JPH0528348B2 - - Google Patents

Info

Publication number
JPH0528348B2
JPH0528348B2 JP60130598A JP13059885A JPH0528348B2 JP H0528348 B2 JPH0528348 B2 JP H0528348B2 JP 60130598 A JP60130598 A JP 60130598A JP 13059885 A JP13059885 A JP 13059885A JP H0528348 B2 JPH0528348 B2 JP H0528348B2
Authority
JP
Japan
Prior art keywords
ground fault
voltage
fault resistance
ground
grounding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60130598A
Other languages
Japanese (ja)
Other versions
JPS61288171A (en
Inventor
Ryuichi Shimada
Masaki Tsuneoka
Yoshio Kuroiwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP13059885A priority Critical patent/JPS61288171A/en
Publication of JPS61288171A publication Critical patent/JPS61288171A/en
Publication of JPH0528348B2 publication Critical patent/JPH0528348B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、1点接地系採用の電気設備の接地
系の地絡抵抗を検出する地絡抵抗検出方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ground fault resistance detection method for detecting ground fault resistance of a grounding system of electrical equipment employing a single point grounding system.

〔従来の技術〕[Conventional technology]

電気設備、特に高電圧、大電流の設備(例え
ば、核融合装置の電源設備)においては、その信
頼性向上等のために1点接地系が採用されている
が、この接地系は、それに接続された機器の水漏
れ、絶縁劣化、機械的変位等のために地絡抵抗
(即ち、対地に対する抵抗)を介して地絡する場
合がある。そのような状態で電気設備を運転する
と大事故につながることもあり、従つて接地系の
地絡抵抗を検出することは電気設備の安全運転及
び信頼性向上等の観点から極めて重要である。
Single-point grounding systems are used for electrical equipment, especially high-voltage and large-current equipment (for example, power equipment for nuclear fusion devices), to improve their reliability. Ground faults may occur due to water leakage, insulation deterioration, mechanical displacement, etc. of equipment that has been exposed to ground faults due to ground fault resistance (that is, resistance to ground). Operating electrical equipment under such conditions may lead to a major accident, and therefore, detecting the ground fault resistance of the grounding system is extremely important from the viewpoint of safe operation and reliability improvement of electrical equipment.

第3図は、従来の地絡抵抗検出方法の説明する
ための回路図である。電気設備2の接地系4は、
実際は複雑に枝分かれしている場合もあるが、こ
こでは単純化している。その接地系4を主接地点
7に接地する接地線6にスイツチ18の挿入し、
更に接地系4にスイツチ20を介して地絡抵抗検
出用の直流電源26を接続するようにしている。
FIG. 3 is a circuit diagram for explaining a conventional ground fault resistance detection method. The grounding system 4 of the electrical equipment 2 is
In reality, there may be complex branches, but we have simplified them here. Insert the switch 18 into the grounding wire 6 that grounds the grounding system 4 to the main grounding point 7,
Further, a DC power supply 26 for detecting ground fault resistance is connected to the grounding system 4 via a switch 20.

電気設備2を運転する時は、スイツチ18を閉
に、スイツチ20を開にして接地系4を1点接地
する。又、地絡抵抗を測定する時は、スイツチ1
8を開にしてスイツチ20を閉にし、接地系4に
所定時間だけ直流電圧Eを印加する。そしてその
時の電圧計22及び電流計24の値を読み取り、
それぞれの値をV0,I0とすれば、地絡抵抗8の抵
抗値Rは、R=V0/I0より求める。
When operating the electrical equipment 2, the switch 18 is closed and the switch 20 is opened to ground the grounding system 4 at one point. Also, when measuring ground fault resistance, switch 1
8 is opened, switch 20 is closed, and DC voltage E is applied to grounding system 4 for a predetermined period of time. Then, read the values of the voltmeter 22 and ammeter 24 at that time,
If the respective values are V 0 and I 0 , then the resistance value R of the ground fault resistor 8 is determined from R=V 0 /I 0 .

