JPH05281999A - Speech encoding device using cyclic code book - Google Patents

Speech encoding device using cyclic code book

Info

Publication number
JPH05281999A
JPH05281999A JP4080122A JP8012292A JPH05281999A JP H05281999 A JPH05281999 A JP H05281999A JP 4080122 A JP4080122 A JP 4080122A JP 8012292 A JP8012292 A JP 8012292A JP H05281999 A JPH05281999 A JP H05281999A
Authority
JP
Japan
Prior art keywords
excitation
code book
waveform
waveforms
excitation waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4080122A
Other languages
Japanese (ja)
Other versions
JP3276977B2 (en
Inventor
Tomokazu Morio
智一 森尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP08012292A priority Critical patent/JP3276977B2/en
Publication of JPH05281999A publication Critical patent/JPH05281999A/en
Application granted granted Critical
Publication of JP3276977B2 publication Critical patent/JP3276977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the capacity of a memory stored with an excitation waveform and the quantity of arithmetic for an optimum excitation waveform search by cyclically accessing a code book for the excitation waveforms. CONSTITUTION:In the speech encoding device which uses a code exciting linear predictive encoding system, plural exciting waveforms are stored in the cyclic excitation code book 101. A code generated from this code book 101 generates an exciting waveform with a parameter index selecting the excitation waveform and a parameter position indicating its shift access position. F or example, 16 kind of stored exciting waveforms in 40 dimensions are cyclically accessed from 32 different positions to generate 512 excitation waveforms. When the optimum excitation waveform is searched for in the code book 101, the search is made basically by a technique used for an overlapping code book. At this time, the access is cyclically performed, so the part of recurrence processing is reducible in throughput.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、音声波形を効率的に
情報圧縮して伝送或いは蓄積する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for efficiently compressing a voice waveform and transmitting or storing it.

【0002】[0002]

【従来の技術】音声波形を効率的に情報圧縮して、伝送
或いは蓄積する方式として、符号励振線形予測符号化(C
ode-Excited Linear Prediction : 以後CELPと記す)が
ある。(例えば、 "Code-Excited Linear Prediction (C
ELP): High-Quality Speech atVery Low Bit Rates"、
M. R. Schroeder and B. S. Atal, Proc. IEEE Int.Con
f. on Acoustics, Speech and Signal Processing, pp.
937-940,1985)。
2. Description of the Related Art Code excitation linear predictive coding (C
ode-Excited Linear Prediction: hereinafter referred to as CELP). (For example, "Code-Excited Linear Prediction (C
ELP): High-Quality Speech atVery Low Bit Rates ",
MR Schroeder and BS Atal, Proc. IEEE Int.Con
f. on Acoustics, Speech and Signal Processing, pp.
937-940, 1985).

【0003】CELPは低ビットレイトでも高音質の音声が
再生できる方式ではあるが、基本的には合成による分析
手法(Analysis-by-Synthesis)を用いて符号化するゆ
え、演算量が非常に多いという問題がある。特に演算量
の多い部分は、最適な励振波形を多種類記憶された符号
帳を全探索して決定する処理である。
[0003] CELP is a system capable of reproducing high-quality sound even at a low bit rate, but since it is basically encoded by using an analysis method by synthesis (Analysis-by-Synthesis), the calculation amount is very large. There is a problem. Particularly, the part where the amount of calculation is large is a process in which the optimum excitation waveform is determined by performing a full search through the codebook that stores a large number of types.

