JPH0528334B2 - - Google Patents

Info

Publication number
JPH0528334B2
JPH0528334B2 JP60159848A JP15984885A JPH0528334B2 JP H0528334 B2 JPH0528334 B2 JP H0528334B2 JP 60159848 A JP60159848 A JP 60159848A JP 15984885 A JP15984885 A JP 15984885A JP H0528334 B2 JPH0528334 B2 JP H0528334B2
Authority
JP
Japan
Prior art keywords
temperature
cooling
output
detector
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60159848A
Other languages
Japanese (ja)
Other versions
JPS6221024A (en
Inventor
Masaaki Nakamura
Yukihiro Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60159848A priority Critical patent/JPS6221024A/en
Publication of JPS6221024A publication Critical patent/JPS6221024A/en
Publication of JPH0528334B2 publication Critical patent/JPH0528334B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は赤外撮像装置の信号補正回路に係り、
特に赤外撮像装置の画像出力が変動して画質が劣
化するのを防止するための信号補正回路に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a signal correction circuit for an infrared imaging device.
In particular, the present invention relates to a signal correction circuit for preventing image quality from deteriorating due to variations in the image output of an infrared imaging device.

〔従来の技術〕[Conventional technology]

従来から一般に用いられている赤外撮像装置に
おいては、赤外線を検知する検知器にはHg、
Cd、Te(水銀、カドミウム、テルル)やIn、Sb
(インジユム、アンチモン)のような材料が用い
られているが、このような検知器では77ケルビン
程度の冷却を必要とし、この冷却手段としては液
体窒素、又はアルゴンガスが用いられ、例えば、
液体窒素を冷却媒体として用いる場合には、液体
窒素を入れたビトン等の大きい容器を必要とし、
ジユール・トムソン冷却器を用いる場合にはアル
ゴンガス等を入れた高圧のガスボンベが必要とな
り、可搬型の赤外撮像装置としては、上述のビト
ンやガスボンベを持ち歩くことは操作上好ましい
ものではない。
In infrared imaging devices that have been commonly used, the detector that detects infrared rays contains Hg,
Cd, Te (mercury, cadmium, tellurium), In, Sb
(indium, antimony), but such detectors require cooling to about 77 Kelvin, and liquid nitrogen or argon gas is used as the cooling means.For example,
When using liquid nitrogen as a cooling medium, a large container such as a Viton containing liquid nitrogen is required.
When using a Juul-Thomson cooler, a high-pressure gas cylinder containing argon gas or the like is required, and as a portable infrared imaging device, it is not convenient to carry around the above-mentioned Viton or gas cylinder.

このような欠点を除去するために冷却手段とし
てペルチエ素子を用いた電子冷却方式も提案され
ている。
In order to eliminate such drawbacks, an electronic cooling method using a Peltier element as a cooling means has also been proposed.

〔発明が解決しようとする問題〕[Problem that the invention seeks to solve]

