JPH05282405A - System for supporting assembling work plant by computer - Google Patents

System for supporting assembling work plant by computer

Info

Publication number
JPH05282405A
JPH05282405A JP7658992A JP7658992A JPH05282405A JP H05282405 A JPH05282405 A JP H05282405A JP 7658992 A JP7658992 A JP 7658992A JP 7658992 A JP7658992 A JP 7658992A JP H05282405 A JPH05282405 A JP H05282405A
Authority
JP
Japan
Prior art keywords
constraint
assembly
component
assembling
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7658992A
Other languages
Japanese (ja)
Inventor
Koichi Sugimoto
浩一 杉本
Keiko Kirino
啓子 霧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7658992A priority Critical patent/JPH05282405A/en
Publication of JPH05282405A publication Critical patent/JPH05282405A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Automatic Assembly (AREA)
  • General Factory Administration (AREA)

Abstract

PURPOSE:To configure the system for supporting an assembling work plan by a computer by configuring a data base in which constraint on the middle way of assembling and constraint representing a final assembling state are attached on a component which comprises an assembly. CONSTITUTION:On the middle way of assembling, cylindrical constraint C1 is attached on the components 1, 2, and cylindrical constraint C2 on the components 1, 3, and torsion constraint H3 on the components 3, 2, however, plane constraint E4, E5 are added on them in final assembling. In such a case, the constraint which supplies the final assembling state is omitted from the one in the final assembling state one by one, in other words, the plane constraint E4, E5 are omitted sequentially. Firstly. the component 3 can be moved by omitting the constraint E4, which expresses that the component 3 can be assembled after the components 1, 2 are assembled. Secondly, the component 1 can be moved by omitting the constraint E5, which expresses that the component 1 is assembled in the component 2 and the component 3 is assembled finally. Thereby, it is possible to automatically decide the assembling sequence of the component and the motion of the component to be taken when it is assmebled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はロボットをはじめとする
各種自動機による組立のための動作のプログラミング
や、作業者への組立手順の指示等を計算機を用いて生成
する組立作業計画のための組立作業計画計算機支援シス
テムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is for programming operation for assembling by various automatic machines such as robots, and for assembling work plan for generating instructions of an assembling procedure to an operator using a computer. Assembly work plan computer support system.

【0002】[0002]

【従来の技術】従来は、例えば1991年度精密工学会秋季
大会学術講演会講演論文集PP.563-564飯泉、金井、高
橋、「部品モデル情報に基づくアセンブリ状態の決定」
に示されているように、組立時の部品間の拘束を数式で
表示する手法が発表されている。
2. Description of the Related Art Conventionally, for example, the 1991 Autumn Meeting of the Japan Society for Precision Engineering Autumn Conference PP.563-564 Iizumi, Kanai, Takahashi, "Determination of assembly state based on component model information"
As shown in, the method of displaying the constraint between the parts at the time of assembly by a mathematical formula has been announced.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は部品間
の拘束条件をもとに最終の組立状態を決定する手法につ
いて述べられているが、この手法では組立手順や組立時
の部品のとるべき動作に生成は困難であり、組立作業計
画や組立工程設計を計算機により行うことはできなかっ
た。
The above-mentioned prior art describes a method of determining the final assembly state based on the constraint condition between parts. In this method, the assembly procedure and the parts to be assembled should be taken. It was difficult to generate motions, and it was not possible to perform an assembly work plan or assembly process design with a computer.

【0004】本発明の目的は、部品間の拘束条件を組立
途中と組立終了時との2種に分解し、拘束下で部品のと
り得る運動を解析し、この結果から組立手順と組立動作
を生成することができるようにした組立作業計画計算機
支援システムを提供することにある。
The object of the present invention is to decompose the restraint conditions between parts into two types, that is, during assembly and at the end of assembly, and analyze the possible motions of the parts under restraint. An object is to provide an assembly work plan computer support system capable of generating.