【0004】この励振符号帳の探索演算量を削減する方
式が種々提案されている。符号帳にある構造を規定する
ことで演算量を削減する方式として、ベクトル加算によ
るコードブック(例えば、"Vector Sum Excited Linear
Prediction (VSELP) SpeechCoding at 8 kbps"、 I. A.
Gerson and M. Jasiuk, Proc. IEEE Int.Conf. on Aco
ustics, Speech and Signal Processing, pp.461-463,
1990)や、オーバーラッピングコードブックがある(例え
ば、"Improved Speech Qualityand Efficient Vector Q
uantization in SELP", W. B. Kleijn, D. J.Krasinsk
i, and R. H. Ketchum, Proc. IEEE Int. Conf. on Aco
ustics、Speech and Signal Processing, pp. 155-158,
1988)。
Various methods have been proposed for reducing the search calculation amount of the excitation codebook. A codebook based on vector addition (for example, "Vector Sum Excited Linear") is used as a method to reduce the amount of calculation by defining the structure in the codebook.
Prediction (VSELP) SpeechCoding at 8 kbps ", IA
Gerson and M. Jasiuk, Proc. IEEE Int.Conf. On Aco
ustics, Speech and Signal Processing, pp.461-463,
1990) or overlapping codebooks (eg "Improved Speech Quality and Efficient Vector Q
uantization in SELP ", WB Kleijn, DJ Krasinsk
i, and RH Ketchum, Proc. IEEE Int. Conf. on Aco
ustics, Speech and Signal Processing, pp. 155-158,
1988).

【0005】本発明は、基本的にはオーバーラッピング
コードブックの手法の改良である。以下にW. B.Kleijn
らの前述の参考文献に従って、オーバーラッピングコー
ドブックを用いる演算量の削減について説明を進める。
The present invention is basically an improvement to the overlapping codebook approach. Below is WBKleijn
The reduction of the amount of calculation using the overlapping codebook will be described according to the above-mentioned references.

【0006】現分析フレームの音声信号のベクトルを
s、 合成フィルタのインパルス応答を表す行列をH、 現
フレームの合成フィルタの零入力応答をzと表すと、最
適な励振波形ベクトルtは数1の関係を満たす。
The vector of the voice signal of the current analysis frame
Let s be the matrix representing the impulse response of the synthesis filter, and z be the zero-input response of the synthesis filter in the current frame.

【0007】[0007]

【数1】 [Equation 1]

【0008】ここでHは、 その合成フィルタのインパル
ス応答をRサンプルで打ち切って数2のように表現す
る。
Here, H expresses the impulse response of the synthesizing filter as expressed by equation (2) by truncating it with R samples.

【0009】[0009]

【数2】 [Equation 2]

【0010】最適励振波形の探索は、最適ゲイン情報で
増幅された侯補ベクトルriの中から、数3で示されるε
を最小化するものを全てのi(コードワードの種類だけあ
る)から選択する処理である。
The search for the optimum excitation waveform is performed by using the ε expressed by the equation 3 from the auxiliary vector r i amplified by the optimum gain information.
This is the process of selecting the one that minimizes from all i (there are only codeword types).

【0011】[0011]

【数3】 [Equation 3]

【0012】数3は数4のように展開される。Expression 3 is expanded as Expression 4.

【0013】[0013]

【数4】 [Equation 4]

【0014】数4の右辺第1項はiによらず一定。第2項
のHTHtもiによらず一定で、結局励振波形ベクトルとの
内積演算になる。処理量の多いのは第3項目である。こ
の3項目の再帰処理について以下に述べる。
The first term on the right side of Equation 4 is constant regardless of i. The second term, H T Ht, is also constant regardless of i, and eventually becomes an inner product calculation with the excitation waveform vector. The third item has the highest throughput. The recursive processing of these three items will be described below.

【0015】ここで数5、数6で表されるシフト行列
と、マスク行列を定義する。
Here, the shift matrix expressed by the equations 5 and 6 and the mask matrix are defined.

【0016】[0016]

【数5】 [Equation 5]

【0017】[0017]

【数6】 [Equation 6]

【0018】Ikは、k行目に最後の否零要素の現れる行
列である。これらの行列を用いるとオーバーラッピング
コードブックでは励振波形は数7のように再帰的に表現
できる。
I k is a matrix in which the last nonzero element appears in the kth row. When these matrices are used, the excitation waveform can be recursively expressed as in Expression 7 in the overlapping codebook.

【0019】[0019]

【数7】 [Equation 7]

【0020】処理量の多い数4の第3項目Ei = ri THTHi
は、HTHが対称テプリッツ行列であることより、結局、
数8のように再帰的に表現できる。
Third item E i = r i T H T H i of number 4 with a large amount of processing
Is that H T H is a symmetric Toeplitz matrix, so
It can be expressed recursively like Equation 8.