第4図は、従来の地絡抵抗検出方法において接
地系に印加される直流電圧を示す図である。従来
の方法においては、この図に示すように、比較的
高電圧(例えば、500〜1000V程度)の直流電圧
Eを、比較的長時間(例えば、1分間程度)接地
系4に印加している。
FIG. 4 is a diagram showing the DC voltage applied to the ground system in the conventional ground fault resistance detection method. In the conventional method, as shown in this figure, a relatively high voltage (for example, about 500 to 1000 V) DC voltage E is applied to the grounding system 4 for a relatively long time (for example, about 1 minute). .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のような地絡抵抗検出方法においては、地
絡抵抗検出動作中(即ち、試験中)に、接地系4
に比較的高電圧を比較的長時間印加するため、接
地系4に悪影響を与える可能性がある。例えば、
接地系4に絶縁劣化をもたらせたり、既にあつた
絶縁劣化を促進したりする可能性がある。
In the ground fault resistance detection method as described above, during the ground fault resistance detection operation (i.e., during the test),
Since a relatively high voltage is applied for a relatively long period of time, there is a possibility that the grounding system 4 will be adversely affected. for example,
This may cause insulation deterioration in the grounding system 4 or accelerate insulation deterioration that has already occurred.

更に、地絡抵抗8を検出する度にスイツチ18
を開にしなければならないので、地絡抵抗8を繰
り返し監視することはできない。加えて、スイツ
チ18は接地系4を主接地点7に接地する経路に
挿入されているため、その信頼性は極めて高いも
のが要求される。万一、スイツチ18が開のまま
電気設備2を運転すれば、無接地となり大事故に
波及する恐れがある。
Furthermore, every time the ground fault resistance 8 is detected, the switch 18 is turned on.
Since the ground fault resistance 8 must be kept open, the ground fault resistance 8 cannot be repeatedly monitored. In addition, since the switch 18 is inserted into the path for grounding the grounding system 4 to the main grounding point 7, it is required to have extremely high reliability. If the electrical equipment 2 were to be operated with the switch 18 open, it would become ungrounded, which could lead to a major accident.

従つてこの発明は、上記のような接地系の地絡
抵抗を、接地系に与える悪影響を最小限にしてし
かも安全に検出することができる地絡抵抗検出方
法を提供することを主たる目的とする。
Therefore, the main object of the present invention is to provide a ground fault resistance detection method that can safely detect the ground fault resistance of the ground system as described above while minimizing the adverse effects on the ground system. .

〔問題点を解決するための手段〕[Means for solving problems]

この発明の地絡抵抗検出方法は、接地系の接地
線に、変流器を介して、周波数が数百Hz程度の高
周波でピーク値が数十mV〜数百mV程度の低電
圧を数サイクル程度の短時間誘起せしめ、この電
圧と接地系に流れる電流の比から地絡抵抗を検出
することを特徴とする。
In the ground fault resistance detection method of the present invention, a low voltage with a high frequency of several hundred Hz and a peak value of several tens of mV to several hundred mV is applied to the grounding line of the grounding system via a current transformer for several cycles. The ground fault resistance is detected from the ratio of this voltage and the current flowing through the ground system.

〔作用〕[Effect]

この発明の地絡抵抗検出方法においては、接地
線に変流器を介して上記のような高周波の低電圧
を短時間誘起せしめる。従つて、接地線を接地点
から切り離す必要はない。接地系に地絡抵抗があ
れば、それに応じた電流が接地系に流れるので、
この電流と誘起せしめた電圧との比によつて接地
系の地絡抵抗を検出することができる。
In the ground fault resistance detection method of the present invention, a high frequency low voltage as described above is induced in the ground wire for a short time via a current transformer. Therefore, there is no need to disconnect the ground wire from the ground point. If there is a ground fault resistance in the ground system, a corresponding current will flow through the ground system, so
The ground fault resistance of the ground system can be detected by the ratio of this current to the induced voltage.

〔実施例〕〔Example〕

第1図は、この発明に係る地絡抵抗検出方法を
説明するための回路図の一例である。電気設備2
の接地系4の接地線6に、例えば貫通形の変流器
10及び12を取付け、後で詳述するように、駆
動電源14から変流器10に駆動電圧V2を供給
して、接地線6に(即ち、地絡ループLに)高周
波の低電圧V1を短時間誘起させる(印加する)。
これによつて、接地系4に地絡抵抗8が生じてい
る場合には接地線6に電流I1が流れ、これを変流
器12で検出し、更に必要に応じて増幅回路16
で増幅する。そしてこの時の地絡抵抗8の抵抗値
Rを、上記電圧V1および電流I1を用いて、R=
V1/I1より求める。これの演算には、種々の公知
の手段が利用できる。
FIG. 1 is an example of a circuit diagram for explaining the ground fault resistance detection method according to the present invention. Electrical equipment 2
For example, through-type current transformers 10 and 12 are attached to the grounding wire 6 of the grounding system 4, and as will be described in detail later, the drive voltage V2 is supplied from the drive power supply 14 to the current transformer 10, and the grounding A high-frequency low voltage V 1 is induced (applied) to the line 6 (that is, to the ground fault loop L) for a short time.
As a result, when a ground fault resistance 8 occurs in the grounding system 4, a current I1 flows through the grounding wire 6, which is detected by the current transformer 12, and is further detected by the amplifier circuit 16 as necessary.
Amplify with. Then, the resistance value R of the ground fault resistor 8 at this time is determined by using the above voltage V 1 and current I 1 , R=
Calculated from V 1 /I 1 . Various known means can be used for this calculation.