【0005】[0005]

【課題を解決するための手段】上記目的は組立動作時の
部品間の拘束条件と組立終了時の拘束を区別して表わ
し、この拘束条件から部品の組立順を決定する。さらに
組立動作時の拘束条件から、各拘束のもとで部品のとり
得る運動を線形空間で表わし、線形空間の集合演算か
ら、組立動作時の部品のとり得る運動を求め、これをも
とに組立作業計画を支援する。
The above object distinguishes the constraint condition between parts during the assembly operation from the constraint condition at the end of assembly, and determines the assembly order of the parts from this constraint condition. Furthermore, from the constraint conditions during assembly operation, the possible motions of the parts under each constraint are expressed in a linear space, and the possible motions of the parts during the assembly operation are obtained from the set operation of the linear space. Support assembly work planning.

【0006】[0006]

【作用】本発明により組立物を構成する部品に対し、拘
束条件のデータを付加することにより、組立手順および
組立時の部品の動作が決定でき、最適組立手順や、組立
のための作業指示の計算機による自動生成あるいは設計
者への支援システムが実現できる。
According to the present invention, by adding constraint condition data to the parts constituting the assembly, the assembly procedure and the operation of the parts at the time of assembly can be determined, and the optimum assembly procedure and the work instruction for the assembly can be specified. It is possible to realize automatic generation by a computer or a support system for designers.

【0007】[0007]

【実施例】以下、図面を参照しながら本発明の一実施例
を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0008】図1は本発明に係る簡単な組立物として、
3個の部品から成り立っている場合を示し、例えばCA
Dデータとして表示される。この組立物は、部品1の軸
を部品2の穴に挿入し、ねじ3で固定するものである。
本組立物の組立動作時では部品1と部品2との間の拘束
は円筒拘束C、部品1とねじ3との間も円筒拘束C、部
品2と部品3の間はねじ拘束Hである。そこで部品間の
拘束を図2のように表わす。
FIG. 1 shows a simple assembly according to the present invention.
Shows the case where it consists of three parts, for example CA
It is displayed as D data. In this assembly, the shaft of the component 1 is inserted into the hole of the component 2 and fixed with the screw 3.
During the assembling operation of this assembly, the constraint between the parts 1 and 2 is a cylindrical constraint C, the constraint between the component 1 and the screw 3 is a cylindrical constraint C, and the constraint between the components 2 and 3 is a screw constraint H. Therefore, the constraint between the parts is expressed as shown in FIG.

【0009】部品1と2の間の拘束は円筒拘束Cである
ので、部品1の軸に、軸心がZ軸であるような直交座標
を定める。
Since the constraint between the components 1 and 2 is a cylindrical constraint C, the axis of the component 1 is defined as a Cartesian coordinate whose axis is the Z axis.

【0010】同じく部品2の穴に穴の軸心がZ軸となる
ような直交座標を定める。そしてこれらの直交座標をC
1とする。ここでCは円筒拘束でサフィックスの1は同
じ番号同志が結合されることを示す。
Similarly, orthogonal coordinates are determined in the hole of the component 2 such that the axis of the hole is the Z axis. And these Cartesian coordinates are C
Set to 1 . Here, C is a cylindrical constraint, and the suffix 1 indicates that the same numbers are combined.

【0011】以上のように拘束に座標を定めるが、円筒
拘束以外の拘束についても例えば、進み拘束P、回り拘
束R、ねじ拘束H、平面拘束E、球拘束S等を定める。
さらに各拘束に対して、拘束下での部品のとり得る運動
を以下のように定義する。
Although the coordinates are defined as the constraints as described above, for constraints other than the cylindrical constraint, for example, advance constraint P, rotation constraint R, screw constraint H, plane constraint E, spherical constraint S, etc. are determined.
Furthermore, for each constraint, the possible motion of the part under the constraint is defined as follows.