【0021】[0021]

【数8】 [Equation 8]

【0022】数8の演算は否零の要素が少なく、結局2R
+3回の積和演算になる。
The operation of the equation 8 has few elements of non-zero, and the result is 2R.
+3 multiply-add operations.

【0023】[0023]

【発明が解決しようとする課題】VSELPはN個の基底ベク
トルを+1或いは-1倍して加算することで、2N個の励振波
形を作り出す。これにより処理量とメモリー量削減を実
現している。例えば512個の励振波形は9個の基底ベクト
ルから作られる。しかしながら次の問題点がある。
VSELP creates 2 N excitation waveforms by multiplying N basis vectors by +1 or -1 and adding them. This has realized the reduction of processing amount and memory amount. For example, 512 excitation waveforms are created from 9 basis vectors. However, there are the following problems.

【0024】励振波形のベクトルの次元数を40次元とす
る。この40次元の超空間を 512個の代表ベクトルでベク
トル量子化する訳だが、9個の基底ベクトルの加減算で
作られるベクトルは、高々9次元の空間上に張られるの
みであって、40次元の空間を代表するには片寄りが大き
いという問題がある。これは符号化音声の品質劣化の原
因となり得る。
The number of dimensions of the vector of the excitation waveform is 40. This 40-dimensional superspace is vector-quantized by 512 representative vectors, but the vector created by addition and subtraction of 9 basis vectors is only stretched in 9-dimensional space at most, and 40-dimensional There is a problem that there is a large deviation to represent the space. This can cause deterioration in the quality of coded speech.

【0025】またベクトル加算によって生成される各励
振波形のエネルギーを一定に保つことが困難ゆえ、励振
波形のエネルギーを表現する情報量が多く必要となる問
題点もある。
Further, since it is difficult to keep the energy of each excitation waveform generated by vector addition constant, there is a problem that a large amount of information is required to express the energy of the excitation waveform.

【0026】一方オーバーラッピングコードブックは、
コードブックとして長いサンプル長の励振波形をシフト
してアクセスすることで、演算量とメモリー量削減を実
現している。例えばサンプル長が551の励振波形を1ずつ
シフトしてアクセスすることで、40次元のコードブック
が512個作成できる。しかしながら、この処理法では生
成される各励振波形のエネルギーが一定でないという問
題点がある。
On the other hand, the overlapping codebook is
As a codebook, by shifting and accessing the excitation waveform with a long sample length, the amount of calculation and memory can be reduced. For example, by shifting the excitation waveform with a sample length of 551 by 1 and accessing it, 512 40-dimensional codebooks can be created. However, this processing method has a problem that the energy of each excitation waveform generated is not constant.

【0027】[0027]

【課題を解決するための手段】符号励振線形予測符号化
方式を用いる音声符号化装置において、励振波形の符号
帳を巡回的にアクセスする手段を備えることで、符号化
器における演算量と、符号帳を記憶するメモリーサイズ
を削減する。
In a speech coding apparatus using a code-excited linear predictive coding system, by providing means for cyclically accessing a codebook of excitation waveforms, the calculation amount in the encoder and the code Reduce the memory size to store the book.

【0028】[0028]

【作用】符号励振線形予測符号化方式を用いる音声符号
化装置において、励振波形の符号帳は1個或いは複数個
の基底ベクトルを記憶しており、各々の波形を巡回的に
シフトしながらアクセスし励振波形を作成する。オーバ
ーラッピングコードブックと同様に再帰的処理により、
最適励振波形探索の演算量が削減できる。
In the speech coder using the code-excited linear predictive coding method, the codebook of the excitation waveform stores one or a plurality of basis vectors, and each waveform is accessed while being cyclically shifted. Create an excitation waveform. Like recursive processing in the overlapping codebook,
The amount of calculation for optimum excitation waveform search can be reduced.

