JPH05283354A - Ion implantation method - Google Patents

Ion implantation method

Info

Publication number
JPH05283354A
JPH05283354A JP4081215A JP8121592A JPH05283354A JP H05283354 A JPH05283354 A JP H05283354A JP 4081215 A JP4081215 A JP 4081215A JP 8121592 A JP8121592 A JP 8121592A JP H05283354 A JPH05283354 A JP H05283354A
Authority
JP
Japan
Prior art keywords
insulating film
ion beam
floating electrode
ion implantation
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4081215A
Other languages
Japanese (ja)
Other versions
JP3175280B2 (en
Inventor
Katsuro Yashima
勝郎 八島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP08121592A priority Critical patent/JP3175280B2/en
Publication of JPH05283354A publication Critical patent/JPH05283354A/en
Application granted granted Critical
Publication of JP3175280B2 publication Critical patent/JP3175280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To make a charge level of a semiconductor substrate always stable at an allowable value or less during ion implantation regarding an ion implantation method in a manufacturing process of a semiconductor device. CONSTITUTION:A semiconductor device which has a floating electrode 3 which is electrically isolated from an Si substrate 1 by a first SiO2 film 2, has a second SiO2 film 4 covering the floating electrode 3 and also has a resist film 5 which covers the second SiO2 film 4 and forms an opening part 6 in a part or an entire region of the floating electrode 3. When impurity ions 7 are implanted inside the Si substrate 1 by ion beam, correlation between a maximum spot current of ion beam and manufacturing yield is obtained in advance and ion beam is irradiated at the maximum spot current which realizes specified yield or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,半導体装置の製造工程
におけるイオン注入方法に関し, 半導体基板と電気的に
分離されたフローティング電極のある状態での不純物の
イオン注入方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion implantation method in a semiconductor device manufacturing process, and more particularly to an impurity ion implantation method in a state where a floating electrode electrically separated from a semiconductor substrate is provided.

【0002】さらに, 本発明は, イオン注入時のチャー
ジアップ対策として, イオンビームのイオン分布におけ
る最大スポット電流を規格値以下に限定してイオン注入
することで, チャージレベルを常に許容値以下の安定し
た状態とするチャージアップ対策方法に関する。
Furthermore, the present invention limits the maximum spot current in the ion distribution of the ion beam to below the standard value as a measure against charge-up during ion implantation, so that the charge level is always stable below the allowable value. It is related to the charge-up countermeasure method that keeps the battery in the charged state.

【0003】[0003]

【従来の技術】図3は従来例の説明図,図4は平均電荷
密度,及び,最大スポット電流とデバイス歩留である。
2. Description of the Related Art FIG. 3 is an explanatory view of a conventional example, and FIG. 4 is an average charge density, maximum spot current and device yield.

【0004】図において,14は半導体基板, 15は第1の
絶縁膜,16はフローティング電極,17は第2の絶縁膜,1
8は注入イオン, 19は半導体基板, 20は第1の絶縁膜,2
1はフローティング電極, 22は第2の絶縁膜,23は第3
の絶縁膜,24は開口部, 25は注入イオンである。
In the figure, 14 is a semiconductor substrate, 15 is a first insulating film, 16 is a floating electrode, 17 is a second insulating film, 1
8 is implanted ions, 19 is a semiconductor substrate, 20 is a first insulating film, 2
1 is a floating electrode, 22 is a second insulating film, and 23 is a third
Is an insulating film, 24 is an opening, and 25 is an implanted ion.

【0005】従来, イオン注入時のチャージアップ対策
としてのビーム電流の管理方法としては, 図3に示した
異なるデバイス構造にかかわらず,1回のスキャンで半
導体基板に注入されるイオンの電荷密度を12μcoul/cm2
・scan以下としていた。
Conventionally, as a method of managing a beam current as a measure for charge-up at the time of ion implantation, the charge density of ions implanted into a semiconductor substrate in one scan is determined regardless of the different device structure shown in FIG. 12 μcoul / cm 2
・ It was below scan.