【0012】回り拘束R:Z軸回りの回転 進み拘束P:Z軸に沿っての並進 ねじ拘束H:Z軸回りのらせん運動 円筒拘束C:Z軸回りの回転とZ軸に沿っての並進 平面拘束E:Z軸回りの回転とX,Y軸に沿っての並進 球拘束S:X,Y,Z軸回りの回転 一般に複雑な拘束は回り、すすみ、ねじ拘束の組合せと
して表わすことができる。たとえば平面拘束Eは、次の
(数1)式で表される。
Rotational constraint R: Rotation around the Z axis Advance constraint P: Translation along the Z axis Screw constraint H: Helical motion around the Z axis Cylindrical constraint C: Rotation around the Z axis and translation along the Z axis Plane constraint E: Rotation around Z axis and translation along X and Y axes Sphere constraint S: Rotation around X, Y and Z axes Generally, a complicated constraint rotates and can be expressed as a combination of a corner and a screw constraint. .. For example, the plane constraint E is expressed by the following equation (1).

【0013】[0013]

【数1】 [Equation 1]

【0014】ここに次の(数2)式は、Z軸回りの回転
を表す。
The following equation (2) expresses rotation around the Z axis.

【0015】[0015]

【数2】 [Equation 2]

【0016】更に次の(数3)式は、それぞれX,Y軸
に沿っての並進を表わす。
Further, the following equation (3) represents the translation along the X and Y axes, respectively.

【0017】[0017]

【数3】 [Equation 3]

【0018】Uは運動の集合和を表わす。U represents the set sum of motions.

【0019】このようにして必要な拘束を定義すること
ができる。
In this way, the required constraints can be defined.

【0020】組立物を構成する各部品について拘束の種
類(円筒拘束C、進み拘束P、回り拘束R、ねじ拘束
H、平面拘束E、球拘束S)とその座標の位置を定義す
ることにより部品間の相対関係を表す。
By defining the types of restraint (cylindrical restraint C, advance restraint P, rotation restraint R, screw restraint H, plane restraint E, sphere restraint S) and their coordinate positions for each component constituting the assembly, Represents the relative relationship between.

【0021】つぎのように定義された拘束条件から組立
動作時の部品の位置関係を求める。まずそのために2つ
の座標間の偏差を定義する。
The positional relationship of the parts during the assembling operation is determined from the constraint conditions defined as follows. First of all, the deviation between the two coordinates is defined for that purpose.

【0022】同じ番号が付けられた2つの拘束の座標、
たとればCの拘束である部品1の軸の座標と部品2つの
穴の座標をそれぞれ次に示す(数4)式、(数5)式と
する。
The coordinates of two constraints with the same number,
Therefore, the coordinate of the axis of the component 1 and the coordinate of the two holes of the component, which are constraints of C, are expressed by the following equations (4) and (5), respectively.

【0023】[0023]

【数4】 [Equation 4]

【0024】[0024]

【数5】 [Equation 5]

【0025】ここにpは座標の原点の位置、l,m,n
はX,Y,Z軸の方向余弧ベクトルであり、下付付号は
部品番号を表す。
Where p is the position of the origin of the coordinates, l, m, n
Is the direction coarc vector of the X, Y, and Z axes, and the subscript indicates the part number.

【0026】ここでr,sは、次の(数6)式、(数
7)式、(数8)式、(数9)式、(数10)式の関係
式から求める。
Here, r and s are calculated from the following relational expressions of (Equation 6), (Equation 7), (Equation 8), (Equation 9) and (Equation 10).

【0027】[0027]

【数6】 [Equation 6]

【0028】[0028]

【数7】 [Equation 7]

【0029】[0029]

【数8】 [Equation 8]

【0030】[0030]

【数9】 [Equation 9]

【0031】[0031]

【数10】 [Equation 10]

【0032】そして次の(数11)式は、2つの座標間
の偏差を6次元ベクトルで表す。
The following equation (11) represents the deviation between the two coordinates as a 6-dimensional vector.