上記した電子冷却方式を用いた光伝導形
(Photo Conductive)Hg、Cd、Te検知器の冷却
温度を横軸にとり、該冷却温度に対する検出器の
出力信号を縦軸にとつた場合の冷却温度一検出出
力特性は第4図に示すように表される。今上記検
知器に一定の赤外線が照射され(目標温度になる
ように赤外線パワを照射する)た時の冷却温度
T1<T2<T3に対する検知器の出力信号はV1>V2
>V3の関係となり温度が高くなるに従つて検知
器の出力信号は指数函数的に減少する。例えば、
冷却温度の変動が冷却温度T2において第4図に
示すように±ΔT±1℃であり、検知器の出力
変動が出力電圧V2で±ΔV/V2±10%以上あつ
たとすれば、この出力変動を±1%に抑えるには
冷却温度を0.1℃のオーダでコントロールする必
要がある。然しペルチエ素子を用いて冷却温度を
制御する電子冷却方式では該ペルチエ素子上に設
けられた例えばサーミスタの如き温度サンサから
の抵抗値(或いは出力)に応じて上記ペルチエ素
子に流す電流(或いは供給する電圧)を制御して
いるがペルチエ素子では発熱側が周囲環境に依存
し、冷却能力は発熱側と冷却側の温度差で定まる
ため広い温度範囲(0℃〜70℃)にわたつて±
0.1℃の温度制御を行うことは極めて困難である。
尚、広範囲の温度範囲を測定出来る赤外撮像装置
の要求は多く、このように、0℃〜70℃の温度範
囲を選択するのは一般的な仕様である。
The cooling temperature of a photo conductive Hg, Cd, Te detector using the electronic cooling method described above is plotted on the horizontal axis, and the output signal of the detector corresponding to the cooling temperature is plotted on the vertical axis. The detection output characteristics are expressed as shown in FIG. Cooling temperature when the above detector is irradiated with a certain amount of infrared rays (irradiated with infrared power to reach the target temperature)
The output signal of the detector for T 1 < T 2 < T 3 is V 1 > V 2
>V 3 , and as the temperature increases, the output signal of the detector decreases exponentially. for example,
Assuming that the variation in cooling temperature is ±ΔT±1°C at cooling temperature T 2 as shown in Figure 4, and the output variation of the detector is ±ΔV/V 2 ±10% or more at output voltage V 2 , then In order to suppress this output fluctuation to ±1%, it is necessary to control the cooling temperature to the order of 0.1°C. However, in an electronic cooling system that uses a Peltier element to control the cooling temperature, the current flowing through (or supplied to) the Peltier element is determined according to the resistance value (or output) from a temperature sensor such as a thermistor provided on the Peltier element. However, with Peltier elements, the heat generation side depends on the surrounding environment, and the cooling capacity is determined by the temperature difference between the heat generation side and the cooling side, so it can be controlled within a wide temperature range (0℃ to 70℃).
It is extremely difficult to control the temperature to 0.1℃.
Incidentally, there are many demands for an infrared imaging device that can measure a wide temperature range, and thus selecting a temperature range of 0° C. to 70° C. is a common specification.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述の欠点に鑑みなされたものであ
り、その目的とは電子冷却方式の検知器を高い精
度に冷却温度制御しなくとも、冷却温度の変動に
伴う出力変動を抑制して安定な出力信号が得れる
信号補正回路を提供するもので、該信号補正回路
においては冷却温度の変動に対する検知器の出力
変動が微小温度範囲(例えば±1℃)ではリニヤ
であることに着目して冷却温度を高い精度(例え
ば±0.1℃)で温度制御することなく、その制御
誤差による出力変動を冷却温度の変動量に応じ
て、出力信号の変化量が小さくなるように増幅器
の利得を変化させるようにしたものである。
The present invention has been made in view of the above-mentioned drawbacks, and its purpose is to suppress output fluctuations due to fluctuations in cooling temperature and stabilize the output of electronically cooled detectors without having to control the cooling temperature with high precision. The signal correction circuit provides a signal correction circuit that can obtain a signal, and the signal correction circuit calculates the cooling temperature by focusing on the fact that the output fluctuation of the detector with respect to the fluctuation of the cooling temperature is linear in a minute temperature range (for example, ±1°C). Without controlling the temperature with high precision (e.g. ±0.1℃), the gain of the amplifier is changed so that the output fluctuation due to the control error is reduced according to the amount of fluctuation in the cooling temperature. This is what I did.