【0006】現在, チャージアップによる二酸化シリコ
ン(SiO2)膜劣化を起こす半導体基板中のデバイス構造と
して, 次の二つが挙げられる。一つは, 図3(a)で示
した第1の絶縁膜15と第2の絶縁膜16の間に埋め込まれ
たフローティング電極16を有する構造 (デバイスAと呼
ぶ),もう一つは,図3(b)で示した第3の絶縁膜(2
3)の一部に開口部(24)を形成したフローティング電極21
を有する構造( デバイスBと呼ぶ)である。
At present, there are the following two device structures in a semiconductor substrate that cause deterioration of a silicon dioxide (SiO 2 ) film due to charge-up. One is a structure having a floating electrode 16 embedded between the first insulating film 15 and the second insulating film 16 shown in FIG. 3A (referred to as device A), and the other is the structure shown in FIG. The third insulating film (2
Floating electrode 21 with an opening (24) formed in part of 3)
Is a structure having (referred to as device B).

【0007】従来の方法は,イオン注入時のイオンビー
ムの供給電流を示す単位時間当たりの平均電荷密度によ
る管理を特徴としている。これは,図3(a)に示すよ
うな,フローティング電極16が絶縁膜15,17 内に埋め込
まれている構造のデバイスAの歩留りが, 図4(a)に
示すように,イオン注入時のイオンビームの平均電荷密
度に対してはっきりした相関関係を持つことから,イオ
ン注入時のイオンビームの平均電荷密度の規格化(上限
設定)により,デバイスAのチャージアップによる特性
劣化を管理する方法の有効性は確認できる。
The conventional method is characterized by management by the average charge density per unit time, which indicates the supply current of the ion beam during ion implantation. This is because the yield of the device A having the structure in which the floating electrode 16 is embedded in the insulating films 15 and 17 as shown in FIG. 3A is as shown in FIG. Since there is a clear correlation with the average charge density of the ion beam, a method of managing the characteristic deterioration due to charge-up of the device A by normalizing (setting the upper limit) the average charge density of the ion beam during ion implantation is proposed. The effectiveness can be confirmed.

【0008】[0008]

【発明が解決しようとする課題】しかし,フローティン
グ電極21上の一部に第3の絶縁膜23の開口部24を持つ構
造のデバイスBにおいては,図4(a)に示すように,
その歩留りがイオン注入時のイオンビームの平均電荷密
度とまったく相関関係がない。
However, in the device B having the structure in which the opening 24 of the third insulating film 23 is provided in a part of the floating electrode 21, as shown in FIG.
The yield has no correlation with the average charge density of the ion beam during ion implantation.

【0009】この様に,平均電荷密度の上限値を決定し
た従来のチャージアップ対策のための管理方法では,デ
バイスBの構造を有する素子の特性劣化には対処出来な
いため,チャージアップ管理方法としては未だ不十分で
ある。
As described above, the conventional management method for the charge-up countermeasure in which the upper limit of the average charge density is determined cannot deal with the characteristic deterioration of the element having the structure of the device B. Is still insufficient.

【0010】本発明は,以上の問題点を解決するため,
イオイン注入時の半導体基板のチャージレベルを常に許
容値以下の安定した状態とする管理方法を提供すること
を目的とする。
In order to solve the above problems, the present invention provides
It is an object of the present invention to provide a management method for keeping the charge level of a semiconductor substrate at the time of ioin injection always in a stable state below an allowable value.

【0011】[0011]

【課題を解決するための手段】図1は本発明の原理説明
図である。図において,1は半導体基板, 2は第1の絶
縁膜,3はフローティング電極,4は第2の絶縁膜,5
は第3の絶縁膜,6は開口部, 7は注入イオン,8はイ
オンビーム形状,9はピークポイントである。
FIG. 1 illustrates the principle of the present invention. In the figure, 1 is a semiconductor substrate, 2 is a first insulating film, 3 is a floating electrode, 4 is a second insulating film, 5
Is a third insulating film, 6 is an opening, 7 is an implanted ion, 8 is an ion beam shape, and 9 is a peak point.

【0012】図4(b)に示したように,デバイスBの
構造はイオンビーム内の最大スポット電流と相関関係に
ある。最大スポット電流が200μA/cm2 を越えて
増えてくると,急激に歩留が低下する。
As shown in FIG. 4 (b), the structure of the device B correlates with the maximum spot current in the ion beam. If the maximum spot current increases beyond 200 μA / cm 2 , the yield will suddenly drop.