【0033】[0033]

【数11】 [Equation 11]

【0034】組立時の部品間の位置関係を求めるため、
まず各部品の位置を適当に仮定する。このとき対応する
拘束の座標間に偏差が生じる。そこで図3に示すように
偏差に応じた力が部品に作用するものとする。このとき
拘束の運動方向の偏差は無視する。
In order to obtain the positional relationship between the parts during assembly,
First, the position of each part is assumed to be appropriate. At this time, a deviation occurs between the coordinates of the corresponding constraints. Therefore, it is assumed that a force corresponding to the deviation acts on the component as shown in FIG. At this time, the deviation of the restraint movement direction is ignored.

【0035】すなわち次の(数12)式は、2つの座標
間の偏差に応じた力トルクFを力f,トルクmからなる
6次元ベクトルで表す。
That is, the following equation (Equation 12) represents the force torque F corresponding to the deviation between the two coordinates as a six-dimensional vector consisting of the force f and the torque m.

【0036】[0036]

【数12】 [Equation 12]

【0037】ただし、拘束の種類により次の(数13)
式、(数14)式、(数15)式、(数16)式、(数
17)式、(数18)式とする。
However, depending on the type of constraint, the following (Equation 13)
Expression, (Expression 14) Expression, (Expression 15) Expression, (Expression 16) Expression, (Expression 17) Expression, and (Expression 18) Expression.

【0038】[0038]

【数13】 [Equation 13]

【0039】[0039]

【数14】 [Equation 14]

【0040】[0040]

【数15】 [Equation 15]

【0041】[0041]

【数16】 [Equation 16]

【0042】[0042]

【数17】 [Equation 17]

【0043】[0043]

【数18】 [Equation 18]

【0044】ねじ拘束Hは特殊であるが、円筒拘束Cと
同様に扱える。1つの部品は複数個の拘束を持つから、
部品にかかる力トルクは各拘束による力トルクの和とな
る。組立物においてその中の1つの部品を基準として固
定する。他の部品は偏差によって受ける力トルクによっ
て運動するものと考え、各部品の運動解析を行い、各部
品の受ける力が零になる位置関係を求める。この位置間
係が組立時に各部品のとるべき位置である。
Although the screw constraint H is special, it can be handled in the same manner as the cylindrical constraint C. Since one part has multiple constraints,
The force torque applied to the parts is the sum of the force torques due to each constraint. The assembly is fixed with one of the parts as a reference. It is assumed that the other parts move due to the force torque received by the deviation, and the motion analysis of each part is performed to find the positional relationship where the force received by each part becomes zero. This position relationship is the position that each part should assume during assembly.

【0045】図1の部品についてこの操作を行うと図4
の位置関係データが定まる。これらを図1または図3に
示すCADデータに基づいて計算機に入力する。
When this operation is performed on the parts shown in FIG.
The positional relationship data of is determined. These are input to the computer based on the CAD data shown in FIG. 1 or 3.

【0046】つぎに計算機は、この入力された位置関係
データで、拘束下での各部品のとり得る運動を求める。
図4では部品2が位置が固定された部品であるとし、こ
れに固定座標を定め、各拘束の座標をこの固定座標に対
して表わす。拘束によって部品のとり得る運動は以下の
ようになる。拘束の座標原点がp、X,Y,Z軸の方向
余弦がl,m,nであったとすると、各部品のとり得る
運動は各拘束について示した6次元ベクトルの張る線形
空間で表わされる。
Next, the computer obtains the possible motion of each part under the constraint from the input positional relationship data.
In FIG. 4, it is assumed that the component 2 is a component whose position is fixed, fixed coordinates are defined for this, and the coordinates of each constraint are expressed with respect to this fixed coordinate. The possible movements of the parts due to the restraint are as follows. Assuming that the coordinate origin of the constraint is the direction cosine of the p, X, Y, and Z axes, the possible motion of each component is represented by the linear space spanned by the six-dimensional vectors shown for each constraint.

【0047】回り拘束Rは次の(数19)式となる。The rotation constraint R is given by the following equation (19).