本発明は上記目的を達成するために、赤外検知
手段を電子的に冷却する冷却手段と、該冷却手段
の温度を検知する温度検知手段と、上記冷却手段
を所定温度に設定するための基準電圧手段と上記
温度検知手段を比較して基準電圧手段との誤差を
取り出す比較手段と、該比較手段出力により上記
冷却手段を駆動すると共に上記赤外検知手段に接
続された自動利得制御手段を制御してなることを
特徴とする赤外撮像装置の信号補正回路を提供す
ることによつてなされる。
In order to achieve the above object, the present invention provides a cooling means for electronically cooling an infrared detection means, a temperature detection means for detecting the temperature of the cooling means, and a standard for setting the cooling means to a predetermined temperature. Comparing means for comparing the voltage means and the temperature detecting means to extract an error with the reference voltage means, and an output of the comparing means for driving the cooling means and controlling an automatic gain control means connected to the infrared detecting means. This is achieved by providing a signal correction circuit for an infrared imaging device characterized by comprising:

〔実施例〕〔Example〕

以下、本発明の赤外撮像装置の信号補正回路の
一実施例を第1図乃至第3図について詳記する。
Hereinafter, one embodiment of the signal correction circuit of the infrared imaging device of the present invention will be described in detail with reference to FIGS. 1 to 3.

第1図は本発明の赤外撮像装置の信号補正回
路、第2図は本発明の赤外撮像装置の信号補正回
路に用いられる電子冷却検知器の側断面図、第3
図は自動利得増幅回路の具体例である。第2図に
おいて、本発明に用いられる検知器1はトランジ
スタの容器と同じように構成され更に全面に窓4
を有する容器2内に収納されている。該容器2内
は例えば順次積み重ねられたペルチエ素子3a,
3b,3cが3段に構成され、容器ベース2aに
載置され、容器外に端子T3、T4をベルチエ端子
として導出して電流供給端子とする。3段構成の
ベルチエ素子の最上段3a上の冷却側に容器2の
窓4と対応する位置に赤外線検知素子5を配設
し、端子T5、T5に検知器出力を導出する。さら
にペルチエ素子3a上の冷却側にサーミスタ等か
らなる温度センサ6が配設される。温度センサ端
子T1、T2と上記温度センサ6を接続して温度セ
ンサ手力を容器外に導出するようになされてい
る。
FIG. 1 is a signal correction circuit of an infrared imaging device of the present invention, FIG. 2 is a side sectional view of an electronically cooled detector used in the signal correction circuit of an infrared imaging device of the present invention, and FIG.
The figure shows a specific example of an automatic gain amplification circuit. In FIG. 2, a detector 1 used in the present invention is constructed in the same way as a transistor container, and further has a window 4 on the entire surface.
It is housed in a container 2 having a. Inside the container 2, for example, Peltier elements 3a stacked one after another,
3b and 3c are arranged in three stages and placed on the container base 2a, and terminals T 3 and T 4 are led out as Bertier terminals outside the container and used as current supply terminals. An infrared detecting element 5 is disposed on the cooling side of the uppermost stage 3a of the three-stage Bertier element at a position corresponding to the window 4 of the container 2, and the detector output is led to terminals T5 and T5 . Furthermore, a temperature sensor 6 made of a thermistor or the like is disposed on the cooling side of the Peltier element 3a. The temperature sensor terminals T 1 and T 2 are connected to the temperature sensor 6 so that the temperature sensor's power is led out of the container.