第2図は、この発明により接地線に誘起される
電圧V1の波形の一例を示す図である。この電圧
V1は、周波数が数百Hz、例えば100〜500Hzの高
周波であり、印加時間Tが数サイクル、例えば3
〜5サイクルの短時間であり、ピーク値Vpが数
十mV〜数百mVの低電圧である。
FIG. 2 is a diagram showing an example of the waveform of the voltage V1 induced in the ground line according to the present invention. this voltage
V 1 is a high frequency with a frequency of several hundred Hz, for example 100 to 500 Hz, and the application time T is several cycles, for example 3
It is a short period of ~5 cycles, and is a low voltage with a peak value Vp of several tens of mV to several hundred mV.

このような電圧V1を変流器10を介して接地
線6に誘起させるため、駆動電源14から、上記
と同様の周波数及び印加時間で変流器10の巻数
比に応じた大きさの駆動電圧V2を変流器10に
供給する。この場合、変流器10の1次/2次の
巻数比をaとすれば、V2=V1/aで定まり、こ
の巻数比aを1/数百とすれば、上述のような電
圧V1を誘起させるための駆動電圧V2のピーク値
は、数V〜数十V、例えば3〜30V程度となる。
In order to induce such a voltage V 1 in the grounding wire 6 via the current transformer 10, a drive voltage corresponding to the turns ratio of the current transformer 10 is applied from the drive power source 14 at the same frequency and application time as above. A voltage V 2 is supplied to the current transformer 10 . In this case, if the primary/secondary turns ratio of the current transformer 10 is a, it is determined by V 2 =V 1 /a, and if this turns ratio a is 1/several hundred, the above voltage The peak value of the driving voltage V 2 for inducing V 1 is from several volts to several tens of volts, for example, about 3 to 30 volts.

接地線6に誘起させる電圧V1として、通常考
えられる連続した商用周波数のものと違つて、上
述のような高周波、低電圧、短時間のものが好ま
しい理由を説明すると、第1図に示したような地
絡抵抗検出回路においても、地絡抵抗8の検出動
作中に接地系4に1回の測定のために長時間電圧
を印加すると、絶縁劣化を進行させる等の悪影響
を接地系4や地絡ループLに与える恐れが無いと
は言えない。そのような悪影響を最小限にするた
めには、接地線6に誘起させる電圧V1はできる
限り短時間のもの、例えばパルス電圧のようなも
のの方が良い。しかし、接地線6に流れる電流I1
等を或る程度正確に検出するためには、或る程度
の時間が必要である。従つて印加時間Tは、上述
のように数サイクル程度が好ましい。
The reason why the voltage V 1 induced in the grounding wire 6 is preferable to be a high frequency, low voltage, short time voltage as described above, unlike the normally considered continuous commercial frequency voltage, is as shown in Figure 1. Even in such a ground fault resistance detection circuit, if a voltage is applied to the ground system 4 for a long time for one measurement while the ground fault resistance 8 is being detected, it may cause negative effects such as progressing insulation deterioration on the ground system 4 and the ground fault resistance 8. It cannot be said that there is no risk of damaging the ground fault loop L. In order to minimize such adverse effects, it is preferable that the voltage V 1 induced in the ground line 6 be as short as possible, such as a pulse voltage. However, the current I 1 flowing through the grounding wire 6
etc., a certain amount of time is required to detect them with a certain degree of accuracy. Therefore, the application time T is preferably about several cycles as described above.