【0048】[0048]

【数19】 [Formula 19]

【0049】進み拘束Pは次の(数20)式となる。The advance constraint P is given by the following equation (20).

【0050】[0050]

【数20】 [Equation 20]

【0051】ねじ拘束Hは次の(数21)式となる。The screw constraint H is given by the following equation (21).

【0052】[0052]

【数21】 [Equation 21]

【0053】円筒拘束Cは次の(数22)式となる。The cylindrical constraint C is given by the following equation (22).

【0054】[0054]

【数22】 [Equation 22]

【0055】平面拘束Eは次の(数23)式となる。The plane constraint E is given by the following equation (23).

【0056】[0056]

【数23】 [Equation 23]

【0057】球拘束Sは次の(数24)式となる。The ball restraint S is given by the following equation (24).

【0058】[0058]

【数24】 [Equation 24]

【0059】回り拘束R、進み拘束P、ねじ拘束Hは1
次元、円筒拘束Cは2次元、平面拘束E、球拘束Sは3
次元の線形空間となる。
The rotation constraint R, the advance constraint P, and the screw constraint H are 1
Dimension, cylindrical constraint C is two-dimensional, plane constraint E, sphere constraint S is 3
It becomes a dimensional linear space.

【0060】図4に示す組立物では部品1は円筒拘束1
と円筒拘束2で拘束されている。このとき円筒拘束1で
とり得る運動を表わす線形空間をS1、円筒拘束2でと
り得る運動を表わす線形空間をS2とすると、部品1の
とり得る運動はS1とS2の共通部分、すなわちS1US2
であり、これは計算機によって拘束軸方向の並進運動で
あることが求まる。同様に部品3は円筒拘束2とねじ拘
束3で拘束されている。ねじ拘束3の運動を線形空間S
3で表わすS2US3が部品3のとり得る運動であり、こ
れは拘束2、3のZ軸に沿ってのねじ運動であることが
求まる。このように計算機内で線形空間の集合演算を行
うことにより、組立作業時に各部品のとるべき運動が決
定される。すなわち部品1、2、3の例では、部品1は
Z軸方向の並進運動、部品3はねじ運動で組立られるこ
とが自動的に決定される。
In the assembly shown in FIG. 4, the part 1 is a cylindrical restraint 1.
And is restrained by the cylindrical restraint 2. In this case S 1 the linear space representing the possible movement in a cylindrical restraining 1, when the linear space representing the possible movement in a cylindrical restraining 2 and S 2, the possible movement of the component 1 intersection of S 1 and S 2, Ie S 1 US 2
Which is calculated by the computer to be a translational motion in the direction of the restraint axis. Similarly, the part 3 is constrained by the cylindrical constraint 2 and the screw constraint 3. The movement of the screw restraint 3 is linear space S
It is determined that S 2 US 3 represented by 3 is a possible motion of the component 3, which is a screw motion of the restraints 2 and 3 along the Z axis. In this way, by performing the set operation in the linear space in the computer, the movement to be taken by each part during the assembly work is determined. That is, in the example of the components 1, 2, and 3, it is automatically determined that the component 1 is assembled by the translational motion in the Z-axis direction and the component 3 is assembled by the screw motion.