上述の如き構成の電子冷却形検出器1を用いて
第1図に示すように補正回路を構成する。第1図
において、温度センサ6はその抵抗値R5と等し
くなし得る基準抵抗となる可変抵抗R3と、第1
及び第2の抵抗R1及びR2によつてブリツジ構成
されている。即ち、第1の抵抗R1とサーミスタ
からなる温度センサ6が直列接続され、第2の抵
抗R2と基準抵抗R3とが同じく直列接続され、こ
れら2つの直列回路が互いに並列接続され、温度
センサ6と基準抵抗の一端は接地され、第1及び
第2の抵抗の共通接続点に作動電圧V0が加えら
れ、第1の抵抗R1と温度センサ6の接続点を作
動アンプU1のマイナス入力端子に接続し、第2
の抵抗R2と基準抵抗R3の接続点を作動アンプU1
のプラス入力端子に接続する。作動アンプU1
一端は電流増幅器U2及び自動利得制御増幅器U3
に接続される。電流増幅器U2で電流変換された
制御電流を冷却器となるペルチエ素子3a乃至3
cに加えて所定の温度に制御している。
A correction circuit is constructed as shown in FIG. 1 using the electronically cooled detector 1 constructed as described above. In FIG. 1, the temperature sensor 6 has a variable resistor R3 , which is a reference resistance that can be made equal to its resistance value R5 , and a first
and second resistors R 1 and R 2 constitute a bridge. That is, a first resistor R 1 and a temperature sensor 6 consisting of a thermistor are connected in series, a second resistor R 2 and a reference resistor R 3 are also connected in series, and these two series circuits are connected in parallel to each other, and the temperature sensor 6 is connected in series. The sensor 6 and one end of the reference resistor are grounded, the operating voltage V 0 is applied to the common connection point of the first and second resistors, and the connection point of the first resistor R 1 and the temperature sensor 6 is connected to the operating amplifier U 1 . Connect to the negative input terminal and
The connection point of the resistor R 2 and the reference resistor R 3 of the operating amplifier U 1
Connect to the positive input terminal of the One end of the working amplifier U 1 is a current amplifier U 2 and an automatic gain control amplifier U 3
connected to. The control current converted by the current amplifier U2 is passed through the Peltier elements 3a to 3 which serve as coolers.
In addition to c, the temperature is controlled to a predetermined temperature.

第1図では3段構成されたペルチエ素子3a〜
3cの抵抗値をRpとして表し、端子T3、T4間に
接続したペルチエ素子の端子T4は接地し端子T3
に電流増幅器U2からの電流を供給している。更
に赤外検知素子5の抵抗値をR2とし端子T5、T6
間に接続し、端子T6を接地すると共に端子T5
検知出力が取り出されバイアス電圧VBが抵抗R4
を介して印加されている。検知出力は自動利得制
御増幅器U3に加えられ、上記した差動増幅器U1
の出力を利得制御端子に加えて該自動利得制御増
幅器U3を制御することで出力端子TOUTに制御出
力を導出する。上記自動利得制御増幅器U3は第
3図に示すようにオペアンプで構成し、入出力端
間に接続した可変抵抗器VRの抵抗値VR0とマイ
ナス入力端と接地間に配した抵抗値をR0とすれ
ばこのオペアンプU3の利得GはG=1+VR0
R0で表されるため可変抵抗器VRの抵抗値VR0
可変すればオペアンプU3の利得を変化させるこ
とが出来る。
In FIG. 1, three stages of Peltier elements 3a~
The resistance value of 3c is expressed as Rp, and the terminal T4 of the Peltier element connected between the terminals T3 and T4 is grounded and the terminal T3
is supplied with current from current amplifier U 2 . Furthermore, the resistance value of the infrared detection element 5 is set to R 2 and the terminals T 5 and T 6
The terminal T6 is grounded and the detection output is taken out to the terminal T5 , and the bias voltage VB is connected to the resistor R4.
is applied via. The sensing output is applied to the automatic gain control amplifier U 3 and the differential amplifier U 1 described above.
A control output is derived to the output terminal T OUT by adding the output of the automatic gain control amplifier U 3 to the gain control terminal and controlling the automatic gain control amplifier U 3 . The above automatic gain control amplifier U 3 is composed of an operational amplifier as shown in Figure 3, and the resistance value VR 0 of the variable resistor VR connected between the input and output terminals and the resistance value placed between the negative input terminal and ground are R 0 , the gain G of this operational amplifier U3 is G=1+VR 0 /
Since it is expressed as R 0 , the gain of the operational amplifier U 3 can be changed by varying the resistance value VR 0 of the variable resistor VR.

すなわち可変抵抗器を電界効果トランジスタと
なし、該電界効果トランジスタのゲート端子に差
動増幅器からの出力を加えて自動利得制御増幅器
の利得をコントロールするようになす。
That is, the variable resistor is a field effect transistor, and the output from the differential amplifier is applied to the gate terminal of the field effect transistor to control the gain of the automatic gain control amplifier.

