bに連通せしめられた通
路、24はスロツトルシヤフト8に形成されてい
てスロツトルバルブ7の開度が比較的小さいとき
には通路23の上記一端を開き(第2図参照)又
所定の開度以上では閉鎖せしめ(第3図参照)得
るように配置された切欠部である。
Hereinafter, an embodiment of the fuel supply device according to the present invention will be described based on FIGS. 1 to 4, using the same reference numerals for the same members as in the conventional example.
23 is a passage that can be opened and closed at one end to communicate with the atmosphere by the rotation of the throttle shaft 8, and the other end communicates with the negative pressure chamber 4b of the negative pressure actuator 4; 24 is formed in the throttle shaft 8; This notch is arranged so that when the opening degree of the throttle valve 7 is relatively small, the above-mentioned one end of the passage 23 is opened (see Fig. 2), and when the opening degree exceeds a predetermined value, it is closed (see Fig. 3). .

本考案による燃料供給装置は上記のように構成
されているから、まず、エンジンのスロー域にお
いて吸気通路1を閉塞せしめているエアバルブ3
の下流側の負圧は、アイドリング状態よりスロツ
トルバルブ7を徐々に開くことにより吸入空気流
量の増加に伴なつて増大するが、(第4図中、領
域A)、この間スロツトルシヤフト8上の切欠部
24は通路23を開放せしめているので負圧アク
チユエータ4は作動せず、エアバルブ3による吸
気通路1の閉塞状態は保持されている。この場
合、スロー域であるため吸入空気の絶対量が少な
いこと及びエアバルブ3によりその下流側の負圧
は固定ベンチユリ2側へ直接的に影響しないこと
等に基づき固定ベンチユリ2の負圧は比較的小さ
く、従つて負圧通路17の先端より燃料が吐出す
ることはなく適正な液面制御が行なわれ得る。さ
らにスロツトルバルブ7が開き所定の開度に達す
ると、スロツトルシヤフト8自体により通路23
は閉塞せしめられ(第3図)、これにより負圧ア
クチユエータ4の負圧室4bが大気から遮断せし
められるのでエアバルブ3は吸気通路1を開き始
める。この開き始めのタイミングは切欠部24の
形状等を調整して所望のものに設定し得、吸入空
気流量との関係では第4図中、変位点Bとして与
えられる。即ち、この時点ではスロツトルバルブ
7は所定の開度になつていると共に空気流量自体
も比較的増加してきているので、これよりスロツ
トルバルブ7を全開にした場合最大出力に要する
吸気量が十分に確保され得る。さらに変位点Bを
過ぎるとエアバルブ3の下流側の負圧は吸気通路
1が開かれることにより小さくなり、これ以降エ
アバルブ3は全開となるまでスロツトルバルブ7
の開度が全開付近に達した際には該バルブ3の下
流側の負圧を必要以上に増大せしめることはな
く、常に最大空気流量がえられるようにその下流
側の圧力を制御する。斯して、適正な液面制御可
能範囲が拡大され得ると共に常に最大出力が得ら
れるように吸入空気流量が制御され得る。
Since the fuel supply system according to the present invention is constructed as described above, first, the air valve 3 that closes the intake passage 1 in the slow region of the engine is configured.
The negative pressure on the downstream side of the throttle shaft 8 increases as the intake air flow rate increases by gradually opening the throttle valve 7 from the idling state (region A in Fig. 4). Since the notch 24 opens the passage 23, the negative pressure actuator 4 does not operate, and the air valve 3 maintains the closed state of the intake passage 1. In this case, the negative pressure in the fixed bench lily 2 is relatively low because the absolute amount of intake air is small because it is in the slow region, and the negative pressure downstream of the air valve 3 does not directly affect the fixed bench lily 2. Since it is small, fuel is not discharged from the tip of the negative pressure passage 17, and appropriate liquid level control can be performed. Further, when the throttle valve 7 opens and reaches a predetermined opening degree, the throttle shaft 8 itself opens the passage 23.
is closed (FIG. 3), and as a result, the negative pressure chamber 4b of the negative pressure actuator 4 is cut off from the atmosphere, so that the air valve 3 begins to open the intake passage 1. The opening timing can be set as desired by adjusting the shape of the notch 24, etc., and is given as a displacement point B in FIG. 4 in relation to the intake air flow rate. That is, at this point, the throttle valve 7 has reached a predetermined opening degree and the air flow rate itself has increased relatively, so if the throttle valve 7 is fully opened, the amount of intake air required for maximum output will be sufficient. can be secured. Further, after the displacement point B, the negative pressure on the downstream side of the air valve 3 becomes smaller due to the opening of the intake passage 1, and from this point onwards, the air valve 3 is closed until the throttle valve 7 is fully opened.
When the opening degree of the valve 3 reaches near full open, the negative pressure on the downstream side of the valve 3 is not increased more than necessary, and the pressure on the downstream side is controlled so that the maximum air flow rate is always obtained. In this way, the range in which the liquid level can be properly controlled can be expanded, and the intake air flow rate can be controlled so that the maximum output is always obtained.

ここで通路23は第1図中、二点鎖線で示され
る如く、コントロールバルブ6の負圧室6bと連
通せしめられてもよく、この場合、スロツトルバ
ルブ7が所定の開度となつた時点で負圧室6bが
大気から遮断されると共にエアバルブ3の下流側
の負圧により作動せしめられ、この結果、該負圧
に基づき負圧アクチユエータ4を介してエアバル
ブ3が吸気通路1を開き始めるが、上記実施例と
同様、スロツトルバルブ7が全開する最大出力
時、エアバルブ3の下流側の負圧を必要以上に増
大することなく、従つて最大出力を低下させると
こなく液面制御可能範囲を拡大し得る。尚、上記
何れの場合も、切欠部24の形状、寸法等、適宜
のものが採用され得、同様の作用効果が得られ
る。
Here, the passage 23 may be communicated with the negative pressure chamber 6b of the control valve 6, as shown by the two-dot chain line in FIG. 1, and in this case, when the throttle valve 7 reaches a predetermined opening The negative pressure chamber 6b is shut off from the atmosphere and is actuated by the negative pressure on the downstream side of the air valve 3. As a result, the air valve 3 begins to open the intake passage 1 via the negative pressure actuator 4 based on the negative pressure. , as in the above embodiment, when the throttle valve 7 is fully open at maximum output, the liquid level controllable range can be maintained without increasing the negative pressure on the downstream side of the air valve 3 more than necessary and without reducing the maximum output. Can be expanded. In any of the above cases, the shape, size, etc. of the notch portion 24 may be appropriately selected, and similar effects can be obtained.

〔考案の効果〕[Effect of idea]

上述のように、本考案による燃料供給装置は、
この種液面制御がスロツトルバルブ全開時も含め
て有効になされ得ると共に、最大出力に要する十
分な吸気流量が確保され得る等の利点を有する。
As mentioned above, the fuel supply device according to the present invention has the following features:
This type of liquid level control can be performed effectively even when the throttle valve is fully open, and has the advantage that a sufficient intake flow rate required for maximum output can be ensured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の燃料供給装置の一実施例によ
る要部断面図、第2図及び第3図は本考案に係る
大気導入用通路と該通路の開閉用切欠部について
示す部分断面図、第4図は本考案に係る吸入空気
流量とエアバルブの下流側の負圧との関係を示す
グラフ、第5図は従来の燃料供給装置の構造につ
いて示す断面図、第6図は該装置に係る吸入空気
流量とエアバルブの下流側の負圧との関係を示す
グラフである。 1……吸気通路、2……固定ベンチユリ、3…
…エアバルブ、4……負圧アクチユエータ、6…
…コントロールバルブ、7……スロツトルバル
ブ、8……スロツトルシヤフト、9……スロー系
ベンチユリ、10,16,19……ソレノイドバ
ルブ、14……燃料通路、17,20……負圧通
路、23……通路、24……切欠部。
FIG. 1 is a sectional view of a main part of an embodiment of the fuel supply device of the present invention, and FIGS. 2 and 3 are partial sectional views showing an atmosphere introduction passage and an opening/closing notch of the passage according to the present invention. Fig. 4 is a graph showing the relationship between the intake air flow rate and the negative pressure downstream of the air valve according to the present invention, Fig. 5 is a sectional view showing the structure of a conventional fuel supply device, and Fig. 6 is a graph showing the structure of the conventional fuel supply device. It is a graph showing the relationship between the intake air flow rate and the negative pressure on the downstream side of the air valve. 1...Intake passage, 2...Fixed bench lily, 3...
...Air valve, 4...Negative pressure actuator, 6...
... Control valve, 7 ... Throttle valve, 8 ... Throttle shaft, 9 ... Slow system bench lily, 10, 16, 19 ... Solenoid valve, 14 ... Fuel passage, 17, 20 ... Negative pressure passage, 23... Passage, 24... Notch.