【0029】[0029]

【実施例】【Example】

<実施例1>図1は、 本発明の巡回符号を備えるCELP
の音声符号化装置である。101は本発明の巡回励振符号
帳、102は励振波形をゲイン(gain)情報で増幅する掛
算器、103及び105は加算器、104は音声のピッチ構造を
生成する長期予測器、106は音声のスペクトル構造を生
成する短期予測器、107は音声信号の入力端子、108は入
力音声信号と合成音声信号の減算器、109は入力音声信
号と合成音声信号の差信号の聴覚重み付けフィルタ、11
0は聴覚的重み付けされた差信号のエネルギー最小化判
定器である。
<Embodiment 1> FIG. 1 shows a CELP equipped with a cyclic code of the present invention.
It is a speech encoding device of. 101 is a cyclic excitation codebook of the present invention, 102 is a multiplier that amplifies an excitation waveform with gain information, 103 and 105 are adders, 104 is a long-term predictor that generates a pitch structure of speech, and 106 is a speech A short-term predictor for generating a spectral structure, 107 is an input terminal of a speech signal, 108 is a subtractor of the input speech signal and the synthesized speech signal, 109 is a perceptual weighting filter of a difference signal between the input speech signal and the synthesized speech signal, 11
0 is a perceptually weighted difference signal energy minimization determiner.

【0030】先ず励振波形の生成方法について説明し、
その後処理量削減について説明する。励振符号帳101に
は複数の励振波形が記憶されている。波形のサンプル長
(次元数)をD、個数をNとする。記憶されている各々の波
形をEI(n)、I = 0、1、...、N-1、 n = 0、
1、...、D-1 と表す。 この巡回符号帳より生成され
る符号は、励振波形を選択するパラメータインデックス
(index)と、そのシフトアクセス位置を示すパラメー
タポジション(position)により、数9により励振波形
を生成する。
First, the method of generating the excitation waveform will be described.
After that, the reduction of the processing amount will be described. The excitation codebook 101 stores a plurality of excitation waveforms. Waveform sample length
Let (dimension number) be D and the number be N. Each stored waveform is E I (n), I = 0, 1 ,. . . , N-1, n = 0,
1 ,. . . , D-1. The code generated from this cyclic codebook generates an excitation waveform according to Equation 9 by a parameter index (index) for selecting an excitation waveform and a parameter position (position) indicating the shift access position.

【0031】[0031]

【数9】 [Equation 9]

【0032】ここで、 n = 0、1、...、D-1。 a % b
は、aをbで割った余りを示す。
Here, n = 0, 1 ,. . . , D-1. a% b
Indicates the remainder when a is divided by b.

【0033】例えば40次元の励振波形16種類を記憶した
励振波形それぞれを、32個の異なるシフト位置から巡回
的にアクセスすることで、512個の励振波形が生成でき
る。励振符号帳に記憶されている複数の励振波形の作成
方法は、種々考えられる。例えば単純にはエネルギーを
正規化したランダムコードブック(ランダムコードブッ
クについては前述のM.R.Schroeder の文献参照)が用
いられる。
For example, 512 excitation waveforms can be generated by cyclically accessing each of the excitation waveforms storing 16 types of 40-dimensional excitation waveforms from 32 different shift positions. Various methods of creating a plurality of excitation waveforms stored in the excitation codebook can be considered. For example, a random codebook in which energy is simply normalized (for the random codebook, refer to the above-mentioned MR Schroeder document) is used.

【0034】またエネルギーを正規化した互いに直交す
るランダムコードブックの直交基底ベクトルに選ぶこと
もできる。これはホワイトガウシアン(white Gaussia
n)から生成されるランダムコードブックを、グラムシ
ュミット(Gram-Schmidt)の直交化手法を用いて、全て
の他の基底ベクトルに対して直交化した後、エネルギー
を正規化することで得られる。
It is also possible to select an energy-normalized orthogonal basis vector of a random codebook which is orthogonal to each other. This is white Gaussia
The random codebook generated from n) is orthogonalized to all other basis vectors using the Gram-Schmidt orthogonalization method, and then the energy is normalized.

【0035】このようなホワイトガウシアン(white Ga
ussian)の直交基底ランダムコードブックを巡回的にシ
フトして生成される励振波形ベクトルは、互いに成す角
度が直交に近く、ランダムコードブックとして表現され
る励振波形のベクトル空間を、ベクトル量子化する点で
は効率的であると考えられる。また励振波形ベクトルの
エネルギーも全て正規化されるので、励振波形のエネル
ギーを表現する情報 (図1中ではgainと表記)も効率的
に表現できる。
Such a white Gaussian (white Ga
The excitation waveform vector generated by cyclically shifting the orthogonal basis random codebook of ussian) is such that the angles formed by them are close to orthogonal, and the vector space of the excitation waveform expressed as a random codebook is vector-quantized. Is considered to be efficient. Further, since all the energy of the excitation waveform vector is also normalized, the information expressing the energy of the excitation waveform (expressed as gain in FIG. 1) can also be efficiently expressed.