以下本発明の補正回路の動作を説明する。第1
図で基準抵抗R3は例えば設定したい冷却温度T2
における温度センサ6の抵抗値RSと等しくなる
ように抵抗値R3を設定すれば温度センサ6はペ
ルチエ素子3a〜3bの冷却温度に応じた電圧
VSを出力し、基準抵抗R3は冷却温度T2に対応し
た基準電圧V2を出力する。この両電圧を差動増
幅器U1に加えることで差電圧V2−VSは冷却温度
T2との温度差ΔTに相当する電圧となる。即ち温
度誤差に相当する出力Vc±ΔVcが増幅されて差
動増幅器U1出力端に得られる。
The operation of the correction circuit of the present invention will be explained below. 1st
In the figure, the reference resistance R 3 is, for example, the cooling temperature T 2 that you want to set.
If the resistance value R 3 is set to be equal to the resistance value R S of the temperature sensor 6 at
The reference resistor R 3 outputs the reference voltage V 2 corresponding to the cooling temperature T 2 . By applying these two voltages to the differential amplifier U 1 , the differential voltage V 2 −V S is the cooling temperature
The voltage corresponds to the temperature difference ΔT from T 2 . That is, the output V c ±ΔV c corresponding to the temperature error is amplified and obtained at the output terminal of the differential amplifier U 1 .

該出力Vc±ΔVcを電流増幅器U2でIc±ΔIcの制
御電流に変換してペルチエ素子3a〜3cに加え
る。ここで制御電流Icをペルチエ素子に加えたと
きに冷却温度がT2になるものとする。上述の如
き温度制御系ではペルチエ素子3a〜3cに電流
Icを流しても直ちに冷却温度がIcの値に対応した
値とはならず冷却系の応答が遅いので温度誤差
ΔT(例えば±1℃程度)が一定時間接続する。
本発明では温度制御を例えば1℃程度に上記回路
でコントロールし(0.1℃程度のコントロールを
しない)、この誤差出力Vc±ΔVcを利用して応答
性の比較的速い電気回路系を制御して第2の温度
補正を行う。このために赤外の検知器5に所定の
赤外線パワを照射したときに所定の出力信号Vd
を自動利得制御増幅器U3に加え上記した差動増
幅器U1の誤差出力Vc±ΔVcで利得を制御する。
この利得制御は冷却温度変化に対する検知器5の
出力変化を打ち消すように動作される。即ちペル
チエ素子3a〜3cの冷却温度が上つた場合には
温度センサであるサーミスタ6の抵抗値が低くな
り、差動増幅器U1の誤差出力は+ΔVcと増加す
る。この誤差出力の増加分に対応して自動利得制
御増幅器U3の利得は+ΔV/Vd×100%増加する
ようになり、冷却温度の上昇に伴う検知器5の出
力の減少を補償するように検知器出力は増加す
る。一方ペルチエ素子3a〜3cの冷却温度が下
がつた時には温度センサの抵抗値が高くなつて差
動増幅器U1の誤差出力は−ΔVcと減少する。こ
の誤差出力の減少分に対応して自動利得制御増幅
器U3の利得は−ΔV/Vd×100%減少するように
なり冷却温度低下に対する検出器出力の増加が打
ち消されるので差動増幅器U1と電流増幅器U2
温度制御を比較的荒く制御しても、検知器の出力
を比較的早く一定に保つことが出来る。
The output V c ±ΔV c is converted into a control current of I c ±ΔI c by a current amplifier U 2 and applied to the Peltier elements 3a to 3c. Here, it is assumed that the cooling temperature becomes T 2 when the control current I c is applied to the Peltier element. In the temperature control system as described above, current flows through the Peltier elements 3a to 3c.
Even if Ic is supplied, the cooling temperature does not immediately correspond to the value of Ic, and the response of the cooling system is slow, so a temperature error ΔT (for example, about ±1° C.) is maintained for a certain period of time.
In the present invention, temperature control is controlled to, for example, about 1°C by the above circuit (not controlled to about 0.1°C), and this error output V c ±ΔV c is used to control an electrical circuit system with relatively fast response. Then, the second temperature correction is performed. For this reason, when the infrared detector 5 is irradiated with a predetermined infrared power, a predetermined output signal Vd is generated.
is added to the automatic gain control amplifier U 3 and the gain is controlled by the error output Vc±ΔVc of the above-mentioned differential amplifier U 1 .
This gain control is operated to cancel out changes in the output of the detector 5 due to changes in cooling temperature. That is, when the cooling temperature of the Peltier elements 3a to 3c increases, the resistance value of the thermistor 6, which is a temperature sensor, decreases, and the error output of the differential amplifier U1 increases to + ΔVc . Corresponding to this increase in error output, the gain of automatic gain control amplifier U 3 increases by +ΔV/Vd×100%, and detection is performed to compensate for the decrease in the output of detector 5 due to the rise in cooling temperature. The device output increases. On the other hand, when the cooling temperature of the Peltier elements 3a to 3c decreases, the resistance value of the temperature sensor increases and the error output of the differential amplifier U1 decreases to -ΔVc . Corresponding to this decrease in the error output, the gain of the automatic gain control amplifier U 3 decreases by -ΔV/Vd×100%, and the increase in the detector output due to the cooling temperature drop is canceled out, so the gain of the automatic gain control amplifier U 3 decreases by −ΔV/Vd×100%. Even if the temperature is controlled relatively roughly by the current amplifier U 2 , the output of the detector can be kept constant relatively quickly.