Claims (1)

【実用新案登録請求の範囲】 燃料通路に連通し且つ固定ベンチユリに開口す
るメイン系負圧通路と、パイロツトジエツトを介
して前記燃料通路に連通し且つスロー系ベンチユ
リに開口するスロー系負圧通路とを設け、前記メ
イン系及びスロー系負圧通路に夫々連通するメイ
ン系及びスロー系燃料通路途中に夫々ソレノイド
バルブを配設し、その下流側で該メイン系及びス
ロー系燃料通路を合流させて吐出口に開口させる
と共に、該ソレノイドバルブによつて各負圧通路
の液面レベルを一定に保つように燃料流量を制御
することにより空燃比を適正に制御し、又吸気通
路を開閉し得るエアバルブの下流側の負圧に基づ
き作動するコントロールバルブにより、該エアバ
ルブ用負圧アクチユエータを制御するように構成
した燃料供給装置において、 一端が大気に通じ且つ他端が前記負圧アクチユ
エータの負圧室又はコントロールバルブの負圧室
に連通する連通路を、スロツトルバルブの開度が
小さい時は開口させ、所定の開度より大きくなる
と閉鎖させるようスロツトルシヤフトの回転によ
つて開閉制御させて、前記エアバルブの下流側の
作動負圧を制御するようにしたことを特徴とする
燃料供給装置。
[Claims for Utility Model Registration] A main system negative pressure passage that communicates with the fuel passage and opens into the fixed bench lily, and a slow system negative pressure passage that communicates with the fuel passage via the pilot jet and opens into the slow system bench lily. and a solenoid valve is disposed in each of the main system and slow system fuel passages communicating with the main system and slow system negative pressure passage, respectively, and the main system and slow system fuel passages are merged on the downstream side thereof. An air valve that is opened at the discharge port and that can properly control the air-fuel ratio by controlling the fuel flow rate so as to keep the liquid level in each negative pressure passage constant using the solenoid valve, and can also open and close the intake passage. In a fuel supply device configured to control a negative pressure actuator for an air valve by a control valve that operates based on negative pressure downstream of the air valve, one end communicates with the atmosphere and the other end connects to the negative pressure chamber of the negative pressure actuator or The opening and closing of the communication passage communicating with the negative pressure chamber of the control valve is controlled by the rotation of the throttle shaft so that the opening is opened when the opening of the throttle valve is small and closed when the opening is larger than a predetermined opening. A fuel supply device characterized in that the operating negative pressure on the downstream side of an air valve is controlled.
JP17323186U 1986-11-11 1986-11-11 Expired - Lifetime JPH0528372Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17323186U JPH0528372Y2 (en) 1986-11-11 1986-11-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17323186U JPH0528372Y2 (en) 1986-11-11 1986-11-11

Publications (2)

Publication Number Publication Date
JPS6378154U JPS6378154U (en) 1988-05-24
JPH0528372Y2 true JPH0528372Y2 (en) 1993-07-21

Family

ID=31110499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17323186U Expired - Lifetime JPH0528372Y2 (en) 1986-11-11 1986-11-11

Country Status (1)

Country Link
JP (1) JPH0528372Y2 (en)

Also Published As

Publication number Publication date
JPS6378154U (en) 1988-05-24

Similar Documents

Publication Publication Date Title
US6886335B2 (en) Device for preventing the turbo-charger from over-running
US3866583A (en) Mixture control system for an internal combustion engine with controlled injection fuel
JPS58101238A (en) Suction device for engine associated with supercharger
US4563990A (en) Fuel supply control system for engine carburetors
JPH0528372Y2 (en)
US4261317A (en) Anti-after burn system for internal combustion engine
JPS6231656Y2 (en)
US5817257A (en) Fuel metering system
JPS6032369Y2 (en) Exhaust gas recirculation device
US4147032A (en) Secondary air supply control system
JPH0133818Y2 (en)
JPS6023475Y2 (en) Intake system for multi-cylinder engines
JPS6133260Y2 (en)
JPS6114610Y2 (en)
JPS5823975Y2 (en) Exhaust gas recirculation device
JPS5919802Y2 (en) Engine exhaust gas purification device
JPS5924842Y2 (en) Combustion control device for internal combustion engine
JPS6137814Y2 (en)
JPH08165956A (en) Piston valve type carburetor
JPH0238062Y2 (en)
JPS6339397Y2 (en)
JPS63289248A (en) Fuel mixture supplying device
JPS5879671A (en) Ignition timing controller of engine
JPS59134359A (en) Air-fuel ratio controller for variable venturi carburetor
JPS6321829B2 (en)