【0061】ところで図4の状態は組立途中であり、最
終組立状態ではない。図1の組立物の例では最終組立状
態を表わすには前に与えた拘束に別の拘束を付加しなけ
ればならない。すなわち部品1と2の間では円筒拘束に
加え、最終状態では部品2の上面と部品1のフランジ下
面が接触するという平面拘束を加える必要がある。また
部品2と3の間にも平面拘束が加わる。各部品間の拘束
の関係を図示すると、図5になる。組立途中では部品1
と部品2とは円筒拘束C1、部品2と部品3は円筒拘束
1、部品3と部品1がねじ拘束(図5)であったの
が、最終組立ではそれに平面拘束E4,E5が加わり、図
6のようになる。このような最終組立状態を表わすため
の拘束を加え、前と同様に位置関係を求めると最終組立
状態が定まる。これは前の相対位置関係から、各部品が
それぞれとり得る運動を行うことにより到達する。
By the way, the state shown in FIG. 4 is in the process of assembling, not the final assembling state. In the example assembly of FIG. 1, another constraint must be added to the constraint previously given to represent the final assembly. That is, in addition to the cylindrical constraint between the components 1 and 2, it is necessary to apply the planar constraint in which the upper surface of the component 2 and the lower surface of the flange of the component 1 contact each other in the final state. A plane constraint is also applied between the parts 2 and 3. FIG. 5 shows the relationship of restraint between the respective parts. Part 1 during assembly
A cylindrical restraining C 1 and part 2, part 2 and part 3 the cylindrical restraining C 1, component 3 and the component 1 screw restraint (5) a had been the is in the final assembly it to the plane constraint E 4, E 5 Is added, the result is as shown in FIG. By adding a constraint for representing the final assembled state and determining the positional relationship as before, the final assembled state is determined. This is achieved by performing possible movements of each component from the previous relative positional relationship.

【0062】ところで最終組立状態の拘束から、最終組
立状態を与える拘束を1つずつ省略する。図6の拘束状
態ではE4とE5を順次省略する。
By the way, from the constraint of the final assembled state, the constraint that gives the final assembled state is omitted one by one. In the restraint state of FIG. 6, E 4 and E 5 are sequentially omitted.

【0063】まずE4を省略すると部品3が運動可能と
なる。これは部品1と2を組立た後、部品3が組立られ
ることを表わす。ついでE3を省略すると部品1が運動
可能となる。これを逆にたどると組立順が定まる。すな
わち部品2に1を組立て、最後に部品3を組立る。
First, if E 4 is omitted, the component 3 becomes movable. This means that after assembling parts 1 and 2, part 3 is assembled. Then, if E 3 is omitted, the component 1 becomes movable. If this is followed in reverse, the assembly order will be determined. That is, 1 is assembled to the component 2, and finally the component 3 is assembled.

【0064】これとは逆にまずE3を省略すると部品2
が運動可能となり、次に部品1(あるいは部品2と考え
てよい)が運動可能となる。これにより、部品1に部品
3を組立て、これらを部品2に組立てれば組立が可能で
あることが分かる。
On the contrary, if E 3 is omitted first, the component 2
Can be moved, and then the part 1 (or the part 2, which may be considered as part 2) can be moved. From this, it is understood that if the component 3 is assembled to the component 1 and these are assembled to the component 2, the assembly is possible.

【0065】以上の手法の流れ図を図7に示す。まず拘
束条件の記述61において、前記したとおりCADにお
いて図2に示すように部品図に拘束の番号、拘束の部品
上での位置を与える座標および拘束の種類を計算機に与
える。すなわち図2部品1では拘束1を円筒拘束、その
位置を座標X11で、拘束2を円筒拘束X22で与え
る。計算機は、組立途中の位置関係の決定中62におい
て、前記したとおりこのように定められたCADデ−タ
から図3のモデルを作成し、組立途中の部品間の位置関
係を決定する。ついで計算機は、組立時の部品動作の決
定63において、前記したとおり組立時に部品のとり得
る運動を拘束の線形空間の集合演算により自動的に決定
するとともに、最終拘束条件の付加順の生成64で、最
終拘束条件の付加順のあらゆる場合を求め、組立手順の
生成65で、可能な組立手順とそのときの部品の運動を
生成する。この結果から計算機は、組立性評価67で、
組立性評価(特願平03−20675号に詳述)を行
い、最適組立手順の決定66で、最も簡単に行える組立
手順を選択し、これを最適組立手順とする。最後に計算
機は、最適組立手順と製造ラインにおける部品の供給位
置、ラインと自動機の位置関係等のライン環境情報をも
とに自動機動作プログラム68を作成する。
A flow chart of the above method is shown in FIG. First, in the constraint condition description 61, as described above, in CAD, the constraint number is given to the part diagram, the coordinates giving the position of the constraint on the component, and the constraint type are given to the computer as shown in FIG. That is, in the part 1 shown in FIG. 2, the constraint 1 is given as a cylindrical constraint, its position is given by coordinates X 1 Z 1 , and the constraint 2 is given as a cylindrical constraint X 2 Y 2 . During determination of the positional relationship during assembly 62, the computer creates the model of FIG. 3 from the CAD data determined in this way as described above, and determines the positional relationship between the parts during assembly. Next, in the determination 63 of the part operation at the time of assembly, the computer automatically determines the possible motions of the part at the time of assembly by the set operation of the linear space of the constraint as described above, and at the time of generating the addition order 64 of the final constraint , All cases of the addition order of the final constraint conditions are obtained, and in the assembly procedure generation 65, possible assembly procedures and the motion of the parts at that time are generated. From this result, the computer evaluated the assemblability 67,
The assembling property is evaluated (detailed in Japanese Patent Application No. 03-20675), and in the determination 66 of the optimum assembling procedure, the easiest assembling procedure is selected, and this is set as the optimum assembling procedure. Finally, the computer creates the automatic machine operation program 68 based on the optimum assembly procedure, the supply position of parts in the manufacturing line, and the line environment information such as the positional relationship between the line and the automatic machine.