〔発明の効果〕〔Effect of the invention〕

本発明は上述の如く構成させ、かつ動作させた
ので赤外撮像装置の検知器に電子冷却方式のよう
な比較的簡単な冷却温度制御回路系を用いて、温
度制御を荒くコントロールしても検知器出力を電
気的に自動制御しているために冷却温度の変動に
よる検知器出力の変化を打ち消し、一定に保つこ
とが出来るので画質のゆれのない良い撮像系が得
られる。更に電子冷却方式を用いているために操
作性可搬性のよい赤外撮像装置を提供出来る特徴
を有する。
Since the present invention is configured and operated as described above, a relatively simple cooling temperature control circuit system such as an electronic cooling method is used for the detector of the infrared imaging device, and even if the temperature control is roughly controlled, it can be detected. Since the detector output is electrically and automatically controlled, changes in the detector output due to fluctuations in cooling temperature can be canceled out and kept constant, resulting in a good imaging system with no fluctuations in image quality. Furthermore, since it uses an electronic cooling system, it has the feature that it can provide an infrared imaging device with good operability and portability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の赤外撮像装置の信号補正回路
図、第2図は本発明の赤外撮像装置の検知器を示
す略線的側断面図、第3図は第1図に示す自動利
得制御回路の具体的回路図、第4図は電子冷却方
式の検知器の冷却温度に対する検知出力の関係を
説明する曲線図である。 1……検知器、2……容器、2a……容器ベー
ス、3a,3b,3c……ペルチエ素子、4……
窓、5……赤外線検知器、6……温度センサ、
U1……差動増幅器、U2……電流増幅器、U3……
自動利得制御増幅器。
FIG. 1 is a signal correction circuit diagram of the infrared imaging device of the present invention, FIG. 2 is a schematic side sectional view showing a detector of the infrared imaging device of the present invention, and FIG. 3 is an automatic signal correction circuit diagram of the infrared imaging device of the present invention. FIG. 4, which is a specific circuit diagram of the gain control circuit, is a curve diagram illustrating the relationship between the detection output and the cooling temperature of the electronically cooled detector. 1...Detector, 2...Container, 2a...Container base, 3a, 3b, 3c...Peltier element, 4...
window, 5...infrared detector, 6...temperature sensor,
U 1 ... Differential amplifier, U 2 ... Current amplifier, U 3 ...
Automatic gain control amplifier.