【0013】つまり,デバイスBの歩留の管理は,イオ
ンビーム内の最大スポット電流を規制するのが良い事が
分かる。図1(b)上段左側の平面図において,イオン
注入時のイオンビーム形状8は,やや楕円形をなしてお
り,イオンビームのビーム電流の分布は,その中心付近
にピークポイント9がある。ピークポイントでY軸の断
面図を右側に,X軸の断面図を下側に示す。
That is, it is understood that the control of the yield of the device B is to regulate the maximum spot current in the ion beam. In the plan view on the left side of the upper part of FIG. 1B, the ion beam shape 8 at the time of ion implantation is slightly elliptical, and the distribution of the beam current of the ion beam has a peak point 9 near its center. At the peak point, the Y-axis sectional view is shown on the right side, and the X-axis sectional view is shown on the lower side.

【0014】ここで,最大スポット電流とは,図1
(b)に示すように,イオン密度が高い部分の単位面積
あたりの電流値を意味する。本来なら,イオンビーム内
のスポット電流を完全に全て均一にするのが理想である
が,現状の装置において,それは不可能である。
Here, the maximum spot current is as shown in FIG.
As shown in (b), it means a current value per unit area of a portion having a high ion density. Originally, it is ideal that the spot current in the ion beam should be completely uniform, but this is not possible with the current equipment.

【0015】そこで,スポット電流が全て均一でなくと
も,最大スポット電流を175μA/cm2 以下と設定
することで, 前項の図4(b)に示すように,デバイス
Bにおいて殆ど100% の歩留りが保証され,イオン
注入時の半導体基板のチャージアップ管理が可能である
ことを見出した。
Therefore, even if the spot currents are not all uniform, by setting the maximum spot current to 175 μA / cm 2 or less, almost 100% yield can be obtained in the device B as shown in FIG. We have found that it is possible to guarantee the charge-up control of the semiconductor substrate during ion implantation.

【0016】即ち,本発明の目的は,図1(a)に示す
ように,半導体基板1から第1の絶縁膜2によって電気
的に分離されたフローティング電極3を有し, 且つ, 該
フローティング電極3を覆う第2の絶縁膜4を有し, 更
に, 該第2の絶縁膜4を覆って,該フローティング電極
3領域上の一部に開口部6を形成した,第3の絶縁膜5
を有する半導体装置において,イオンビームにて該半導
体基板1内に不純物イオン7を注入する際に, あらかじ
めイオンビームの最大スポット電流と製造歩留りとの相
関関係を求めておき,所定の歩留り以上になるような最
大スポット電流でイオンビームを照射するようにするこ
とにより達成される。
That is, an object of the present invention is to have a floating electrode 3 electrically separated from a semiconductor substrate 1 by a first insulating film 2 as shown in FIG. A third insulating film 5 which has a second insulating film 4 which covers the second insulating film 4, and which has an opening 6 formed in a part of the floating electrode 3 region so as to cover the second insulating film 4.
In the semiconductor device having the above, when the impurity ions 7 are implanted into the semiconductor substrate 1 by the ion beam, the correlation between the maximum spot current of the ion beam and the manufacturing yield is obtained in advance, and the yield becomes higher than the predetermined yield. It is achieved by irradiating the ion beam with such a maximum spot current.

【0017】[0017]

【作用】本発明では, 半導体装置へのイオン注入時にお
いて,イオンビーム内の最大スポット電流を管理(上限
設定)することで, デバイスB相当の構造の素子を含む
LSI等の半導体装置の歩留り管理が可能となる。
According to the present invention, the maximum spot current in the ion beam is controlled (upper limit is set) at the time of ion implantation into the semiconductor device, whereby the yield management of the semiconductor device such as LSI including the element having the structure corresponding to the device B is performed. Is possible.

【0018】[0018]

【実施例】図2は本発明の一実施例の説明図である。図
において,10はソース, 11はドレイン, 12はゲート電
極, 13はゲート引出電極である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 is an explanatory view of an embodiment of the present invention. In the figure, 10 is the source, 11 is the drain, 12 is the gate electrode, and 13 is the gate extraction electrode.