【0066】[0066]

【発明の効果】組立物を構成する部品に対し、組立途中
での拘束とこれに最終組立状態を示す拘束を付加したデ
ータベースを構築することにより、組立時の部品の組立
順、組立時での部品のとるべき運動、組立状態での各部
品の位置関係を自動的に決定することが可能となり、計
算機による組立作業計画の支援システムの構築が可能と
なる。また各部品間の位置関係を自動的に計算する時点
で各部品に作用する力が零にならないときは、その部品
に設計ミスがあることであり、設計時の寸法ミスのチェ
ックを行うことも可能となる。
EFFECTS OF THE INVENTION By constructing a database in which a constraint during assembly and a constraint indicating the final assembly state are added to the parts constituting the assembly, the order of assembly of parts at the time of assembly and the assembly order It is possible to automatically determine the movements of the parts and the positional relationship of each part in the assembled state, and it is possible to build a support system for the assembly work plan by a computer. Also, if the force acting on each component does not become zero at the time of automatically calculating the positional relationship between each component, it means that there is a design error in that component, and it is also possible to check the dimensional error during design. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る組立物の一例を示す図である。FIG. 1 is a diagram showing an example of an assembly according to the present invention.

【図2】本発明に係るCADにおける拘束座標の一例を
示す図である。
FIG. 2 is a diagram showing an example of constraint coordinates in CAD according to the present invention.

【図3】本発明に係るCADデータに基づく偏差による
復元力モデルを示す図である。
FIG. 3 is a diagram showing a restoring force model based on deviation based on CAD data according to the present invention.

【図4】本発明に係る組立途中の状態を示す図である。FIG. 4 is a diagram showing a state during assembly according to the present invention.

【図5】本発明に係る組立途中における拘束関係を示す
図である。
FIG. 5 is a diagram showing a constraint relationship during assembly according to the present invention.

【図6】本発明に係る最終組立状態における拘束関係を
示す図である。
FIG. 6 is a view showing a restraint relationship in a final assembled state according to the present invention.

【図7】本発明に係る組立作業計画計算機支援システム
の処理フローを示した図である。
FIG. 7 is a diagram showing a processing flow of an assembly work plan computer support system according to the present invention.