又、電圧V1の大きさも、接地系4に与える悪
影響を最小限にするため、地絡抵抗8を検出でき
る最小の電圧、例えば数十mV〜数百mV程度の
電圧が好ましい。
Furthermore, in order to minimize the adverse effect on the grounding system 4, the magnitude of the voltage V1 is preferably the minimum voltage at which the ground fault resistance 8 can be detected, for example, a voltage of about several tens of mV to several hundred mV.

更に、一般に変流器においては、出力電圧を一
定とするならば、それの磁束密度は周波数に逆比
例して小さくできるので、駆動電圧V2の周波数
が高い方が変流器10及び12を小形にすること
ができる。しかし、あまり周波数が高いと漂遊容
量が大となる等の問題が生じるので、駆動電圧
V2は数百Hz程度の高周波が好ましく、従つてこ
れによつて誘起される電圧V1も同じ高周波とな
る。又、電圧V1の周波数を高周波とすると、電
気設備2に一般に用いられている商用周波と容易
に弁別できるため、検出上の誤動作を防止するこ
ともできる。更に、変流器10及び12が小形に
なると、それらを接地系4内の複数箇所に設置す
ることが容易となる。
Furthermore, in general, in a current transformer, if the output voltage is kept constant, its magnetic flux density can be reduced in inverse proportion to the frequency. Can be made small. However, if the frequency is too high, problems such as large stray capacitance will occur, so the driving voltage
V 2 is preferably a high frequency of about several hundred Hz, and therefore the voltage V 1 induced thereby also has the same high frequency. Moreover, if the frequency of the voltage V 1 is set to a high frequency, it can be easily distinguished from the commercial frequency commonly used in the electrical equipment 2, so that malfunctions in detection can be prevented. Furthermore, when the current transformers 10 and 12 are made smaller, it becomes easier to install them at multiple locations within the grounding system 4.

従つて、上述したような地絡抵抗検出方法によ
れば、接地系に与える悪影響を最小限にして地絡
抵抗を検出することが可能となる。又、それ故、
上記のような電圧V1を間欠的に繰り返して誘起
させるようにしてもよく、そのようにすれば、地
絡抵抗の繰り返し監視をすることも、接地系に与
える悪影響を最小限にして行うことができる。更
に接地系を主接地点から切り離す必要はないので
安全である。
Therefore, according to the ground fault resistance detection method as described above, it is possible to detect the ground fault resistance while minimizing the adverse effects on the ground system. Also, therefore,
The above voltage V 1 may be induced repeatedly intermittently, and in this way, the earth fault resistance can be repeatedly monitored while minimizing the adverse effects on the earthing system. I can do it. Furthermore, it is safe because there is no need to separate the grounding system from the main grounding point.

又、単に電源から流出する電流の値を検出する
だけで地絡を検出する場合は、電流電圧変動の影
響を受けて検出精度が低下するが、この地絡抵抗
検出方法では、印加電圧とそれによつて接地系に
流れる電流との比から地絡抵抗を検出するので、
電源電圧変動の影響を受けず、検出精度が高くな
るという効果も得られる。例えば、話を簡単にす
るために電源電圧が半分になつたとすると、地絡
抵抗を有する接地系に流れる電流も半分になるの
で、単に電流を検出するだけでは、正確な地絡検
出は望めない。ところが、電源電圧が半分になり
電流が半分になつても、両者の比である地絡抵抗
について見れば不変であるから、地絡抵抗を検出
するようにしておけば、電源電圧変動の影響は受
けない。
In addition, when detecting a ground fault by simply detecting the value of the current flowing from the power supply, the detection accuracy decreases due to the influence of current and voltage fluctuations, but with this ground fault resistance detection method, the applied voltage and its Therefore, since the ground fault resistance is detected from the ratio with the current flowing in the ground system,
It is also possible to obtain the effect of increasing detection accuracy without being affected by power supply voltage fluctuations. For example, to keep things simple, if the power supply voltage is halved, the current flowing through the grounding system that has a ground fault resistance will also be halved, so you cannot expect accurate ground fault detection by simply detecting the current. . However, even if the power supply voltage is halved and the current is halved, the ground fault resistance, which is the ratio of the two, remains unchanged, so if the ground fault resistance is detected, the influence of power supply voltage fluctuations can be reduced. I don't accept it.

尚、前述した変流器10及び12は、巻線形と
して接地線6の途中に挿入接続しても良い。又、
変流器10及び12は、接地系4内の任意の接地
線に取付けても良く、しかも複数箇所に取付けて
も良い。
Incidentally, the current transformers 10 and 12 described above may be inserted and connected in the middle of the ground wire 6 as winding wires. or,
The current transformers 10 and 12 may be attached to any grounding wire in the grounding system 4, and may be attached at a plurality of locations.