【0019】デバイスBの構造の素子を有するMOSの
TEG(Test Element Groupe) に,本発明のイオン注入
方法を適用した一実施例について説明する。デバイス条
件は, 図2(a)に矢印で範囲を示すように,ゲート引
出電極13であるアンテナ部(面積B)と,ゲート電極12
(面積A)の面積の比率は25,アンテナ部のSiO2
(フィールドSiO2膜等) の厚さは 4,500Å, ゲート電極
12下部のゲートSiO2膜の厚さは 250Å, ゲート電極12上
の第3の絶縁膜はレジスト膜である。
An embodiment in which the ion implantation method of the present invention is applied to a TEG (Test Element Groupe) of MOS having an element of the structure of device B will be described. The device conditions are as shown by the arrow in FIG. 2 (a), and the antenna part (area B) that is the gate extraction electrode 13 and the gate electrode 12
The area ratio of (area A) is 25, the thickness of the SiO 2 film (field SiO 2 film, etc.) in the antenna part is 4,500Å, the gate electrode
The thickness of the lower gate SiO 2 film is 250Å, and the third insulating film on the gate electrode 12 is a resist film.

【0020】また,イオン注入条件は, 三弗化硼素(B
F3) をイオンソースとして用い,弗化硼素イオン(B
F2 + ) を加速電圧 60KeV, ドーズ量3.5 x1015 /cm
2 で, イオン注入時のビーム電流7mAにして注入す
る。
Ion implantation conditions are boron trifluoride (B
F 3 ) is used as an ion source, and boron fluoride ion (B 3
F 2 + ) acceleration voltage 60 KeV, dose 3.5 x10 15 / cm
At 2 , the beam current at the time of ion implantation is set to 7 mA.

【0021】この場合の最大スポット電流は図2(b)
に示すように,250μA/cm2 の条件(1)の場合
と,最大スポット電流175μA/cm2 の条件(2)の
場合と,装置の調整によりビーム電流の強度を変える
と,MOS・LSI内ののTEGの歩留は表1のように
変化する。
The maximum spot current in this case is shown in FIG.
As shown in the case of 250 .mu.A / cm 2 conditions (1), in the case of the maximum spot current 175μA / cm 2 of the condition (2), changing the intensity of the beam current by adjusting the device, MOS · the LSI The yield of TEG changes as shown in Table 1.

【0022】[0022]

【表1】 表1で示すように,デバイスA構造のTEGでは,最大
スポット電流の値には歩留りが余り関係しないが,デバ
イスB構造のTEGでは,最大スポット電流の値が17
5μA/cm2 では歩留が良く, 250μAでは歩留りが
非常に悪い。
[Table 1] As shown in Table 1, in the TEG of the device A structure, the yield has little relation to the maximum spot current value, but in the TEG of the device B structure, the maximum spot current value is 17
The yield is good at 5 μA / cm 2 , and the yield is very bad at 250 μA.

【0023】この結果は図4(b)においても示され,
不純物イオンの種類にかかわりなく,1mA以上のビー
ム電流にてイオン注入を行う場合には,本発明のよう
に,最大スポット電流の上限値を175μA/cm2 以下
にすることが必要となる。
This result is also shown in FIG. 4 (b),
When performing ion implantation with a beam current of 1 mA or more regardless of the type of impurity ions, it is necessary to set the upper limit of the maximum spot current to 175 μA / cm 2 or less as in the present invention.

【0024】[0024]

【発明の効果】以上説明したように, 本発明によれば,
イオンビーム内の最大スポット電流を管理する事で,デ
バイスB構造の歩留を管理することが可能となる。
As described above, according to the present invention,
By controlling the maximum spot current in the ion beam, it becomes possible to control the yield of the device B structure.

【0025】そして,これから,常に一定したチャージ
レベルで製品を処理することが可能となり,LSIデバ
イスの信頼性の向上に寄与するところが大きい。
From now on, it becomes possible to process the product at a constant charge level, which greatly contributes to the improvement of the reliability of the LSI device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の原理説明図FIG. 1 is an explanatory view of the principle of the present invention.

【図2】 本発明の一実施例の説明図FIG. 2 is an explanatory diagram of an embodiment of the present invention.

【図3】 従来例の説明図FIG. 3 is an explanatory diagram of a conventional example.