【0036】次に巡回符号帳の中から最適な励振波形を
探索する際の、処理量削減について述べる。基本的には
オーバーラッピングコードブックで用いられる手法に基
づくが、巡回的にアクセスすることで再帰処理の部分が
更に処理量削減できる。従来技術で説明したオーバーラ
ッピングコードブックを用いる演算量削減の手順を、巡
回符号に適応してみる。ここで数10で表される行列を
定義する。
Next, reduction of the amount of processing when searching for the optimum excitation waveform from the cyclic codebook will be described. Basically, it is based on the method used in the overlapping codebook, but the recursive processing part can be further reduced by accessing cyclically. The procedure for reducing the amount of calculation using the overlapping codebook described in the related art will be applied to a cyclic code. Here, the matrix expressed by the equation 10 is defined.

【0037】[0037]

【数10】 [Equation 10]

【0038】ここで、Dはベクトル次元数、即ち分析フ
レームのサンプル数を表す。巡回的に生成される励振波
形は数1で表されるが、以下表記を簡潔にするため、 r
i はEindexi(n)、 n = 0、1、...、D-1を表すもの
とする。また再帰処理の一例としてi=0で以下説明する
が、iは0、1、...、D-1のいづれの値でも良い。巡回
符号の場合について数9の右辺をi=0とし、実際の演算
を記述すると、
Here, D represents the number of vector dimensions, that is, the number of samples in the analysis frame. The excitation waveform generated cyclically is expressed by Equation 1, but in order to simplify the notation below, r
i is E index , i (n), n = 0, 1 ,. . . , D-1. As an example of recursive processing, i = 0 will be described below, but i is 0, 1 ,. . . , D-1 can be used. In the case of the cyclic code, the right side of Equation 9 is set to i = 0, and the actual operation is described as follows.

【0039】[0039]

【数11】 [Equation 11]

【0040】[0040]

【数12】 [Equation 12]

【0041】[0041]

【数13】 [Equation 13]

【0042】[0042]

【数14】 [Equation 14]

【0043】結局、巡回符号を用いることで数9の演算
は数15で表され、D+2回の積和演算になる。
After all, by using the cyclic code, the operation of the equation 9 is expressed by the equation 15, which is a D + 2 sum of products operation.

【0044】[0044]

【数15】 [Equation 15]

【0045】ここで、bn = aD-n - anであり、Hが決定
すると一度計算するのみである。再帰処理の演算量は、
オーバーラッピングコードブックの場合、インパルスレ
スポンスの打ち切り数Rに、そして巡回符号の場合は分
析フレームのサンプル数Dに依存する。処理量の具体的
比較例として、R = D = 40とすると、(D+2) /(2R+3) の
比率は約50%になる。
Here, b n = a Dn -a n , and once H is determined, it is only calculated once. The calculation amount of recursive processing is
For overlapping codebooks, it depends on the impulse response truncation number R, and for cyclic codes it depends on the number of samples D of the analysis frame. As a concrete comparison example of the throughput, if R = D = 40, the ratio of (D + 2) / (2R + 3) is about 50%.

【0046】しかしながら、巡回符号の生成源となる符
号を複数種類(N)備える場合は、数9の再帰処理の初期
値E0の計算を複数回行わねばならない。それゆえ再帰演
算以外の処理量は増加する。
However, if a plurality of types (N) of codes that are the generation sources of the cyclic code are provided, the initial value E 0 of the recursive processing of the equation 9 must be calculated a plurality of times. Therefore, the amount of processing other than the recursive calculation increases.