Claims (1)

【特許請求の範囲】 1 赤外検知手段を電子的に冷却する冷却手段
と、該冷却手段の温度を検知する温度検知手段
と、上記冷却手段を所定温度に設定するための基
準電圧手段と、該基準電圧手段から出力される基
準電圧と前記温度検知手段の出力電圧とを比較し
て前記基準電圧との誤差を取り出す比較手段と、 該比較手段出力により上記冷却手段を駆動する
と共に上記赤外検知手段に接続された自動利得制
御手段を制御してなることを特徴とする赤外撮像
装置の信号補正回路。
[Scope of Claims] 1. A cooling means for electronically cooling the infrared detection means, a temperature detection means for detecting the temperature of the cooling means, a reference voltage means for setting the cooling means to a predetermined temperature, Comparing means for comparing the reference voltage outputted from the reference voltage means and the output voltage of the temperature detecting means to extract an error with the reference voltage; A signal correction circuit for an infrared imaging device, characterized in that it is formed by controlling automatic gain control means connected to a detection means.
JP60159848A 1985-07-19 1985-07-19 Signal correction circuit for infrared camera Granted JPS6221024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60159848A JPS6221024A (en) 1985-07-19 1985-07-19 Signal correction circuit for infrared camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60159848A JPS6221024A (en) 1985-07-19 1985-07-19 Signal correction circuit for infrared camera

Publications (2)

Publication Number Publication Date
JPS6221024A JPS6221024A (en) 1987-01-29
JPH0528334B2 true JPH0528334B2 (en) 1993-04-26

Family

ID=15702555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60159848A Granted JPS6221024A (en) 1985-07-19 1985-07-19 Signal correction circuit for infrared camera

Country Status (1)

Country Link
JP (1) JPS6221024A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100575U (en) * 1987-12-23 1989-07-06
JPH0356831A (en) * 1989-07-25 1991-03-12 Fujitsu Ltd Cooling type infrared detection device
EP0672325B2 (en) * 1992-06-19 2008-08-27 Honeywell Inc. Infrared camera with thermoelectric temperature stabilization

Also Published As

Publication number Publication date
JPS6221024A (en) 1987-01-29

Similar Documents

Publication Publication Date Title
JP2686036B2 (en) Avalanche photodiode bias circuit
US7417230B2 (en) Microbolometer focal plane array with temperature compensated bias
US7709793B2 (en) Bolometer array compensation
US6320450B1 (en) Temperature sensing circuit using thermopile sensor
JPS58131524A (en) Device for measuring temperature
EP0049754B1 (en) High speed temperature controlled electrometer
US4123938A (en) Device for measuring thermal parameters
Jansson et al. Theoretical analysis of pulse bias heating of resistance bolometer infrared detectors and effectiveness of bias compensation
JP2000171295A (en) Apd bias circuit
JPH0528334B2 (en)
US4914357A (en) Temperature compensated foldback current limiting
US4333023A (en) Temperature-stabilized logarithmic converter
JPS6148206A (en) Small-sized temperature-controlled phase detector
JP3237822B2 (en) Infrared imaging device
JPH0618540A (en) Wind velocity sensor
JPH08136356A (en) Device and method for detecting temperature and adjusting system of temperature of semiconductor using the method
EP0974810A2 (en) Nonlinear current mirror for loop-gain control
NL8400018A (en) LOGARITHMIC SWITCHING WITH TEMPERATURE COMPENSATION.
JPS5844330Y2 (en) drive circuit
JPH02109384A (en) Optical-output stabilizing apparatus for semiconductor laser
JPS5814617Y2 (en) Cooling temperature control circuit for small cooler
JP2576414B2 (en) AC level detection circuit
JPS5814616Y2 (en) Cooling temperature control circuit for small cooler
JPH06109510A (en) Thermal flowmeter
JPS5848597Y2 (en) Reference junction compensation circuit