【符号の説明】[Explanation of symbols]

1:部品1、 2:部品2、 3:部品3 1: component 1, 2: component 2, 3: component 3

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】組立物の部品間の拘束を組立途中の拘束と
最終組立状態での拘束として入力し、該入力された組立
物の部品間の拘束に基づいて部品の組立手順あるいは組
立時の部品の動作あるいは両者を生成して組立作業計画
を支援することを特徴とする組立作業計画計算機支援シ
ステム。
1. A constraint between parts of an assembly is input as a constraint during assembly and a constraint in a final assembly state, and a procedure for assembling parts or a time of assembling is input based on the inputted constraint between parts of the assembly. An assembly work plan computer support system characterized by generating motions of parts or both to support an assembly work plan.
【請求項2】組立途中での拘束条件から組立時に部品の
とるべき運動を自動生成することを特徴とする請求項1
記載の組立作業計画計算機支援システム。
2. A motion to be taken by a component during assembly is automatically generated based on a constraint condition during assembly.
Assembly work plan computer support system described.
【請求項3】最終組立状態での拘束条件の付加あるいは
削除の手順を生成することにより可能な組立手順を決定
することを特徴とする請求項1記載の組立作業計画支援
計算機システム。
3. The assembly work plan support computer system according to claim 1, wherein a possible assembly procedure is determined by generating a procedure for adding or deleting a constraint condition in the final assembly state.
JP7658992A 1992-03-31 1992-03-31 System for supporting assembling work plant by computer Pending JPH05282405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7658992A JPH05282405A (en) 1992-03-31 1992-03-31 System for supporting assembling work plant by computer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7658992A JPH05282405A (en) 1992-03-31 1992-03-31 System for supporting assembling work plant by computer

Publications (1)

Publication Number Publication Date
JPH05282405A true JPH05282405A (en) 1993-10-29

Family

ID=13609494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7658992A Pending JPH05282405A (en) 1992-03-31 1992-03-31 System for supporting assembling work plant by computer

Country Status (1)

Country Link
JP (1) JPH05282405A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003099109A (en) * 2001-09-20 2003-04-04 Denso Corp Assembly process design system
JP2008046924A (en) * 2006-08-17 2008-02-28 Hitachi Ltd Assembly information generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003099109A (en) * 2001-09-20 2003-04-04 Denso Corp Assembly process design system
JP4665369B2 (en) * 2001-09-20 2011-04-06 株式会社デンソー Assembly process design system
JP2008046924A (en) * 2006-08-17 2008-02-28 Hitachi Ltd Assembly information generator

Similar Documents

Publication Publication Date Title
TWI381256B (en) System, method, and computer readable medium for controlling the movement of a plurality of moveable axes of a machine tool system
KR101126808B1 (en) Error estimation method and device for multi-axis controlled machines
EP2047342B1 (en) Machine tool system control
EP0123214B1 (en) Operation teaching method and apparatus for industrial robot
JP2895672B2 (en) Multiple robot control method
Williams Ii et al. Translational planar cable-direct-driven robots
US6642922B1 (en) Interface apparatus for dynamic positioning and orientation of a robot through real-time parameter modifications
US20070242073A1 (en) Robot simulation apparatus
US5341458A (en) Method of and system for generating teaching data for robots
JP4644490B2 (en) System and method for drawing complex n-curves for direct control of tool motion
JP3349652B2 (en) Offline teaching method
JP2004094399A (en) Control process for multi-joint manipulator and its control program as well as its control system
EP4037877B1 (en) A method for determining placement of parallel-kinematic machine joints, and a parallelkinematic machine with high stiffness
Mousavi Mohammadi et al. A real-time impedance-based singularity and joint-limits avoidance approach for manual guidance of industrial robots
JPH05282405A (en) System for supporting assembling work plant by computer
JPH06304893A (en) Calibration system for positioning mechanism
JP3151149B2 (en) Manipulator control method using image information
JP2006072673A (en) Positioner setting method for welding robot
JP2021186929A (en) Control method for multi-axis robot
CN109773581B (en) Method for applying robot to reappear machining
Wang Three-dimensional collision avoidance in production automation
JPH07210230A (en) Pipe surface copying control method using force control robot
US20040093123A1 (en) Positioning data calculating procedure, positioning data calculating apparatus and articulated manipulator
JP2000112510A (en) Robot teaching method and its device
JP3094418B2 (en) Industrial robot cooperative control method and apparatus