【0047】[0047]

【発明の効果】以上より明らかのように、符号励振線形
予測符号化方式を用いる音声符号化装置において、エネ
ルギーを正規化した直交基底のランダムコードブックか
らなる励振波形の符号帳を、巡回的にアクセスすること
で、励振波形を効率良くベクトル量子化することができ
るとともに、励振波形を記憶するメモリー量を削減し、
最適励振波形探索の演算量も削減できる。
As is clear from the above, in the speech coder using the code-excited linear predictive coding method, the codebook of the excitation waveform composed of the random codebook of the energy-normalized orthogonal basis is cyclically used. By accessing, the excitation waveform can be efficiently vector-quantized, and the amount of memory that stores the excitation waveform can be reduced.
The amount of calculation for optimum excitation waveform search can also be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の音声符号化装置の符号化器の一実施例
のブロック図である。
FIG. 1 is a block diagram of an embodiment of a coder of a speech coder according to the present invention.

【符号の説明】[Explanation of symbols]

101 巡回励振符号帳 102 掛算器 103、105 加算器 104 長期予測器 106 短期予測器 107 信号入力端子 108 減算器 109 聴覚的重み付けフィルタ 110 エネルギー最小化判定器 101 cyclic excitation codebook 102 multipliers 103, 105 adder 104 long-term predictor 106 short-term predictor 107 signal input terminal 108 subtractor 109 auditory weighting filter 110 energy minimization determiner

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 符号励振線形予測符号化方式を用いる音
声符号化装置において、励振波形の符号帳を巡回的にア
クセスすることを特徴とする音声符号化装置。
1. A speech coding apparatus using a code-excited linear predictive coding method, wherein a codebook of excitation waveforms is cyclically accessed.
JP08012292A 1992-04-02 1992-04-02 Audio coding device Expired - Fee Related JP3276977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08012292A JP3276977B2 (en) 1992-04-02 1992-04-02 Audio coding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08012292A JP3276977B2 (en) 1992-04-02 1992-04-02 Audio coding device

Publications (2)

Publication Number Publication Date
JPH05281999A true JPH05281999A (en) 1993-10-29
JP3276977B2 JP3276977B2 (en) 2002-04-22

Family

ID=13709408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08012292A Expired - Fee Related JP3276977B2 (en) 1992-04-02 1992-04-02 Audio coding device

Country Status (1)

Country Link
JP (1) JP3276977B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000000963A1 (en) * 1998-06-30 2000-01-06 Nec Corporation Voice coder
EP0991054A2 (en) * 1996-11-07 2000-04-05 Matsushita Electric Industrial Co., Ltd Vector quantisation codebook generation method
JP2010538317A (en) * 2007-08-27 2010-12-09 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Noise replenishment method and apparatus