【図4】 平均電荷密度及び最大スポット電流とデバイ
ス歩留
FIG. 4 Average charge density, maximum spot current and device yield

【符号の説明】[Explanation of symbols]

1 半導体基板 2 第1の絶縁膜 3 フローティング電極 4 第2の絶縁膜 5 第3の絶縁膜 6 開口部 7 注入イオン 8 イオンビーム形状 9 ピークポイント 10 ソース 11 ドレイン 12 ゲート電極 13 ゲート引出電極 1 Semiconductor Substrate 2 First Insulating Film 3 Floating Electrode 4 Second Insulating Film 5 Third Insulating Film 6 Opening 7 Injected Ion 8 Ion Beam Shape 9 Peak Point 10 Source 11 Drain 12 Gate Electrode 13 Gate Extraction Electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板(1) から第1の絶縁膜(2) に
よって電気的に分離されたフローティング電極(3) を有
し, 且つ, 該フローティング電極(3) を覆う第2の絶縁
膜(4) を有し, 更に, 該第2の絶縁膜(4) を覆って,該
フローティング電極(3) 領域上に相当する一部,又は全
部に開口部(6) を形成した第3の絶縁膜(5) を有する半
導体装置において, イオンビームにて該半導体基板(1) 内に不純物イオン
(7) を注入する際に, あらかじめイオンビームの最大ス
ポット電流と製造歩留りとの相関関係を求めておき,所
定の歩留り以上になるような最大スポット電流でイオン
ビームを照射するようにすることを特徴とするイオン注
入方法。
1. A second insulating film having a floating electrode (3) electrically separated from a semiconductor substrate (1) by a first insulating film (2) and covering the floating electrode (3). And a third insulating film (4) which covers the second insulating film (4) and has an opening (6) formed in a part or all of the floating electrode (3) region. In a semiconductor device having an insulating film (5), ion beams are used to implant impurity ions in the semiconductor substrate (1).
When implanting (7), the correlation between the maximum spot current of the ion beam and the manufacturing yield should be obtained in advance, and the ion beam should be irradiated at the maximum spot current above the specified yield. Characteristic ion implantation method.
JP08121592A 1992-04-03 1992-04-03 Ion implantation method Expired - Lifetime JP3175280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08121592A JP3175280B2 (en) 1992-04-03 1992-04-03 Ion implantation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08121592A JP3175280B2 (en) 1992-04-03 1992-04-03 Ion implantation method

Publications (2)

Publication Number Publication Date
JPH05283354A true JPH05283354A (en) 1993-10-29
JP3175280B2 JP3175280B2 (en) 2001-06-11

Family

ID=13740264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08121592A Expired - Lifetime JP3175280B2 (en) 1992-04-03 1992-04-03 Ion implantation method

Country Status (1)

Country Link
JP (1) JP3175280B2 (en)

Also Published As

Publication number Publication date
JP3175280B2 (en) 2001-06-11

Similar Documents

Publication Publication Date Title
US5468657A (en) Nitridation of SIMOX buried oxide
JPS6285462A (en) Programming of rom
EP0010942A1 (en) A method of ion implantation into a semiconductor substrate provided with an insulating film
US4014772A (en) Method of radiation hardening semiconductor devices
CA1226075A (en) Method and apparatus for exposing photoresist by using an electron beam and controlling its voltage and charge
US6633047B2 (en) Apparatus and method for introducing impurity
US5286978A (en) Method of removing electric charge accumulated on a semiconductor substrate in ion implantation
JP3175280B2 (en) Ion implantation method
US4292729A (en) Electron-beam programmable semiconductor device structure
US5904551A (en) Process for low energy implantation of semiconductor substrate using channeling to form retrograde wells
JPH09213258A (en) Large current type ion implanting device and ion implanting method using this implanting device
US20030057460A1 (en) High-voltage MOS transistor
US6596568B1 (en) Thin film transistor and fabricating method thereof
JP3095469B2 (en) Ion implantation method
JPH08274040A (en) Ion implantation
JP2695016B2 (en) Ion implanter charge elimination method
US7754590B2 (en) Method of manufacturing a semiconductor device comprising a field stop zone at a specific depth
JPH07221306A (en) Manufacture of semiconductor device and device for preventing damage to insulating film
JPS59132123A (en) Manufacture of semiconductor device
JP3057808B2 (en) Ion implanter
KR100751656B1 (en) Method of manufacturing a semiconductor memory device
JPS60733A (en) Semiconductor device and manufactur thereof
KR960014451B1 (en) Method of forming the device isolation film in a semiconductor device
KR0166218B1 (en) Ion implantation method of semiconductor manufacture process
JP3519892B2 (en) Single-wafer ion implantation apparatus adjustment method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080406

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 11

EXPY Cancellation because of completion of term