更に、接地線6に流れる電流I1を検出する方法
としては、第1図に示したように変流器12で直
接に検出するものの他に、駆動電源14と変流器
10との間に変流器を入れてそこを流れる電流を
測定してそれを電流I1に換算し、言わば間接的に
電流I1を検出する方法もある。又、接地線6に誘
起される電圧V1は、第1図に示した回路では、
V1=aV2から算出できるが、これ以外に、変流器
10に3次巻線を設けてそこの電圧V3を検出し、
変流器10の1次/3次の巻数比をa3としてV1
=a3V3から算出することもできる。
Furthermore, as a method of detecting the current I 1 flowing through the grounding wire 6, in addition to directly detecting it with the current transformer 12 as shown in FIG. There is also a method of indirectly detecting current I 1 by inserting a current transformer, measuring the current flowing through it, and converting it to current I 1 . In addition, the voltage V 1 induced in the grounding wire 6 is as follows in the circuit shown in FIG.
It can be calculated from V 1 = aV 2 , but in addition to this, a tertiary winding is provided in the current transformer 10 and the voltage V 3 there is detected,
Assuming that the primary/tertiary turns ratio of the current transformer 10 is a 3 , V 1
It can also be calculated from = a 3 V 3 .

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、接地系の接地
線に変流器を介して上記のような高周波の低電圧
を短時間誘起せしめるので、電気設備の接地系に
与える悪影響を最小限にしてその地絡抵抗を検出
することができる。又、上記のような高周波を使
用しているので、変流器を小形にすることができ
ると共に、商用周波と容易に弁別できるため検出
上の誤動作を防止することもできる。しかも、地
絡抵抗の検出の際に接地系を主接地点から切り離
す必要が無いので、地絡抵抗の常時監視が可能で
あると共に安全性も高い。
As described above, according to the present invention, the above-mentioned high-frequency low voltage is induced in the grounding line of the grounding system via the current transformer for a short time, thereby minimizing the negative impact on the grounding system of electrical equipment. Its ground fault resistance can be detected. Furthermore, since the above-mentioned high frequency is used, the current transformer can be made compact, and since it can be easily distinguished from the commercial frequency, it is also possible to prevent malfunctions in detection. Moreover, since there is no need to disconnect the grounding system from the main grounding point when detecting the ground fault resistance, the ground fault resistance can be constantly monitored and safety is high.

又、単に電源から流出する電流の値を検出する
だけで地絡を検出する場合は、電源電圧変動の影
響を受けて検出精度が低下するが、この発明の地
絡抵抗検出方法では、印加電圧とそれによつて接
地系に流れる電流との比から地絡抵抗を検出する
ようにしているので、電源電圧変動の影響を受け
ず、検出精度が高くなるという効果も得られる。
In addition, when detecting a ground fault by simply detecting the value of the current flowing from the power supply, the detection accuracy decreases due to the influence of power supply voltage fluctuation, but in the ground fault resistance detection method of this invention, the applied voltage Since the ground fault resistance is detected from the ratio of the current flowing through the ground system and the current flowing through the ground system, it is not affected by power supply voltage fluctuations and the detection accuracy is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に係る地絡抵抗検出方法を
説明するための回路図の一例である。第2図は、
この発明により接地線に誘起される電圧の波形の
一例を示す図である。第3図は、従来の地絡抵抗
検出方法を説明するための回路図である。第4図
は、従来の地絡抵抗検出方法において接地系に印
加される直流電圧を示す図である。 2……電気設備、4……接地系、6……接地
線、8……地絡抵抗、10,12……変流器、
V1……接地線に誘起される電圧、I1……接地系に
流れる電流。
FIG. 1 is an example of a circuit diagram for explaining the ground fault resistance detection method according to the present invention. Figure 2 shows
FIG. 3 is a diagram showing an example of the waveform of a voltage induced in a ground line according to the present invention. FIG. 3 is a circuit diagram for explaining a conventional ground fault resistance detection method. FIG. 4 is a diagram showing the DC voltage applied to the ground system in the conventional ground fault resistance detection method. 2...Electrical equipment, 4...Grounding system, 6...Grounding wire, 8...Ground fault resistance, 10, 12...Current transformer,
V 1 ... Voltage induced in the grounding wire, I 1 ... Current flowing in the grounding system.

Claims (1)

【特許請求の範囲】[Claims] 1 1点接地系採用の電気設備の接地系の地絡抵
抗を検出する方法であつて、当該接地系の接地線
に、変流器を介して、周波数が数百Hz程度の高周
波でピーク値が数十mV〜数百mV程度の低電圧
を数サイクル程度の短時間誘起せしめ、この電圧
と接地系に流れる電流の比から地絡抵抗を検出す
ることを特徴とする地絡抵抗検出方法。
1 A method for detecting the ground fault resistance of the grounding system of electrical equipment that uses a single-point grounding system, in which the peak value is detected at a high frequency of about several hundred Hz through a current transformer in the grounding wire of the grounding system. A method for detecting ground fault resistance, characterized in that a low voltage of several tens of mV to several hundred mV is induced for a short period of time of several cycles, and ground fault resistance is detected from the ratio of this voltage to the current flowing through the ground system.
JP13059885A 1985-06-14 1985-06-14 Detecting method for grounding resistance Granted JPS61288171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13059885A JPS61288171A (en) 1985-06-14 1985-06-14 Detecting method for grounding resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13059885A JPS61288171A (en) 1985-06-14 1985-06-14 Detecting method for grounding resistance

Publications (2)

Publication Number Publication Date
JPS61288171A JPS61288171A (en) 1986-12-18
JPH0528348B2 true JPH0528348B2 (en) 1993-04-26

Family

ID=15038037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13059885A Granted JPS61288171A (en) 1985-06-14 1985-06-14 Detecting method for grounding resistance

Country Status (1)

Country Link
JP (1) JPS61288171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004323A1 (en) * 1995-07-19 1997-02-06 The Nippon Signal Co., Ltd. Apparatus for detecting discontinuity of ground conductor and leak detector having function of detecting discontinuity of ground conductor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121028A (en) * 2005-10-26 2007-05-17 Hitachi Building Systems Co Ltd Insulation resistance diagnostic system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421721Y2 (en) * 1973-10-19 1979-08-01

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004323A1 (en) * 1995-07-19 1997-02-06 The Nippon Signal Co., Ltd. Apparatus for detecting discontinuity of ground conductor and leak detector having function of detecting discontinuity of ground conductor

Also Published As

Publication number Publication date
JPS61288171A (en) 1986-12-18

Similar Documents

Publication Publication Date Title
Kojovic Rogowski coils suit relay protection and measurement~ of power systems\
US3775675A (en) Apparatus for indicating when current exceeds a predetermined level and when said level is exceeded for a predetermined period of time
US4371832A (en) DC Ground fault detector wherein fault is sensed by noting imbalance of magnetic flux in a magnetic core
JPH03501523A (en) Accident detection
US5530363A (en) DC ground fault detecting apparatus with an auto-null circuit and method
US3007106A (en) Current meter and probe therefor
IT8322192A1 (en) LOAD DRIVING CIRCUIT WITH LOAD CURRENT DETECTION
US3832600A (en) Transformer internal fault detector
JPS5927923B2 (en) Genshirono Anzensouchi
US3548302A (en) Apparatus for detecting faults in the insulation covering of insulated electric conductors including means for causing a fluctuating current to flow through a bare portion of the insulation
US3401395A (en) Fault recorder
CA1289191C (en) Detection of transposition group short circuits in machine windings
JPH0528348B2 (en)
Bruce et al. Remanent flux in current-transformer cores
GB1204901A (en) Determining distance-to-fault in electrical systems
WO1983000559A1 (en) Method and device for magnetic control of mechanical properties of moving lengthy ferromagnetic object
JPH07312823A (en) Dc leak detection and protective device
JPH09101340A (en) Intermittent ground fault position locating method and insulation deterioration monitoring method in power distribution system
JPS61288170A (en) Detecting circuit for grounding resistance
US3961224A (en) Transient-free isolation monitor
SE431141B (en) DEVICE FOR DETECTING A DC COMPONENT IN A POWER TRANSFORMER
Tay et al. A novel method of detecting asymmetrical transformer core saturation due to GIC
Manzano Fernández et al. Detection of open phase condition in power transformers
US3284710A (en) A.c. or pulsating d.c. input signal current measuring transformer system with transformer output ratios corresponding to the input signal
JPS62299794A (en) Method and device for monitoring neutron flux of nuclear reactor