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6757650B2 (en) 1996-11-07 2004-06-29 Matsushita Electric Industrial Co., Ltd. Excitation vector generator, speech coder and speech decoder
US8036887B2 (en) 1996-11-07 2011-10-11 Panasonic Corporation CELP speech decoder modifying an input vector with a fixed waveform to transform a waveform of the input vector
EP0991054A3 (en) * 1996-11-07 2000-04-12 Matsushita Electric Industrial Co., Ltd Vector quantisation codebook generation method
EP1085504A2 (en) * 1996-11-07 2001-03-21 Matsushita Electric Industrial Co., Ltd. Vector quantization codebook generation method
EP1085504A3 (en) * 1996-11-07 2001-03-28 Matsushita Electric Industrial Co., Ltd. Vector quantization codebook generation method
EP1094447A2 (en) * 1996-11-07 2001-04-25 Matsushita Electric Industrial Co., Ltd. Vector quantization codebook generation method
EP1094447A3 (en) * 1996-11-07 2001-05-02 Matsushita Electric Industrial Co., Ltd. Vector quantization codebook generation method
EP1136985A2 (en) * 1996-11-07 2001-09-26 Matsushita Electric Industrial Co., Ltd. Vector quantisation codebook generation method
EP1136985A3 (en) * 1996-11-07 2001-10-10 Matsushita Electric Industrial Co., Ltd. Vector quantisation codebook generation method
US6330534B1 (en) 1996-11-07 2001-12-11 Matsushita Electric Industrial Co., Ltd. Excitation vector generator, speech coder and speech decoder
US6330535B1 (en) 1996-11-07 2001-12-11 Matsushita Electric Industrial Co., Ltd. Method for providing excitation vector
US6345247B1 (en) 1996-11-07 2002-02-05 Matsushita Electric Industrial Co., Ltd. Excitation vector generator, speech coder and speech decoder
US8370137B2 (en) 1996-11-07 2013-02-05 Panasonic Corporation Noise estimating apparatus and method
EP0991054A2 (en) * 1996-11-07 2000-04-05 Matsushita Electric Industrial Co., Ltd Vector quantisation codebook generation method
US6947889B2 (en) 1996-11-07 2005-09-20 Matsushita Electric Industrial Co., Ltd. Excitation vector generator and a method for generating an excitation vector including a convolution system
US6772115B2 (en) 1996-11-07 2004-08-03 Matsushita Electric Industrial Co., Ltd. LSP quantizer
US6799160B2 (en) 1996-11-07 2004-09-28 Matsushita Electric Industrial Co., Ltd. Noise canceller
US6910008B1 (en) 1996-11-07 2005-06-21 Matsushita Electric Industries Co., Ltd. Excitation vector generator, speech coder and speech decoder
US6421639B1 (en) 1996-11-07 2002-07-16 Matsushita Electric Industrial Co., Ltd. Apparatus and method for providing an excitation vector
US8086450B2 (en) 1996-11-07 2011-12-27 Panasonic Corporation Excitation vector generator, speech coder and speech decoder
US7289952B2 (en) 1996-11-07 2007-10-30 Matsushita Electric Industrial Co., Ltd. Excitation vector generator, speech coder and speech decoder
US7398205B2 (en) 1996-11-07 2008-07-08 Matsushita Electric Industrial Co., Ltd. Code excited linear prediction speech decoder and method thereof
US7587316B2 (en) 1996-11-07 2009-09-08 Panasonic Corporation Noise canceller
US7809557B2 (en) 1996-11-07 2010-10-05 Panasonic Corporation Vector quantization apparatus and method for updating decoded vector storage
US6453288B1 (en) 1996-11-07 2002-09-17 Matsushita Electric Industrial Co., Ltd. Method and apparatus for producing component of excitation vector
US6973424B1 (en) 1998-06-30 2005-12-06 Nec Corporation Voice coder
WO2000000963A1 (en) * 1998-06-30 2000-01-06 Nec Corporation Voice coder
JP2010538317A (en) * 2007-08-27 2010-12-09 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Noise replenishment method and apparatus

Also Published As

Publication number Publication date
JP3276977B2 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
US5787391A (en) Speech coding by code-edited linear prediction
EP1353323B1 (en) Method, device and program for coding and decoding acoustic parameter, and method, device and program for coding and decoding sound
EP1746582A1 (en) Sound encoder and sound decoder
JP3196595B2 (en) Audio coding device
US6768978B2 (en) Speech coding/decoding method and apparatus
JP2002268686A (en) Voice coder and voice decoder
JP3275247B2 (en) Audio encoding / decoding method
JP3095133B2 (en) Acoustic signal coding method
JP3235543B2 (en) Audio encoding / decoding device
JP3174733B2 (en) CELP-type speech decoding apparatus and CELP-type speech decoding method
JP3148778B2 (en) Audio encoding method
JPH05281999A (en) Speech encoding device using cyclic code book
JPH0764600A (en) Pitch encoding device for voice
JPH08292797A (en) Voice encoding device
JPH0519795A (en) Excitation signal encoding and decoding method for voice
JP2002221998A (en) Method, device and program for encoding and decoding acoustic parameter and voice
JP3024467B2 (en) Audio coding device
JP2000029499A (en) Voice coder and voice encoding and decoding apparatus
JP2808841B2 (en) Audio coding method
JP3174782B2 (en) CELP-type speech decoding apparatus and CELP-type speech decoding method
JP3230380B2 (en) Audio coding device
JP2001134298A (en) Speech encoding device and speech decoding device, and speech encoding/decoding system
JP3174779B2 (en) Diffusion sound source vector generation apparatus and diffusion sound source vector generation method
JP3174780B2 (en) Diffusion sound source vector generation apparatus and diffusion sound source vector generation method
JPH08248995A (en) Voice coding method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees